JPS60233292A - Shield type tunnel drilling machine - Google Patents

Shield type tunnel drilling machine

Info

Publication number
JPS60233292A
JPS60233292A JP8839484A JP8839484A JPS60233292A JP S60233292 A JPS60233292 A JP S60233292A JP 8839484 A JP8839484 A JP 8839484A JP 8839484 A JP8839484 A JP 8839484A JP S60233292 A JPS60233292 A JP S60233292A
Authority
JP
Japan
Prior art keywords
jack
excavator
propulsion
guide plate
shield type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8839484A
Other languages
Japanese (ja)
Inventor
松原 武徳
木原 四三
吉岡 邦康
勉 安田
明 波多腰
博司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8839484A priority Critical patent/JPS60233292A/en
Publication of JPS60233292A publication Critical patent/JPS60233292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はシールド式トンネル掘削機に係るものである。[Detailed description of the invention] The present invention relates to a shield type tunnel excavator.

I!6図は従来のシールド式トンネル掘削機の概要を示
し、胴部(11、掘削部(2)、推進部(3)、排土部
(4)、制御部(5)の各主要部より構成され、トンネ
ル掘削機(A)が切羽の地山を掘削排土したのち、掘削
機後方に組立てられた既設のセグメント(6)に推進反
力をとって、推進部(3)における掘削機円周方向に列
設された推進ジヤツキ抑圧長して胴部(1)ヲ前進させ
、而るのち推進ジヤツキを退縮してセグメント(6)t
リング状に組立ててボルトで結合し、トンネル外壁を構
成する円筒胴部(BlY造り、内面にセメントを打設し
て仕上げるように構成されている。
I! Figure 6 shows an overview of a conventional shield type tunnel excavator, which consists of the main parts: body part (11), excavation part (2), propulsion part (3), earth removal part (4), and control part (5). After the tunnel excavator (A) excavates and removes the earth at the face, the excavator circle in the propulsion section (3) is The propulsion jacks arranged in the circumferential direction are lengthened to advance the trunk (1), and then the propulsion jacks are retracted to move the segment (6) t.
It is assembled into a ring shape and connected with bolts, and the cylindrical body that forms the outer wall of the tunnel (BILY construction) is finished by pouring cement on the inner surface.

しかるに地盤(qの土質は複雑であるため、jJ7図に
示す如く円筒胴部(B)は蛇行して真直な円筒胴部@ケ
形成することが困難な場合が多(、このような蛇行を防
止するため、従来のトンネル掘削機では推進部(3)の
ジヤツキ抑圧を適宜調整しているだけであるので、円筒
胴部(B)のうねりt小さくすることはできなかった。
However, because the soil quality of the ground (q) is complex, it is often difficult to form a straight cylindrical body (B) due to the meandering nature of the cylindrical body (B) as shown in Fig. In order to prevent this, conventional tunnel excavators simply adjust the jitter suppression of the propulsion section (3) as appropriate, so it has not been possible to reduce the waviness t of the cylindrical body section (B).

本発明はこのような問題点を解決するために提案された
もので、掘削機胴部先端部の円周方向に沿って配設され
た半径方向に可動な複数の案内板、及び同案内板作動ジ
ヤツキと、前記案内板及び掘削機推進ジヤツキ制御装置
とよりなり、同制御装會は前記胴部内に配設された針路
検出センサ及び指令器、並に前記センサの検知信号と前
記指令器からの設定信号の偏差ケ演算処理し、予め組込
まれたプログラムにより出力信号の一方を前記案内板作
動ジヤツキに、他方を掘削機推進ジヤツキに選別発信し
て、前記胴部の進行方向を変換するように構成された演
算調整器よりなることを特徴とするシールド式トンネル
掘削機に係るものである。
The present invention was proposed to solve these problems, and includes a plurality of radially movable guide plates disposed along the circumferential direction of the tip of the excavator body, and the guide plates. The control device includes an operating jack, the guide plate, and an excavator propulsion jack control device, and the control device includes a course detection sensor and a command device disposed in the body, and a detection signal from the sensor and a control device from the command device. The deviation of the setting signal is calculated, and one of the output signals is selectively transmitted to the guide plate operation jack and the other to the excavator propulsion jack according to a pre-installed program, so as to change the direction of movement of the trunk. The present invention relates to a shield type tunnel excavator characterized by comprising a calculation regulator configured as follows.

本発明に係るシールド式トンネル掘削機は前記したよう
に、胴部先端部に円周方向に沿って半径方向に可動な案
内板及び同案内板作動ジヤツキ押力設し、前記掘削機に
よるトンネル掘進作業中、前記制御装置における針路検
出センサによって掘進方向を検知してこの検知信号を演
算調整器に送り、同演算調整装置において前記検知信号
と指令器から送られる設定信号の偏差を演算処理し、予
め組込まれたプログラムによって出力信号の一方を前記
案内板作動ジヤツキに送って掘削機な曲げようとする方
向に案内板を移動せしめるとともに、前記出力信号の他
方を推進ジヤツキに送って掘削機を曲げようとする方向
のジヤツキ押力が得られるようにし、か(して前記掘削
機の推進方向を自動的に修正し、真直にトンネルを掘進
することができるものであり、また必要に応じて所要の
曲線に沿ってトンネルを掘進じうるものである。
As described above, the shield type tunnel excavator according to the present invention is provided with a guide plate that is movable in the radial direction along the circumferential direction at the distal end of the body and a pushing force for operating the guide plate, and the tunnel excavator is operated by the excavator. During the work, the direction of excavation is detected by a course detection sensor in the control device, the detection signal is sent to a calculation adjustment device, and the deviation between the detection signal and the setting signal sent from the command device is calculated and processed in the calculation adjustment device, According to a pre-installed program, one of the output signals is sent to the guide plate operation jack to move the guide plate in the direction in which the excavator is to be bent, and the other output signal is sent to the propulsion jack to cause the excavator to bend. The excavator automatically adjusts the direction of propulsion of the excavator so that it can obtain a jacking force in the desired direction, and excavates the tunnel straight. It is possible to excavate a tunnel along the curve of

以下本発明ヶ図示の実施例について説明する。The illustrated embodiments of the present invention will be described below.

(11)はシールド式トンネル掘削機の胴部、(121
は据削部、(13)は推進部、(l供工排土部である。
(11) is the body of a shield type tunnel excavator, (121)
(13) is the excavation department, (13) is the propulsion department, and (l) is the earth removal department.

胴部α1)先端の切羽に接する部分には円周方向に沿っ
て上下左右に、夫々半径方向に可動なように蝶番を介し
て案内板(15a)(15bX15CX15d)が配設
され、胴部01)Y支点として回部に配設された案内板
作動ジヤツキ(16αX16h)(16C)(16d)
によって作動されるようになっており同各ジヤツキは別
に設けられた油圧制御弁を介して作動されるようになっ
ている。図中(179)(17A )(17C)は前記
案内板(15αX]5”)(15C)の蝶着部である。
Body part α1) Guide plates (15a) (15b X 15C ) Guide plate operating jack (16αX16h) (16C) (16d) installed on the rotation part as a Y fulcrum
Each jack is operated via a separately provided hydraulic control valve. In the figure, (179), (17A), and (17C) are hinged portions of the guide plate (15αX]5'') (15C).

第1図に示す実施例において、前記ジヤツキ(16/Z
)・・・・・・(16d)は胴部(1υの外周に配設さ
れているが、胴部α1)が掘進の邪魔にならない個所、
例えば胴部内周面に配設される。また図示の実施例では
4個の案内板(15α)・・・・・・(15d)が配設
されているが、その数は任意である。
In the embodiment shown in FIG.
)...(16d) is a location where the body part (although it is arranged on the outer periphery of 1υ, the body part α1) does not get in the way of excavation,
For example, it is arranged on the inner peripheral surface of the trunk. Further, in the illustrated embodiment, four guide plates (15α), . . . (15d) are provided, but the number may be arbitrary.

第5図は前記案内板及び推進ジヤツキ制御装置で+ +
211は胴部(11)内に配設されたトンネル掘削機の
針路検出センサで、同センサ(2I)の検出信号は演算
調整器(22)に入る。一方指令器(ハ)からの設定信
号が前記演算調整器(ηに入っており、前記センサC1
!11からの信号と比較演算処理され、一つの回路は前
記推進部(1りの各推進ジヤツキに圧油を分配する油圧
制御弁(24α)・・・・・・<24n)に接続され、
前記推進ジヤツキの動作によって胴部α1JプC前進で
きるようになっている。また他方の回路は案内板(15
α)<15b)(15C)(15d) Y駆動する案内
板作動ジヤツキ(16α)(16b)(16C)(16
d)に圧油を分配する油圧制御弁(25α)・・・・二
・(25d)に接続され、所要の案内板を半径方向に移
動しうるように構成されている。
Figure 5 shows the guide plate and propulsion jack control device.
Reference numeral 211 denotes a tunnel excavator course detection sensor disposed within the body (11), and a detection signal from the sensor (2I) is input to the calculation regulator (22). On the other hand, a setting signal from the command unit (c) is input to the calculation regulator (η), and the sensor C1
! One circuit is connected to the propulsion section (hydraulic control valve (24α) for distributing pressure oil to each propulsion jack (24α) <24n),
The torso α1JP can be moved forward by the operation of the propulsion jack. Also, the other circuit is a guide plate (15
α)<15b)(15C)(15d) Y-driven guide plate operating jack (16α)(16b)(16C)(16
d) are connected to hydraulic control valves (25α), .

なお前記演算調整器(2りの出力信号回路は一方の案内
板系では4系統、他方の信号回路は推進部(13)の推
進ジヤツキ数ルに対応した系統数を有するものである。
It should be noted that the output signal circuits of the arithmetic regulator (2) have four systems in one guide plate system, and the number of signal circuits in the other corresponds to the number of propulsion jacks of the propulsion section (13).

図示の実施例は前記したように構成されているので5例
えば針路検出センサCυの検出信号が指令器(ハ)の設
定信号に対して下方に偏倚している場合、前記センサc
!1)の信号と指令器(2:1の信号との差は演算調整
器(27Jに組込まれたプログラムに従って演算処理さ
れ、2系統に別れて出力される。而して一方の出力信号
は前記制御弁(25α)、案内板作動ジヤツキ(16α
)を経て案内板(15tL) ′lj!:上方に移動せ
しめるとともに、制御弁(25+1り +案内板作動ジ
ヤツキ(16C)を経て案内板(151?) ′ft胴
部(+ 1)の中心方向に移動せしめる。
Since the illustrated embodiment is configured as described above, 5 For example, if the detection signal of the course detection sensor Cυ is biased downward with respect to the setting signal of the command device (c), the sensor c
! The difference between the signal of 1) and the signal of the command unit (2:1) is processed according to the program built into the arithmetic regulator (27J) and outputted in two separate systems.Then, one output signal is Control valve (25α), guide plate operation jack (16α)
) to the information board (15tL) 'lj! : Move it upward, and also move the guide plate (151?) ft toward the center of the body (+1) via the control valve (25+1) + guide plate operation jack (16C).

他方の出力信号は前記制御弁(24α)〜(24rL)
を経て推進部0りの推進ジヤツキを駆動し、既設のセグ
メント08に推進反力!とって胴部Ql)Y前進させる
。このとき推進部+13)の推進ジヤツキは多数あるの
で、胴部(1υが上方に曲るような押力が得られるよう
に、演算調整器(24からの信号が選別されて推進部(
1りの下方部の推進ジヤツキに加えられる。
The other output signal is the control valve (24α) to (24rL)
Through this, the propulsion jack of the propulsion section 0 is driven, and the propulsion reaction force is applied to the existing segment 08! Take the trunk Ql)Y and move it forward. At this time, since there are many propulsion jacks for the propulsion section (+13), the signals from the calculation regulator (24) are selected so that a pushing force that bends the body (1υ) upwards is selected.
1 is added to the lower propulsion jack.

この結果、地盤(qにおける胴部(11)の上方は積極
的に土砂が掘削され、空胴09または水等の混合した密
度の小さいものとなり、一方胴部(11)の下方の地盤
は従来通りの密度であるため一胴部0υは推進部0りの
ジヤツキ駆動中に第3図の矢印に示すように上方に曲る
作用力を地盤(C1から受け、胴部01)の曲げ修正が
行なわれることとなる。
As a result, earth and sand are actively excavated above the trunk (11) in the ground (q), resulting in a cavity 09 or a low density mixture of water, etc., while the ground below the trunk (11) is Due to the same density, one body part 0υ receives an acting force from the ground (C1) that bends upward as shown by the arrow in Figure 3 during the jacking operation of the propulsion part 0, and the bending correction of the body part 01 occurs. It will be done.

シールド式トンネルでは、セグメントQηは長さ約17
11で、円周方向に8〜10分割されていて、掘削機の
1掘進サイクル毎にボルトで結合されるため、据削部(
121からの掘削土が排土部u”r介して排出されると
、胴部α1)は推進部(I3)の推進ジヤツキを動作さ
せて約1m前進する間に、微小な修正動作が行なわれて
、トンネルの外壁を構成するセグメント08による真直
な円筒胴部(B)が施工されることとなる。
In a shielded tunnel, the segment Qη has a length of approximately 17
11, is divided into 8 to 10 parts in the circumferential direction, and is connected with bolts for each excavation cycle of the excavator, so the upsetting part (
When the excavated soil from No. 121 is discharged through the earth removal section u''r, the body section α1) operates the propulsion jack of the propulsion section (I3) and moves forward by about 1 m, while a minute correction operation is performed. Then, a straight cylindrical body (B) made of segments 08 that constitutes the outer wall of the tunnel will be constructed.

またトンネルは真直ばかりでなく曲げる必要もあるが、
この場合指令器(ハ)の設定に当り曲げ方向の所定値を
インプットすることにより、前記と同様にして案内板(
15α)〜(15d)及び推進部(1漕の推進ジヤツキ
が駆動されて、前記円筒胴部(B)が曲げられて施工さ
れるように胴部0υが掘進されることとなる。
Also, the tunnel needs to be not only straight but also curved.
In this case, by inputting the predetermined value of the bending direction when setting the command device (c), the guide plate (
15α) to (15d) and the propulsion unit (one row of propulsion jacks) are driven to excavate the body 0υ so that the cylindrical body (B) is bent and constructed.

前記実施例によればこのように、胴部0υの先端に同胴
部01)のシェルを構成する一部に半径方向に可動な案
内板(15α)・・・・・・C15d)’11適当数設
け、推進部(131の推進ジヤツキと組合せ、針路検出
センサCυの検出信号と指令器(2りからの設定信号と
を演算調整器曽で演算処理し、前記案内板(15α)・
−・・・・(15d)及び推進部0りの推進ジヤツキZ
制御することによって真直な円筒胴部(B)、または所
要の曲がりを有する円筒胴部(B)が構成される。
According to the embodiment described above, a radially movable guide plate (15α)...C15d)'11 is installed at the tip of the body 0υ on a part of the shell of the body 01). In combination with the propulsion jack of the propulsion unit (131), the detection signal of the course detection sensor Cυ and the setting signal from the command unit (2) are processed by the arithmetic adjustment unit So, and the guide plate (15α)
-...(15d) and propulsion jack Z of propulsion section 0
Through control, a straight cylindrical body (B) or a cylindrical body (B) having a required bend is constructed.

以上本発明を実施例について説明したが、本発明は勿論
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種々の設計の改’fY施
しうるものである。
Although the present invention has been described above with reference to embodiments, the present invention is of course not limited to such embodiments, and can be modified in various designs without departing from the spirit of the invention. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るシールド式トンネル掘削機の一実
施例を示す縦断側面図、第2図はその正面図、第3図は
その作動状態を示す縦断側面図、第4図は第3図の矢視
IV−mV図、第5図は案内板及び推進ジヤツキ制御装
置のブロック図、第6図は従来のシールド式トンネル掘
削機の縦断側面図、第7図は同掘削機によって掘進され
たトンネルの縦断側面図である。 (11)−Jlljlm、(13>−* 進W、(15
α)(15A)(15C)(15d)・・・案内板、(
16α)C16h)(16ty)(16d)・・・案内
板作動ジヤツキ、Qυ・・・針路検出センサ、曽・・・
演算調整器、(ハ)・・・指令器。 復代理人 弁理士 岡 本 重 文 外3名
FIG. 1 is a vertical side view showing an embodiment of a shield type tunnel excavation machine according to the present invention, FIG. 2 is a front view thereof, FIG. 3 is a vertical side view showing its operating state, and FIG. Fig. 5 is a block diagram of the guide plate and propulsion jack control device, Fig. 6 is a vertical cross-sectional side view of a conventional shield type tunnel excavator, and Fig. 7 is a diagram showing the tunnel excavation performed by the same excavator. FIG. (11)-Jlljlm, (13>-* Shin W, (15
α) (15A) (15C) (15d)... Information board, (
16α) C16h) (16ty) (16d)...Guide plate operation jack, Qυ...Course detection sensor, Zeng...
Arithmetic regulator, (c)...command unit. Sub-Agent Patent Attorney: Shige Okamoto (3 persons)

Claims (1)

【特許請求の範囲】[Claims] 掘削機胴部先端部の円周方向に沿って配設された半径方
向に可動な複数の案内板、及び同案内板作動ジヤツキと
、前記案内板及び掘削機推進ジヤツキ制御装置とよりな
り、同制御装置は前記胴部内に配設された針路検出セン
ナ及び指令器、並に前記センサの検仰信号と前記指令器
からの設定信号の偏差χ演算処理し、予め組込まれたプ
ログラムにより出力信号の一方を前記案内板作動ジヤツ
キに、他方を掘削機推進ジヤツキに選別発信して、前記
胴部の進行方向を変換するように構成された演算調整器
よりなること全特徴とするシールド式トンネル掘削機。
The apparatus comprises a plurality of radially movable guide plates disposed along the circumferential direction of the tip of the excavator body, a guide plate operating jack, and a control device for the guide plates and the excavator propulsion jack. The control device calculates the deviation χ between the course detection sensor and the command device disposed in the body, and the detection signal of the sensor and the setting signal from the command device, and calculates the output signal according to a program installed in advance. A shield type tunnel excavation machine characterized by comprising a calculation regulator configured to selectively transmit signals from one side to the guide plate actuating jack and the other side to the excavator propulsion jack to change the traveling direction of the body. .
JP8839484A 1984-05-04 1984-05-04 Shield type tunnel drilling machine Pending JPS60233292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8839484A JPS60233292A (en) 1984-05-04 1984-05-04 Shield type tunnel drilling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8839484A JPS60233292A (en) 1984-05-04 1984-05-04 Shield type tunnel drilling machine

Publications (1)

Publication Number Publication Date
JPS60233292A true JPS60233292A (en) 1985-11-19

Family

ID=13941576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8839484A Pending JPS60233292A (en) 1984-05-04 1984-05-04 Shield type tunnel drilling machine

Country Status (1)

Country Link
JP (1) JPS60233292A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340096A (en) * 1986-08-04 1988-02-20 大成建設株式会社 Method of blind shielding construction
JPH0293391U (en) * 1988-12-28 1990-07-25
JPH0415704A (en) * 1990-05-02 1992-01-21 Nippon Telegr & Teleph Corp <Ntt> Identifying/simulating method for nonlinear direction control system of small-caliber tunnel robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340096A (en) * 1986-08-04 1988-02-20 大成建設株式会社 Method of blind shielding construction
JPH0293391U (en) * 1988-12-28 1990-07-25
JPH0415704A (en) * 1990-05-02 1992-01-21 Nippon Telegr & Teleph Corp <Ntt> Identifying/simulating method for nonlinear direction control system of small-caliber tunnel robot

Similar Documents

Publication Publication Date Title
JPS60233292A (en) Shield type tunnel drilling machine
GB2133439A (en) Method of enlarging a tunnel
JPS60126496A (en) Control apparatus and method of shield drilling machine
JPS60126495A (en) Control apparatus and method of shield drilling machine
JPH0341638B2 (en)
JP3447116B2 (en) Double-body shield excavator and its simultaneous excavation method.
JP3866648B2 (en) Tunnel cross-section change method
JPS61500673A (en) Circular hetting machine
JPS63251598A (en) Shield excavator
JP2626951B2 (en) Shield machine
JP2808515B2 (en) Shield jack control method for shield excavator
JPH07189586A (en) Method and device for controlling shield excavating machine
JPS62233399A (en) Shielding excavator
JP2836739B2 (en) Tunnel excavation method and tunnel liner
JPH0421040B2 (en)
JPS63206598A (en) Method of cast-in-place lining construction in shield tunnel
JPS6217079B2 (en)
JPS6389796A (en) Method and device for controlling direction of shield excavator
JP2001164876A (en) Shield machine for free cross section
JPS6349039B2 (en)
JPH10266769A (en) Method and system of controlling direction of shield excavator
JP4269328B2 (en) Width reduction construction method of shield machine
JPH03217594A (en) Construction of vertical shaft, diagonal shaft and main track shield tunnel, and device thereof
JPH02252895A (en) Method and device for controlling excavation of shield excavator
JPS5833335B2 (en) How to control groundwater level