JPS60229334A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60229334A
JPS60229334A JP59085589A JP8558984A JPS60229334A JP S60229334 A JPS60229334 A JP S60229334A JP 59085589 A JP59085589 A JP 59085589A JP 8558984 A JP8558984 A JP 8558984A JP S60229334 A JPS60229334 A JP S60229334A
Authority
JP
Japan
Prior art keywords
mark
alignment mark
film
alignment
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59085589A
Other languages
Japanese (ja)
Inventor
Katsuyuki Inayoshi
稲吉 勝幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59085589A priority Critical patent/JPS60229334A/en
Publication of JPS60229334A publication Critical patent/JPS60229334A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To check disappearance of a positioning mark at manufacture of a semiconductor device by a method wherein length of one side of a positioning mark formed in a recess type is made larger than two times of film thickness of an adherent film. CONSTITUTION:Length of one side of a positioning mark M formed in a recess type is formed larger than two times of film thickness of an adherent film 2. The mark M is formed at the same time with an element isolation zone. Therefore, when the adherent film 2 is polished to be removed, the mark M having edges E is formed. Accordingly, disappearance of the mark M can be checked.

Description

【発明の詳細な説明】 +al 発明の技術分野 本発明は半導体装置の製造方法のうち、特に電子ビーム
露光法を用いて、半導体集積回路(IC)のパターンを
描画する場合に用いられる位置合わせマークの形成方法
に関する。
Detailed Description of the Invention +al Technical Field of the Invention The present invention relates to an alignment mark used in a semiconductor device manufacturing method, particularly when drawing a pattern of a semiconductor integrated circuit (IC) using an electron beam exposure method. The present invention relates to a method of forming.

中) 従来技術と問題点 LSI等のICにおいては、高密度化、微細化が進んで
おり、リソグラフィ技術も従来の紫外線露光法に代って
、微細化に適した電子ビーム露光法が使用されるように
なってきた。
(Middle) Conventional technology and problems ICs such as LSIs are becoming denser and smaller, and lithography technology is also using electron beam exposure, which is suitable for miniaturization, in place of the conventional ultraviolet exposure method. It's starting to happen.

このような電子ビーム露光法は、半導体ウェハー上でビ
ームを走査(スキャンニング)し、直接パターンを描画
する直接露光法であり、その場合に露光走査前の位置合
わせが必要になって、半導体ウェハー上には複数の位置
合わせマークが設けられ、そのマーク部分を電子ビーム
で走査し、その位置を認識し補正を行なった後に、所定
のパターン描画が行なわれている。
This type of electron beam exposure method is a direct exposure method in which a beam is scanned on a semiconductor wafer to directly draw a pattern.In this case, alignment is required before exposure scanning, and the semiconductor wafer A plurality of alignment marks are provided on the top, and a predetermined pattern is drawn after the mark portions are scanned with an electron beam to recognize and correct their positions.

このような位置合わせマークは、マーク部分だけ異種材
料を被着する方式と、表面の凹凸を利用する方式とがあ
るが、前者は特別に異種材料を被着する工程が必要であ
るから工程が長(かかり、そのため専ら後者の凹凸を利
用する方式の位置合わせマークが使用されている。本発
明も、この凹凸状の位置合わせマークの形成方法に関す
るも、のである。
There are two types of alignment marks: one is to apply a different material only to the mark part, and the other is to use the unevenness of the surface. However, the former requires a special process to apply the different material, so the process is slow. For this reason, the latter type of alignment mark that utilizes the unevenness is used exclusively.The present invention also relates to a method for forming the uneven alignment mark.

また、位置合わせマークには、半導体ウェハー全体の位
置合わせを行なうマークと、更にウェハー内のそれぞれ
のチップの位置合わせを行なうマークとがあるが、何れ
も同様形状のもので、第1図にウェハー全体の位置合わ
せマークの位置を例示している。図のように、ウェハー
全体の位置合わせマークは、ウェハーの左右2個所に相
対的に位置合わせマークmが設けられる。
In addition, alignment marks include marks for aligning the entire semiconductor wafer and marks for aligning individual chips within the wafer, but they all have the same shape, and the wafer The position of the overall alignment mark is illustrated. As shown in the figure, as the alignment marks for the entire wafer, alignment marks m are provided relatively to each other on the left and right sides of the wafer.

尚、このマーク位置検出法は、ビームで位置合わせマー
ク部分を走査し、その反射電子量を検出する方法で、凹
凸状マークのエツジにビームが当たると、反射電子検出
器で検出される反射電子の量が異なってくるから、それ
を検出してその位置をめ、ウェハーの位置補正を自動的
に行なうものである。
This mark position detection method scans the alignment mark with a beam and detects the amount of backscattered electrons.When the beam hits the edge of the uneven mark, the backscattered electrons are detected by the backscattered electron detector. Since the amount of wafer differs, this is detected, the position is determined, and the position of the wafer is automatically corrected.

このマーク形状は、方形の凹部状にエツチングして形成
することが多く、第2図はその断面形状を示し、Eがエ
ツジ部分である。且つ、その平面形状はかぎ形等の他の
形状も用いられている。
This mark shape is often formed by etching in the shape of a rectangular concave portion, and FIG. 2 shows its cross-sectional shape, and E indicates the edge portion. In addition, other shapes such as a hook shape are also used as the planar shape.

ところが、ICを製造する際には、半導体基板上に被着
膜を被覆する工程があり、その時には折角設けた位置合
わせマークが消失することが起こる。例えば、第3図に
示すように製造の初期に誘電体からなる素子分離帯を形
成する工程で、半導体基板lに(J snをエツチング
して形成し、その上に減圧化学気相成長(CVD)法で
多結晶シリコンy!2を被着する工程がある。その場合
に、U溝nと同時に位置合わせマークmを形成しても、
多結晶シリコン1112が位置合わせマークmを埋没さ
せて、マークが消失することが生じる。その時には、再
び次工程のための位置合わせマークをもう一度形成して
おり、このような再度のマーク形成工程はそれだけ製作
工程が多くかかることになる。
However, when manufacturing an IC, there is a step of coating a semiconductor substrate with an adhesive film, and at that time, the alignment marks that have been painstakingly provided may disappear. For example, as shown in FIG. 3, in the process of forming device isolation bands made of dielectric material in the early stage of manufacturing, (Jsn) is formed on the semiconductor substrate l by etching, and then low pressure chemical vapor deposition (CVD) is formed on the semiconductor substrate l. ) method to deposit polycrystalline silicon y!2.In that case, even if the alignment mark m is formed at the same time as the U groove n,
The polycrystalline silicon 1112 buries the alignment mark m, causing the mark to disappear. At that time, alignment marks for the next process are formed again, and such a process of forming marks again requires a correspondingly large number of manufacturing steps.

fcl 発明の目的 本発明は、このような位置合わせマークの消失を防止し
、マーク形成工程の繰り返しをなくするための電子ビー
ム露光用位置合わせマークの形成方法を提案するもので
ある。
fcl OBJECT OF THE INVENTION The present invention proposes a method for forming alignment marks for electron beam exposure to prevent such alignment marks from disappearing and to eliminate repetition of the mark forming process.

Tdl 発明の構成 その目的は、凹形状に形成した位置合わせマークの一遍
の長さを、少なくとも被着膜の膜厚の2倍よりも大きく
した電子ビーム露光用位置合わせマークを、素子分離帯
と同時に形成するようにした半導体装置の製造方法によ
って達成される。
Tdl Structure of the Invention The object of the invention is to use an alignment mark for electron beam exposure, in which the length of the alignment mark formed in a concave shape is at least twice the thickness of the deposited film, to be used as an element separation band. This is achieved by a method of manufacturing semiconductor devices in which they are formed simultaneously.

(el 発明の実施例 以下、実施例を参照して詳細に説明する。(el Embodiments of the invention Hereinafter, a detailed description will be given with reference to examples.

第4図は従来の位置合わせマークmが消失する理由を説
明するための工程途中の断面図である。
FIG. 4 is a sectional view in the middle of a process for explaining the reason why the conventional alignment mark m disappears.

図は、半導体基板1に窒化シリコン膜3を選択的に形成
し、Ufinおよび位置合わせマークmをエツチングし
て、次に二酸化シリコン膜4を生成した後、減圧CVD
法により多結晶シリコンII!2を被着した工程である
。この時、減圧CVD法はカバレージが極めて良いから
、孔内の側面にも多結晶シリコンyI2が被着して、例
えばり#nの幅を2μm、方形の位置合わせマークmの
一遍の長さを4μmとし、膜厚2μmの多結晶シリコン
膜を成長すると、第4図のように側面からも多結晶シリ
コン膜が成長して、大きな孔の位置合わせマークmをも
丁度埋没させる。従って、表面上の多結晶シリコン膜を
ボリフシュして除去しても、第3図のように位置合わせ
マークmが埋没されて消失することになる。
The figure shows that a silicon nitride film 3 is selectively formed on a semiconductor substrate 1, Ufin and alignment marks m are etched, a silicon dioxide film 4 is formed, and then a low pressure CVD film is formed.
Polycrystalline silicon II by method! This is the process of applying 2. At this time, since the low pressure CVD method has extremely good coverage, the polycrystalline silicon yI2 is also deposited on the side surfaces of the hole, and for example, the width of #n is 2 μm and the length of the rectangular alignment mark m is When a polycrystalline silicon film with a thickness of 4 μm and a film thickness of 2 μm is grown, the polycrystalline silicon film also grows from the side surfaces as shown in FIG. 4, and just buries the alignment mark m of the large hole. Therefore, even if the polycrystalline silicon film on the surface is removed by polishing, the alignment mark m will be buried and disappear as shown in FIG.

そのため、本発明では方形の位置合わせマークの一遍の
長さを、被着膜の膜厚の2倍よりも大きくした位置合わ
せマークを形成するもので、そうすると埋没は回避でき
る。第5図は本発明にかかる実施例の工程途中の断面図
を示しており、例えば、U溝nの幅を2μm、方形の位
置合わせマークMの一遍の長さを6μmとして、膜厚2
μmの多結晶シリコン膜を成長するとする。そうすると
、減圧CVD法によって位置合わせマークの凹部孔内に
、孔側面から多結晶シリコン膜2が成長しても、中心部
分に凹部を残存させることができる。
Therefore, in the present invention, a rectangular alignment mark is formed in which the length of each mark is greater than twice the thickness of the deposited film, thereby avoiding embedding. FIG. 5 shows a cross-sectional view in the middle of the process of the embodiment according to the present invention. For example, if the width of the U groove n is 2 μm and the length of each rectangular alignment mark M is 6 μm,
Suppose that a polycrystalline silicon film of μm thickness is grown. In this way, even if the polycrystalline silicon film 2 grows from the side surfaces of the recessed hole of the alignment mark by low-pressure CVD, the recessed portion can remain in the center portion.

従って、第6図に示すように表面上の余分の多結晶シリ
コン膜をボリフシュして除去すると、エツジEを有する
位置合わせマークMが形成され、マーク位置を認識する
ことができる。尚、この時、多結晶シリコン膜を被着し
たために、エツジEの位置がずれて両エツジ間の間隔が
狭くなるが、位置合わせマークの位置は反射電子量の多
いエツジEの位置をめ、両方のエツジ間の中点を計算す
る方法であるから、多結晶シリコン膜被着による位置ず
れは影響しない。
Therefore, when the excess polycrystalline silicon film on the surface is removed by polishing as shown in FIG. 6, an alignment mark M having an edge E is formed, and the mark position can be recognized. At this time, since the polycrystalline silicon film is deposited, the position of edge E shifts and the distance between the two edges narrows, but the position of the alignment mark is set at the position of edge E with a large amount of reflected electrons. Since this method calculates the midpoint between both edges, positional deviation due to the deposition of the polycrystalline silicon film does not affect this method.

このようすれば、U溝からなる素子分離帯と位置合ねゼ
マークが同時に形成され、その形成工程が簡単化される
In this way, the element separation band consisting of the U-groove and the alignment mark are formed at the same time, and the formation process is simplified.

(fl 発明の効果 以上の説明から明らかなように、本発明によれば電子ビ
ーム露光法における位置合わせマークを形成するための
工程を設ける必要がなく、製造工程の短縮に顕著に寄与
するものである。
(fl Effects of the Invention As is clear from the above explanation, the present invention eliminates the need to provide a process for forming alignment marks in electron beam exposure, which significantly contributes to shortening the manufacturing process. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はウェハー上の位置合わせマークを示す図、第2
図は位置合わせマークの断面図例、第3図は従来のマー
クの断面図、第4図はその形成工程途中の断面図、第5
図は本発明にかかる形成工程途中の断面図、第6図は本
発明にかかる形成方法で作成されたマークの断面図であ
る。 図中、nはU溝1mは従来の位置合わせマーク。 Mは本発明にかかる位置合わせマーク、1は半導体基板
、2は多結晶シリコン膜、3は窒化シリコン膜、4は二
酸化シリコン躾を示している。 第1図 fs21111 第31]3
Figure 1 shows the alignment marks on the wafer, Figure 2 shows the alignment marks on the wafer.
The figure shows an example of a cross-sectional view of an alignment mark, Figure 3 is a cross-sectional view of a conventional mark, Figure 4 is a cross-sectional view during the formation process, and Figure 5
The figure is a cross-sectional view in the middle of the forming process according to the present invention, and FIG. 6 is a cross-sectional view of a mark created by the forming method according to the present invention. In the figure, n is the U groove 1m is the conventional alignment mark. M is an alignment mark according to the present invention, 1 is a semiconductor substrate, 2 is a polycrystalline silicon film, 3 is a silicon nitride film, and 4 is a silicon dioxide layer. Figure 1 fs21111 No. 31] 3

Claims (1)

【特許請求の範囲】[Claims] 凹形状に形成した位置合わせマークの一遍の長さを、少
なくとも被着膜の膜厚の2倍よりも大きくした電子ビー
ム露光用位置合わせマークを、素子分離帯と同時に形成
するようにしたことを特徴とする半導体装置の製造方法
The alignment mark for electron beam exposure, in which the length of the alignment mark formed in a concave shape is at least twice the thickness of the deposited film, is formed at the same time as the element isolation band. A method for manufacturing a featured semiconductor device.
JP59085589A 1984-04-26 1984-04-26 Manufacture of semiconductor device Pending JPS60229334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59085589A JPS60229334A (en) 1984-04-26 1984-04-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59085589A JPS60229334A (en) 1984-04-26 1984-04-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60229334A true JPS60229334A (en) 1985-11-14

Family

ID=13862998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59085589A Pending JPS60229334A (en) 1984-04-26 1984-04-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60229334A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482893A (en) * 1990-06-29 1996-01-09 Canon Kabushiki Kaisha Method for producing semiconductor device having alignment mark
KR100802221B1 (en) 2005-12-30 2008-02-11 주식회사 하이닉스반도체 Method for forming semiconductor device
KR100842494B1 (en) 2007-06-25 2008-07-01 주식회사 동부하이텍 Method for shaping alignment key of a semiconductor device
US7485543B2 (en) 2005-12-30 2009-02-03 Hynix Semiconductor Inc. Method for manufacturing semiconductor device with overlay vernier
US11984406B2 (en) 2020-03-30 2024-05-14 Changxin Memory Technologies, Inc. Semiconductor structure and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482893A (en) * 1990-06-29 1996-01-09 Canon Kabushiki Kaisha Method for producing semiconductor device having alignment mark
US5663099A (en) * 1990-06-29 1997-09-02 Canon Kabushiki Kaisha Method for producing semiconductor device having alignment mark
KR100802221B1 (en) 2005-12-30 2008-02-11 주식회사 하이닉스반도체 Method for forming semiconductor device
US7485543B2 (en) 2005-12-30 2009-02-03 Hynix Semiconductor Inc. Method for manufacturing semiconductor device with overlay vernier
KR100842494B1 (en) 2007-06-25 2008-07-01 주식회사 동부하이텍 Method for shaping alignment key of a semiconductor device
US11984406B2 (en) 2020-03-30 2024-05-14 Changxin Memory Technologies, Inc. Semiconductor structure and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3343026B2 (en) Semiconductor integrated circuit and method of manufacturing the same
US4824254A (en) Alignment marks on semiconductor wafers and method of manufacturing the marks
US6566157B2 (en) Alignment marks and method of forming the same
JPH04253322A (en) Planar process utilizing three resist layers
KR970013074A (en) Planarization method of semiconductor device and device isolation method using same
WO1987007979A1 (en) Planarized process for forming vias in silicon wafers
US4487653A (en) Process for forming and locating buried layers
JPS60229334A (en) Manufacture of semiconductor device
US6531326B2 (en) Method to calibrate the wafer transfer for oxide etcher (with clamp)
CN114823448A (en) Method for forming alignment mark in semiconductor process
US6340631B1 (en) Method for laying out wide metal lines with embedded contacts/vias
JPS62155532A (en) Formation of positioning mark for semiconductor wafer
JP2625362B2 (en) Method for manufacturing semiconductor device
US6795231B1 (en) Photonic crystals using a semiconductor-based fabrication process
US6184118B1 (en) Method for preventing the peeling of the tungsten metal after the metal-etching process
JPH0290511A (en) Semiconductor device
JPS6347331B2 (en)
KR100587035B1 (en) Method for forming align mark of semiconductor wafer
JPH0265256A (en) Manufacture of semiconductor device
JPS63108717A (en) Manufacture of semiconductor device
KR0182010B1 (en) Isolation method of semiconductor device
JP3107624B2 (en) Reference pattern forming method for mask alignment
KR20040057634A (en) Method for forming align vernier
KR100247805B1 (en) Manufacturing method of capacitor node in semiconductor device
KR100293268B1 (en) Pressure sensor and method for fabricating the same