JPS60232253A - Monolithic catalyst for purifying exhaust gas - Google Patents

Monolithic catalyst for purifying exhaust gas

Info

Publication number
JPS60232253A
JPS60232253A JP59087132A JP8713284A JPS60232253A JP S60232253 A JPS60232253 A JP S60232253A JP 59087132 A JP59087132 A JP 59087132A JP 8713284 A JP8713284 A JP 8713284A JP S60232253 A JPS60232253 A JP S60232253A
Authority
JP
Japan
Prior art keywords
alumina layer
palladium
exhaust gas
catalyst
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59087132A
Other languages
Japanese (ja)
Inventor
Shinichi Matsumoto
伸一 松本
Naoto Miyoshi
直人 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59087132A priority Critical patent/JPS60232253A/en
Publication of JPS60232253A publication Critical patent/JPS60232253A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a monolithic catalyst for purifying exhaust gas wherein the purification capacity and durability of a Pt-Pd-Rh catalyst are enhanced, by suppressing the particle growth of palladium to eliminate the adverse influence of palladium upon platinum or rhodium. CONSTITUTION:The titled catalyst forms a columnar shape and is provided with a large number of cells from the inlet side of exhaust gas toward the outlet thereof, wherein an alumina layer is formed to the inner wall surfaces of said cells and catalytic components are supported by said alumina layer. The aforementioned alumina layer is constituted of a first alumina layer 2 supporting palladium and neodium inside the inner wall surface of each cell and a second alumina layer 3 supporting platinum and rhodium in the surface side thereof.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は内燃機関の排気ガス浄化用モノリス触媒に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a monolith catalyst for purifying exhaust gas of an internal combustion engine.

〔従来技術〕[Prior art]

内燃機関、特に自動車の排気ガス浄化用触媒は、耐久性
、浄化性能等につき極めて高度な性能が要求されている
。従来、この排気ガス浄化用触媒としてモノリス触媒や
粒状触媒等が用いられてきたが、最近ではモノリス触媒
が粒状触媒に比べ、熱容量が小さく、暖機性に優れ、更
に背圧が小さいという利点を有することが着目され、モ
ノリス触媒が広く採用される傾向にある。このモノリス
触媒は、一体成形構造のコージヱライト製モノリス担体
に、活性アルミナを担持した後、触媒作用のある活性成
分(通常は貴金属)を担持したものである。
Catalysts for purifying exhaust gas from internal combustion engines, particularly automobiles, are required to have extremely high performance in terms of durability, purification performance, and the like. Traditionally, monolithic catalysts and granular catalysts have been used as exhaust gas purification catalysts, but recently, monolithic catalysts have the advantage of having a smaller heat capacity, better warm-up performance, and lower back pressure than granular catalysts. As a result, monolithic catalysts are becoming widely adopted. This monolithic catalyst has activated alumina supported on a cordierite monolithic support having an integrally molded structure, and then an active component having a catalytic action (usually a noble metal) supported thereon.

この触媒成分としては、白金(Pt)、ロジウム(Rh
)、パラジウム(Pd)等の貴金属の一種または2種を
担持したものが用いられている。
The catalyst components include platinum (Pt), rhodium (Rh
), palladium (Pd), and other noble metals are used.

これらの触媒成分を担持したモノリス触媒を触媒コンバ
ータに装着して排気ガスを通過させると、排気ガス中に
含有される有害物質である炭化水素(HC)、−酸化炭
素(Co)および窒素酸化物(NOx)が酸化または還
元反応により効率よく浄化される。排気ガス中に含まれ
る有害物質として主なものは、−ト記炭化水素と一酸化
炭素と窒素酸化物の3成分であり、この3成分を一度に
浄化処理できる触媒を三元触媒と呼んでいる。
When a monolithic catalyst supporting these catalyst components is attached to a catalytic converter and exhaust gas is passed through, the harmful substances contained in the exhaust gas such as hydrocarbons (HC), -carbon oxides (Co) and nitrogen oxides are removed. (NOx) is efficiently purified by oxidation or reduction reaction. The three main harmful substances contained in exhaust gas are hydrocarbons, carbon monoxide, and nitrogen oxides, and a catalyst that can purify these three components at once is called a three-way catalyst. There is.

三元触媒を構成する貴金属のうち、白金またはパラジウ
ムは炭化水素と一酸化炭素の酸化に必要であり、特に白
金は活性、耐久性が優れている。
Among the noble metals constituting the three-way catalyst, platinum or palladium is necessary for the oxidation of hydrocarbons and carbon monoxide, and platinum in particular has excellent activity and durability.

一方、ロジウムは窒素酸化物の還元に必要である。On the other hand, rhodium is necessary for the reduction of nitrogen oxides.

従って、三元触媒としてはPt−Rh系触媒が用いられ
ているが、資源、価格の観点から使用量の低減が急がれ
、一つの方法として同し貴金属でありながら資源、価格
に余裕があり、かつ酸化反応に高い活性を示すパラジウ
ムを一部白金の代わりに使用するPt−Pd−Rh系触
媒の検討が進められている。
Therefore, Pt-Rh catalysts are used as three-way catalysts, but there is an urgent need to reduce the amount used from the viewpoint of resources and prices, and one method is to use the same precious metals but with resources and prices. Studies are underway on a Pt-Pd-Rh based catalyst in which palladium, which has high activity in oxidation reactions, is used in place of platinum.

ところで、Pt、−Pd−Rh系触媒はPt−Rh系触
媒に比べ、酸化雰囲気における劣化が少ない、および浄
化開始温度が低いという長所がある反面、パラジウムは
還元性雰囲気で粒成長しやすくそれ自体表面積を縮小す
るうえに、白金、ロジウムの表面を覆って触媒の耐久性
を低下させるという問題があるため、その利用が制限さ
れていた。
By the way, Pt, -Pd-Rh based catalysts have the advantage of less deterioration in oxidizing atmospheres and lower purification start temperature compared to Pt-Rh based catalysts, but on the other hand, palladium tends to grow grains in reducing atmospheres. Its use has been limited because it reduces the surface area and also covers the surface of platinum and rhodium, reducing the durability of the catalyst.

そこで、本件出願人は、Pt−Pd−Rh系触媒におい
て、パラジウムが白金やロジウムに悪影響を与えないよ
うに、パラジウムを担持するアルミナ層と白金、ロジウ
ムを担持するアルミナ層を別々に分離して設けることを
提案した(特開昭58−146441号:特願昭57−
27455号)。この提案によれば、従来に比べ、パラ
ジウムの白金およびロジウムへの悪影響を大幅に低減で
き、もって触媒の耐久性、浄化性能が向上した。
Therefore, in order to prevent palladium from having an adverse effect on platinum and rhodium in Pt-Pd-Rh based catalysts, the applicant separated the alumina layer supporting palladium and the alumina layer supporting platinum and rhodium separately. (Japanese Unexamined Patent Publication No. 146441/1982: Japanese Patent Application No. 1983-1983)
No. 27455). According to this proposal, the adverse effect of palladium on platinum and rhodium can be significantly reduced compared to conventional methods, thereby improving the durability and purification performance of the catalyst.

しかしながら、この方法ではパラジウムの白金、ロジウ
ムへの悪影響は低減できるものの、パラジウム自体の粒
成長を抑えることはできないという問題があった。
However, although this method can reduce the adverse effect of palladium on platinum and rhodium, there is a problem in that it cannot suppress the grain growth of palladium itself.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来技術の問題を解決するためになされ
たもので、本発明の目的は、パラジウムの粒成長を抑え
、かつパラジウムの白金やロジウムへの悪影響をなくす
ことにより、Pt−Pd−Rh系触媒の浄化性能を向上
させることにある。
The present invention has been made to solve the problems of the prior art described above, and an object of the present invention is to suppress the grain growth of palladium and eliminate the negative influence of palladium on platinum and rhodium. The objective is to improve the purification performance of Rh-based catalysts.

〔発明の構成〕[Structure of the invention]

かかる目的は、本発明によれば、次の排気ガス浄化用モ
ノリス触媒によって達成される。
According to the present invention, this object is achieved by the following monolithic catalyst for purifying exhaust gas.

即ち、本発明の排気ガス浄化用モノリス触媒は柱状をな
し、排気ガスの入口側から出口側に向かって多数のセル
が設けられており、このセル内壁面にアルミナ層が形成
され、このアルミナ層に触媒成分が担持されている排気
ガス浄化用モノリス触媒であって、 前記アルミナ層は内側の第1のアルミナ層と、表面側の
第2のアルミナ層の2層からなり、第1のアルミナ層に
はパラジウムとネオジムが担持され、第2のアルミナ層
には白金とロジウムとが担持されていることを特徴とし
ている。
That is, the monolith catalyst for exhaust gas purification of the present invention has a columnar shape, and a large number of cells are provided from the exhaust gas inlet side to the outlet side, and an alumina layer is formed on the inner wall surface of the cell. A monolithic catalyst for exhaust gas purification in which a catalytic component is supported on the monolithic catalyst, wherein the alumina layer is composed of two layers: a first alumina layer on the inside and a second alumina layer on the surface side. Palladium and neodymium are supported on the second alumina layer, and platinum and rhodium are supported on the second alumina layer.

〔発明の作用〕[Action of the invention]

本発明によれば、ネオジムが添加されているため、パラ
ジウムとネオジムで複合酸化物が形成され、このためパ
ラジウムの粒成長が抑えられる。
According to the present invention, since neodymium is added, a composite oxide is formed with palladium and neodymium, and therefore, grain growth of palladium is suppressed.

また、パラジウムは白金、ロジウムとは別のアルミナ層
に担持されているため、パラジウムの粒成長による悪影
響が白金やロジウムに及ばない。この結果、高活性が維
持される。
Furthermore, since palladium is supported on an alumina layer separate from platinum and rhodium, the adverse effects of palladium grain growth do not affect platinum and rhodium. As a result, high activity is maintained.

〔発明の効果〕〔Effect of the invention〕

以上より、本発明の排気ガス浄化用モノリス触媒によれ
ば、浄化性能を向上させることができ、更に耐久性も向
上させることができる。
As described above, according to the monolithic catalyst for exhaust gas purification of the present invention, purification performance can be improved, and durability can also be improved.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参考にして説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

γ−アルミナ1000g、硝酸アルミニウム水溶液(2
3重量%)150g、アルミナシルア00gおよび水3
00gを混合撹拌してアルミナスラリーを調製した。こ
のスラリー中に第1図に示すような容積1.7Ilのコ
ージェライト質モノリス担体1を浸漬し、引き上げて気
流により余分なスラリーを吹き払い、200℃で1時間
乾燥した後、700℃で2時間焼成し、内側の第1のア
ルミナ層2を形成した(第2図)。 次いで、塩化パラ
ジウム、水溶液(0,85g/l : Pd換算)2j
2に2時間浸漬してパラジウムを担持した。続いて、硝
酸ネオジム6水和物75gをイオン交換水に溶解して3
00m1の水溶液をttI製し、この水溶液中に上記モ
ノリス担体1を浸漬して含浸法により吸収させ、200
°Cで1時間乾燥した後、700°Cで2時間焼成した
。この結果、第1のアルミナ層2にパラジウムとネオジ
ムが担持された。
1000g of γ-alumina, aluminum nitrate aqueous solution (2
3% by weight) 150g, alumina silua 00g and water 3
00g were mixed and stirred to prepare an alumina slurry. A cordierite monolithic carrier 1 having a volume of 1.7 Il as shown in FIG. It was fired for a period of time to form the inner first alumina layer 2 (FIG. 2). Next, palladium chloride, aqueous solution (0.85 g/l: Pd equivalent) 2j
2 for 2 hours to support palladium. Next, 75 g of neodymium nitrate hexahydrate was dissolved in ion exchange water and 3
00ml of an aqueous solution was prepared using TTI, and the monolithic carrier 1 was immersed in this aqueous solution to absorb it by an impregnation method.
After drying at °C for 1 hour, it was baked at 700 °C for 2 hours. As a result, palladium and neodymium were supported on the first alumina layer 2.

次に、上記第1のアルミナ層2を形成したのと同様な方
法で、第1のアルミナ層2の上に第2のアルミナ層3を
形成した(第2図)。続いて、このモノリス担体1をジ
ニトロジアンミン白金水溶液2Il (0,85g//
2:Pt換算)に浸漬し、取り出して余分な水溶液を吹
き払い、乾燥、焼成し、次いで塩化ロジウム水溶液(0
,17g/Il: Rh換算)2Nに浸漬し、取り出し
て余分な水溶液を吹き払い、乾燥、焼成した。この結果
、第2のアルミナ層3に白金とロジウムが担持された。
Next, a second alumina layer 3 was formed on the first alumina layer 2 in the same manner as the first alumina layer 2 described above (FIG. 2). Subsequently, this monolithic carrier 1 was mixed with a dinitrodiammine platinum aqueous solution 2Il (0.85g//
2: Pt equivalent), taken out, blown off excess aqueous solution, dried, and fired, then immersed in rhodium chloride aqueous solution (0
, 17 g/Il (Rh equivalent) 2N, taken out, excess aqueous solution blown off, dried, and fired. As a result, platinum and rhodium were supported on the second alumina layer 3.

 以上より、第1のアルミナ層2にパラジウムとネオジ
ムが担持され、第2のアルミナ層3に白金とロジウムが
担持されたモノリス触媒aが得られた。
As described above, a monolithic catalyst a was obtained in which palladium and neodymium were supported on the first alumina layer 2 and platinum and rhodium were supported on the second alumina layer 3.

(比較例1) 実施例と同様な方法により第1のアルミナ層を形成した
後、塩化パラジウム水溶液(0,85g/z)2zに浸
漬して、第1のアルミナ層にパラジウムを担持した。そ
の後、実施例と同様に、第1のアルミナ層の上に第2の
アルミナ層を形成し、ジニトロジアンミン白金水溶液(
0,85g/A)211塩化ロジウム水溶液(0,17
g//り 2βに浸漬して第2のアルミナ層に白金とロ
ジウムを担持した。この結果、第1のアルミナ層にパラ
ジウムが担持され、第2のアルミナ層に白金とロジウム
が担持されたモノリス触媒すが得られた。
(Comparative Example 1) A first alumina layer was formed by the same method as in Example, and then immersed in an aqueous palladium chloride solution (0.85 g/z) 2z to support palladium on the first alumina layer. Thereafter, similarly to the example, a second alumina layer was formed on the first alumina layer, and a dinitrodiammine platinum aqueous solution (
0,85g/A) 211 rhodium chloride aqueous solution (0,17
Platinum and rhodium were supported on the second alumina layer by immersion in g//li 2β. As a result, a monolith catalyst was obtained in which palladium was supported on the first alumina layer and platinum and rhodium were supported on the second alumina layer.

(比較例2) 実施例と実質的に同じモノリス担体に実施例の第1のア
ルミナ層と第2のアルミナ層の合計に対応する厚さのア
ルミナ層を形成した。次いで、硝酸ネオジム水溶液に浸
漬し、乾燥、焼成させた後、塩化パラジウム水溶液、ジ
ニトロジアンミン白金水溶液、塩化ロジウム水溶液に順
次浸漬し、パラジウムと白金とロジウムを担持した。こ
の結果、アルミナ層にネオジム、パラジウム、白金、ロ
ジウムが担持されたモノリス触媒Cが得られた。
(Comparative Example 2) An alumina layer having a thickness corresponding to the total of the first alumina layer and the second alumina layer of the example was formed on a monolithic carrier substantially the same as that of the example. Next, it was immersed in a neodymium nitrate aqueous solution, dried, and fired, and then sequentially immersed in a palladium chloride aqueous solution, a dinitrodiammine platinum aqueous solution, and a rhodium chloride aqueous solution to support palladium, platinum, and rhodium. As a result, a monolithic catalyst C was obtained in which neodymium, palladium, platinum, and rhodium were supported on the alumina layer.

次に、上記実施例と比較例で用いた触媒の担持量を第1
表に示す。
Next, the supported amount of the catalyst used in the above examples and comparative examples was
Shown in the table.

第1表 上記3種のモノリス触媒a、b、cの各々を・2.81
エンジンの排気系に装着して200時間の耐久試験を行
った後、排気ガスの入口側温度を300℃と350℃の
2通りに変えてそれぞれの浄化率を測定した。この結果
を第2表に示す。
Table 1 Each of the above three monolithic catalysts a, b, and c: 2.81
After a 200-hour durability test was carried out by attaching the device to the exhaust system of an engine, the purification efficiency was measured by changing the exhaust gas inlet temperature to 300°C and 350°C. The results are shown in Table 2.

第2表 第2表からも明らかなように、本実施例の排気ガス浄化
用モノリス触媒は、低温時、高温時の双方において極め
て高活性であることが判る。
As is clear from Table 2, it can be seen that the monolithic exhaust gas purifying catalyst of this example has extremely high activity both at low temperatures and at high temperatures.

以上、本発明の特定の実施例について説明したが、本発
明は、この実施例に限定されるものではなく、特許請求
の範囲に記載の範囲内で種々の実施態様が包含されるも
のである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and includes various embodiments within the scope of the claims. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に使用したモノリス担体の概要
を示す概略構成図、 第2図は第1図の要部拡大図である。 1−−−−−・モノリス担体 2・−−m−・第1のアルミナ層 0 3−−−−−一第2のアルミナ層 11 第1図
FIG. 1 is a schematic configuration diagram showing the outline of a monolith carrier used in an example of the present invention, and FIG. 2 is an enlarged view of the main part of FIG. 1. 1-------Monolith carrier 2--m--First alumina layer 0 3-------Second alumina layer 11 FIG.

Claims (1)

【特許請求の範囲】 (11柱状をなし、排気ガスの入口側から出口側に向か
って多数のセルが設けられており、このセル内壁面にア
ルミナ層が形成され、このアルミナ層に触媒成分が担持
されている排気ガス浄化用モノリス触媒であって、 前記アルミナ層は内側の第1のアルミナ層と、表面側の
第2のアルミナ層の2層からなり、第1のアルミナ層に
はパラジウムとネオジムが担持され、第2のアルミナ層
には白金とロジウムとが担持されていることを特徴とす
る排気ガス浄化用モノリス触媒。
[Claims] (11 columns, with a large number of cells provided from the inlet side to the outlet side of the exhaust gas, an alumina layer is formed on the inner wall surface of the cell, and a catalyst component is contained in this alumina layer. The supported monolithic catalyst for exhaust gas purification includes two alumina layers: a first alumina layer on the inside and a second alumina layer on the surface side, and the first alumina layer contains palladium and A monolithic catalyst for purifying exhaust gas, characterized in that neodymium is supported, and a second alumina layer supports platinum and rhodium.
JP59087132A 1984-04-27 1984-04-27 Monolithic catalyst for purifying exhaust gas Pending JPS60232253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59087132A JPS60232253A (en) 1984-04-27 1984-04-27 Monolithic catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59087132A JPS60232253A (en) 1984-04-27 1984-04-27 Monolithic catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS60232253A true JPS60232253A (en) 1985-11-18

Family

ID=13906435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59087132A Pending JPS60232253A (en) 1984-04-27 1984-04-27 Monolithic catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS60232253A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270946A (en) * 1988-03-07 1989-10-30 Svensk Emissionsteknik Ab Catalyst for purifying exhaust gas, and its production and use
JPH08168675A (en) * 1994-12-16 1996-07-02 Toyota Motor Corp Catalyst for purifying exhaust gas
US5898014A (en) * 1996-09-27 1999-04-27 Engelhard Corporation Catalyst composition containing oxygen storage components
US5948723A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Layered catalyst composite
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
US5981427A (en) * 1996-09-04 1999-11-09 Engelhard Corporation Catalyst composition
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
US6110862A (en) * 1998-05-07 2000-08-29 Engelhard Corporation Catalytic material having improved conversion performance
US6248688B1 (en) 1996-09-27 2001-06-19 Engelhard Corporation Catalyst composition containing oxygen storage components
US6921738B2 (en) * 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
EP1977819A2 (en) 1996-12-06 2008-10-08 Basf Catalysts Llc Catalytic metal plate
US8603941B2 (en) * 2006-10-23 2013-12-10 Haldor Topsoe A/S Method and apparatus for the purification of exhaust gas from a compression ignition engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270946A (en) * 1988-03-07 1989-10-30 Svensk Emissionsteknik Ab Catalyst for purifying exhaust gas, and its production and use
JPH08168675A (en) * 1994-12-16 1996-07-02 Toyota Motor Corp Catalyst for purifying exhaust gas
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
US5989507A (en) * 1996-09-04 1999-11-23 Engelhard Corporation Catalyst composition
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
US5981427A (en) * 1996-09-04 1999-11-09 Engelhard Corporation Catalyst composition
US5948723A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Layered catalyst composite
US5898014A (en) * 1996-09-27 1999-04-27 Engelhard Corporation Catalyst composition containing oxygen storage components
US6248688B1 (en) 1996-09-27 2001-06-19 Engelhard Corporation Catalyst composition containing oxygen storage components
US6921738B2 (en) * 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
EP1977819A2 (en) 1996-12-06 2008-10-08 Basf Catalysts Llc Catalytic metal plate
US6110862A (en) * 1998-05-07 2000-08-29 Engelhard Corporation Catalytic material having improved conversion performance
US8603941B2 (en) * 2006-10-23 2013-12-10 Haldor Topsoe A/S Method and apparatus for the purification of exhaust gas from a compression ignition engine

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
JPH0760117A (en) Exhaust gas purifying catalyst
US20080081761A1 (en) Catalyst for Purifying Exhaust Gases
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
JP2773428B2 (en) Exhaust gas purification method
JPH01139145A (en) Catalyst for controlling exhaust emission
JPS60232253A (en) Monolithic catalyst for purifying exhaust gas
US4448756A (en) Process for treatment of exhaust gases
JPS59127649A (en) Catalyst for purifying exhaust gas
JPH08332350A (en) Catalyst for exhaust gas purification
JP2003220336A (en) Catalyst for cleaning exhaust gas
JP3264697B2 (en) Exhaust gas purification catalyst and purification system using the same
JPH01127044A (en) Catalyst for clarifying exhaust gas
JPH01310742A (en) Catalyst for use in purification of exhaust gas
JP3335755B2 (en) Exhaust gas purification catalyst
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JPH04122447A (en) Catalyst for cleaning exhaust gas
JPH03196841A (en) Catalyst for purification of exhaust gas
JPS60225651A (en) Monolithic catalyst for purifying exhaust gas of car
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JPH0857318A (en) Catalyst and method for purifying exhaust gas from lean burnengine
JPS6268545A (en) Monolithic catalyst for purifying exhaust gas
JP3264696B2 (en) Exhaust gas purification catalyst and purification system using the same
JP3280277B2 (en) Exhaust gas purification catalyst
JP2698288B2 (en) Exhaust gas purification catalyst