JPS5833335B2 - How to control groundwater level - Google Patents

How to control groundwater level

Info

Publication number
JPS5833335B2
JPS5833335B2 JP3793878A JP3793878A JPS5833335B2 JP S5833335 B2 JPS5833335 B2 JP S5833335B2 JP 3793878 A JP3793878 A JP 3793878A JP 3793878 A JP3793878 A JP 3793878A JP S5833335 B2 JPS5833335 B2 JP S5833335B2
Authority
JP
Japan
Prior art keywords
pumping
water
level
well
groundwater level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3793878A
Other languages
Japanese (ja)
Other versions
JPS54131305A (en
Inventor
修一 高坂
正之 三浦
義巳 松本
宏 石川
幹雄 鷹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP3793878A priority Critical patent/JPS5833335B2/en
Publication of JPS54131305A publication Critical patent/JPS54131305A/en
Publication of JPS5833335B2 publication Critical patent/JPS5833335B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【発明の詳細な説明】 この発明は揚水井戸で揚水して地下水位を制御する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling groundwater level by pumping water in a pumping well.

従来、地盤の掘削工事などを行なう際に土留壁周辺地盤
に揚水井戸を設けて揚水して地下水位を下げ、水圧、土
圧あるいは浸水等を低減あるいは防止して施工性を向上
せしめている。
Conventionally, when performing ground excavation work, pumping wells are installed in the ground around earth retaining walls to pump up water to lower the groundwater level, reduce or prevent water pressure, earth pressure, or flooding, and improve workability.

この方法は狭い範囲の地盤の掘削工事であるならば、単
に地下水位を低下させて流向性を向上せしめることがで
きるが、広い範囲の地盤を掘削する場合においては単に
地下水位を低下させるだけではなく、周辺の地下水位を
コントロールして、水位のバランスをとり、掘削箇所に
不均衡な力の作用することも防止する必要がある。
This method can simply lower the groundwater level and improve flow direction when excavating a narrow area of the ground, but when excavating a wide area of the ground, it is not enough to simply lower the groundwater level. Therefore, it is necessary to control the groundwater level in the surrounding area to balance the water level and prevent unbalanced forces from acting on the excavated area.

このためには、掘削部の周囲に設けた多数の揚水井戸の
揚水量を、その暗時の地下水位と目標の水位の差に基づ
いて、コントロールしなくてはならず、揚水井戸の運転
および管理が複雑で伺らかの手段を用いなければ作業能
率を高めることが困難である。
To do this, the amount of water pumped from the many pumping wells installed around the excavation area must be controlled based on the difference between the underground water level during dark times and the target water level, and the operation of the pumping wells and Management is complicated and it is difficult to increase work efficiency without using special methods.

この発明はこの点に着目してなされたものであって、そ
の目的は多数の揚水井戸を現地水位に基づいて個々に揚
水量を制御しつつ揚水して地下水位を目標値に保つ、管
理、運転の自動化が可能な地下水位の制御方法を提供す
るものである。
This invention was made with attention to this point, and its purpose is to maintain the groundwater level at a target value by pumping water from a large number of pumping wells while individually controlling the amount of water pumped based on the local water level. This provides a groundwater level control method that enables automated operation.

以下に実施例を図面をもって説明する。Examples will be described below with reference to the drawings.

第1図、第2図において、円形の掘削部1の周囲には鋼
管矢板2が建込まれ、その外側には略円形をなして複数
の井戸W1 、W2・・・・・・W13が設けられ、さ
らに鋼管矢板2の外縁に沿って4つの観測井戸AI 、
A2 、A3 、A4が設けである。
In FIGS. 1 and 2, a steel pipe sheet pile 2 is built around a circular excavation section 1, and a plurality of wells W1, W2,...W13 are installed in a substantially circular shape outside of the steel pipe sheet pile 2. and four observation wells AI along the outer edge of the steel pipe sheet pile 2.
A2, A3, and A4 are provided.

掘削部1の側壁の鋼管矢板2面には外側より土庄、水圧
が作用する。
Earthen pressure and water pressure act on the steel pipe sheet pile 2 surface of the side wall of the excavation section 1 from the outside.

揚水前の地下水位3は高く、大きな水圧が鋼管矢板2に
作用するが、揚水後水位4は低くなり、作用する水圧は
低減せしめることができる。
The groundwater level 3 before pumping is high and a large water pressure acts on the steel pipe sheet pile 2, but the water level 4 after pumping becomes low and the acting water pressure can be reduced.

また、この水圧は掘削部1周囲において釣合がとれて鋼
管矢板2に不均衡な力が作用するのを防止している。
In addition, this water pressure is balanced around the excavation portion 1 to prevent unbalanced force from acting on the steel pipe sheet pile 2.

観測井戸A1・・・・・・A4は地下水位を検出チェッ
クする必要のある鋼管矢板2の外縁部に間隔を保って設
けてあり地下水位検出ができる。
Observation wells A1...A4 are provided at intervals at the outer edge of the steel pipe sheet pile 2 where it is necessary to detect and check the groundwater level, and can detect the groundwater level.

観測井戸の水位は揚水井戸に向って勾配をもった水位と
なり、揚水井戸Wmの揚水量によって変化するが、その
関係は周囲の地盤の形状、地層、障害物等により影響さ
れて複雑であり、理論的には求められない。
The water level in the observation well has a slope toward the pumping well, and changes depending on the amount of water pumped in the pumping well Wm, but the relationship is complex as it is affected by the shape of the surrounding ground, strata, obstacles, etc. It is not required theoretically.

そこで、各揚水井戸Wmを実験的に揚水して、その揚水
量と各観測例井戸Anの水位変化量との関係である影響
係数Kを求める。
Therefore, each pumping well Wm is experimentally pumped, and the influence coefficient K, which is the relationship between the pumped water amount and the amount of water level change in each observation well An, is determined.

え。picture.

。観測井戸6“0本位変化量L・揚水井戸Wmの揚水量
QWm また各観測井戸Anの水位変化量Lnは下式で算出され
る。
. Observation well 6 "0 standard change amount L/Pumped water amount QWm of pumping well Wm Also, the water level change amount Ln of each observation well An is calculated by the following formula.

L1=に1□Q W1+ K21 Q W2+・・・・
・・・・・K13.1QW13L2 = Kt 2 Q
W2 + K22 QW2+・・・・・・・・・K13
.2QW13L4 = K14 QW1+ K24 Q
W2+・・・・・・・・・K13.4QWl3以上の
ような関係にある揚水井戸Wmおよび観測井戸Anによ
って地下水位を制御するに当っては、先ず4本の観測井
戸AI 、A2.A3.A4で地下水位が検出される。
L1= 1□Q W1+ K21 Q W2+...
...K13.1QW13L2 = Kt 2 Q
W2 + K22 QW2+・・・・・・・・・K13
.. 2QW13L4 = K14 QW1+ K24 Q
W2+...K13.4QWl3 In order to control the groundwater level using the pumping well Wm and the observation well An, which have the above relationship, first, the four observation wells AI, A2. A3. Groundwater level is detected at A4.

この水位は水位変換器5に入力し、目標とする地下水位
を基準としてその差を信号に変換する。
This water level is input to the water level converter 5, and the difference therebetween is converted into a signal using the target underground water level as a reference.

例えば+1mを+IV。OをO,−1mを一1■のよう
にする。
For example, +1m is +IV. Let O be O and -1m be -1■.

これは次に演算器6に入力されるが、演算器6には予め
揚水井戸W1・・・・・・Wl3の揚水量と観測井戸A
I。
This is then input to the computing unit 6, but the computing unit 6 contains the pumping amount of the pumping wells W1...Wl3 and the observation well A.
I.

A2.A3.A4の水位変化量との関係から求めた係数
を回路内に記憶させておく、この状態で運転を行なうと
、各観測井戸AI 、 A2 、 A3.A4から変換
器5を経て刻々と入力する電気信号をもとにして演算器
では、各揚水井戸W1・・・・・・Wl3の揚水量が多
いか少ないかを判断して信号をポンプ流量制御装置7に
送る。
A2. A3. The coefficient determined from the relationship with the amount of water level change in A4 is stored in the circuit. If operation is performed in this state, each observation well AI, A2, A3. Based on the electrical signals input from A4 through the converter 5 moment by moment, the calculator determines whether the amount of pumped water in each pumping well W1...Wl3 is high or low, and the signal is used to control the pump flow rate. Send to device 7.

各揚水井戸Wmに備ったポンプ8はこのポンプ流量制御
装置7により揚水量を制御されて揚水運転が行なわれ、
観測井戸Anの地下水位は目標値に維持される。
The pump 8 provided in each pumping well Wm performs pumping operation by controlling the pumping amount by this pump flow rate control device 7,
The groundwater level of the observation well An is maintained at the target value.

実際の運転においては、観測井戸An水位が目標とする
地下水位から変化したとき、目標値に近ずくように運転
される。
In actual operation, when the water level of the observation well An changes from the target groundwater level, it is operated so as to approach the target value.

このため各揚水井戸Wmの揚水量の各観測井戸Anの水
位への影響度△v1.△■2・・・・・・△■13を影
響係数より算出しておき、これを演算器6に設定してお
いて、この値の大きな揚水井戸Wmから優先して揚水が
行なわれる。
Therefore, the degree of influence of the pumped water amount of each pumping well Wm on the water level of each observation well An is △v1. Δ■2 . . . Δ■13 are calculated from the influence coefficients and set in the calculator 6, and water is pumped preferentially from the pumping well Wm with a larger value.

前記実施例に記述した複数の揚水井戸Wmと複数の観測
井戸Anとをまとめ全体として地下水位を制御する方法
のほか、1本の観測井戸と揚水井戸によりなるグループ
を複数作り、これらグループを単位に地下水位を制御す
ることもできる。
In addition to the method of controlling the groundwater level as a whole by combining a plurality of pumping wells Wm and a plurality of observation wells An as described in the above embodiment, it is also possible to create a plurality of groups each consisting of one observation well and a pumping well and use these groups as a unit. It is also possible to control the groundwater level.

例えば、観測井戸A1と、この近傍にあってその水位変
化に大きな支配力をもつ、すなわち影響係数Kmnの大
きな3つの揚水井戸W1 、W2 、W3とでグループ
を作り、同様に(A2−W4.W5゜W6 )、(A3
−W7 、W8 、W9 )、(A4W10 、Wl
1 、Wl 2 、Wl 3)のグループを作る。
For example, a group is created with observation well A1 and three pumping wells W1, W2, and W3 that are located in the vicinity and have a large influence on water level changes, that is, have a large influence coefficient Kmn, and similarly (A2-W4. W5゜W6 ), (A3
-W7, W8, W9), (A4W10, Wl
1, Wl 2, Wl 3).

各グループ内では前記実施例と同様に、実験により観測
井戸Anと揚水井戸Wmの間で影響係数を求め、観測井
戸Anで現地下水位を測定し目標水位との差に基づいて
、各揚水井戸Wmを揚水して地下水位を制御する。
Within each group, as in the previous example, the influence coefficient is determined between the observation well An and the pumping well Wm by experiment, and the local sewage level is measured at the observation well An, and based on the difference from the target water level, each pumping well Control the groundwater level by pumping Wm.

各グループで同様な地下水位を制御することにより、広
い範囲にわたり、地下水位を必要とする目標値に維持す
ることができる。
By controlling the groundwater level similarly in each group, the groundwater level can be maintained at the required target value over a wide range.

この地下水位の制御システムは上記の通りであって、掘
削部の周辺に揚水井戸を設けて揚水して周辺地盤の地下
水位を低下させるに際して、地下水位を検出する観測井
戸を設ける。
This groundwater level control system is as described above, and when a pumping well is provided around the excavation part to pump up water and lower the groundwater level in the surrounding ground, an observation well is provided to detect the groundwater level.

そして予め各揚水井戸を揚水して、この揚水量の各観測
井戸の水位変化量に及ぼす影響係数(観測井戸水位変化
量/揚水井戸揚水量)を求めておく、一方、地下水位を
観測井戸において検出し、目標とする地下水位との差を
読み取る。
Then, each pumping well is pumped in advance, and the influence coefficient (amount of change in water level of the observation well/amount of water pumped from the pumping well) of the amount of pumped water on the amount of water level change in each observation well is determined. Detect and read the difference from the target groundwater level.

そして、この水位差と前記の影響係数に基づいて各揚水
井戸は揚水量を制御されて揚水して地下水位を制御する
方法である。
Based on this water level difference and the above-mentioned influence coefficient, each pumping well controls the amount of water pumped, thereby controlling the groundwater level.

この方法は揚水井戸とは別に設けた観測井戸により地下
水位を検出し、一方実験的に求めた揚水井戸の影響係数
を演算器に入力しておいて、各揚水井戸の揚水量を制御
して揚水する。
This method detects the groundwater level using an observation well installed separately from the pumping well, and inputs the experimentally determined influence coefficient of the pumping well into a calculator to control the amount of water pumped from each pumping well. Pump water.

このため、各地点の地下水位は正確に目標値を維持する
ことができ、不均衡な力の作用を防止するとともに、そ
の揚水の管理運転の自動化が可能となり、大巾に省力化
を図ることができる。
As a result, the groundwater level at each location can be accurately maintained at the target value, preventing unbalanced forces from acting, and making it possible to automate the pumping management operation, resulting in significant labor savings. I can do it.

なお、観測井戸とこの水位に影響の大きな近傍の揚水井
戸とを組んでグループを作ることにより、観測井戸水位
と揚水井戸揚水量の関係が単純化し、運転のための条件
設定や揚水量の制御を簡易化することができる。
By forming a group by combining an observation well with a nearby pumping well that has a large effect on the water level, the relationship between the observation well water level and the pumping amount of the pumping well can be simplified, making it easier to set operating conditions and control the pumping amount. can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は掘削部およびその周辺の揚水井戸、観測井戸の
全体配置図、第2図は第1図の断面図、第3図は揚水井
戸および観測井戸および観測井戸の水位制御系統図であ
る。 1・・・・・・掘削部、2・・・・・・鋼管矢板、3・
・・・・・揚水前地下水位、4・・・・・・揚水後地下
水位、5・・・・・・水位変換器、6・・・・・・演算
器、7・・・・・・ポンプ流量制御装置、8・・・・・
・ポンプ、AI 、A2 、A3 、A4・・・・・・
観測井戸、Wl、W2.・・・・・・Wl3・・・・・
・揚水井戸。
Figure 1 is an overall layout of the excavation area and surrounding pumping wells and observation wells, Figure 2 is a cross-sectional view of Figure 1, and Figure 3 is a water level control system diagram of the pumping well, observation well, and observation well. . 1...Excavation section, 2...Steel pipe sheet pile, 3.
... Groundwater level before pumping, 4 ... Groundwater level after pumping, 5 ... Water level converter, 6 ... Arithmetic unit, 7 ... Pump flow rate control device, 8...
・Pump, AI, A2, A3, A4...
Observation well, Wl, W2. ...Wl3...
・Pumping well.

Claims (1)

【特許請求の範囲】[Claims] 1 掘削部の周辺の複数本の揚水井戸より揚水して掘削
部周辺地盤の地下水位を低下させるに際して、揚水井戸
とは別に観測井戸を設は予め各揚水井戸において揚水し
てこの揚水量が各観測井戸における水位変化におよぼす
影響係数を求め、一方現観測井戸水位において検出され
た地下水位と目標とする地下水位との差を求め、この水
位差と前記影響係数とに基づいて各揚水量を制御して揚
水することを特徴とする地下水位の制御方法。
1. When lowering the groundwater level in the ground around the excavated area by pumping water from multiple pumping wells around the excavated area, it is necessary to set up an observation well separate from the pumping wells and pump water from each pumping well in advance so that the amount of water pumped can be measured at each level. The influence coefficient on the water level change in the observation well is determined, and on the other hand, the difference between the groundwater level detected at the current observation well water level and the target groundwater level is determined, and each pumped water amount is determined based on this water level difference and the above-mentioned influence coefficient. A groundwater level control method characterized by controlled pumping.
JP3793878A 1978-03-31 1978-03-31 How to control groundwater level Expired JPS5833335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3793878A JPS5833335B2 (en) 1978-03-31 1978-03-31 How to control groundwater level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3793878A JPS5833335B2 (en) 1978-03-31 1978-03-31 How to control groundwater level

Publications (2)

Publication Number Publication Date
JPS54131305A JPS54131305A (en) 1979-10-12
JPS5833335B2 true JPS5833335B2 (en) 1983-07-19

Family

ID=12511490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3793878A Expired JPS5833335B2 (en) 1978-03-31 1978-03-31 How to control groundwater level

Country Status (1)

Country Link
JP (1) JPS5833335B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514489A1 (en) 2018-01-23 2019-07-24 Topcon Corporation Surveying device and surveying method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743355B2 (en) * 2000-05-15 2011-08-10 株式会社竹中工務店 Pumping management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514489A1 (en) 2018-01-23 2019-07-24 Topcon Corporation Surveying device and surveying method

Also Published As

Publication number Publication date
JPS54131305A (en) 1979-10-12

Similar Documents

Publication Publication Date Title
CN103321230B (en) The deep big foundation pit excavation method in place is passed through in the long distance of operation shallow embedding subway
CN101422094B (en) Thick-bed mining subsidence-land dynamic pre-reclamation method at plane mining-area
JP2842855B2 (en) Long-distance propulsion method and equipment in semi-shield method
CN101408025B (en) Pit construction method by using major structure as bearing point
AU2007236402A1 (en) Foundation structure
CN110387884A (en) The construction method gushed for ultra-deep foundation pit protrusion-dispelling
CN109505298A (en) A kind of self-balancing foundation pit enclosure method
CN113882410A (en) Deep foundation pit underground water treatment structure and method
JPS5833335B2 (en) How to control groundwater level
JP7282428B1 (en) Calculation method for predicting the sedimentation curve outside the pit by pit excavation
JPH0152560B2 (en)
CN108755660A (en) One kind entering 30 meters of construction method of underground continuous wall of rock close to subway
JPS6125861B2 (en)
JP3099521B2 (en) Construction method of mountain retaining and water blocking wall with underground continuous wall
JP2873333B2 (en) Ground injection method
JP2879610B2 (en) Water stoppage method during pit excavation
CN216429821U (en) Karst area underground powerhouse karst cave advanced detection arrangement structure
JP3132730B2 (en) Tail clearance management method for shield machine
JPS62153490A (en) Drain boring method of tunnel
JPS5748018A (en) Constructing method for pile foundation with underground wall
JP2869825B2 (en) Caisson structure and caisson laying method
JPH0647995Y2 (en) Water immersion prevention device for shield machine
JP2761911B2 (en) Early support method
JPH0438319A (en) Method for preventing ground from being liquefied
JPH0248553Y2 (en)