JPS60228604A - Production of ultrafine particles - Google Patents

Production of ultrafine particles

Info

Publication number
JPS60228604A
JPS60228604A JP8371084A JP8371084A JPS60228604A JP S60228604 A JPS60228604 A JP S60228604A JP 8371084 A JP8371084 A JP 8371084A JP 8371084 A JP8371084 A JP 8371084A JP S60228604 A JPS60228604 A JP S60228604A
Authority
JP
Japan
Prior art keywords
arc
electrode
gas
ultrafine particles
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8371084A
Other languages
Japanese (ja)
Inventor
Ryoji Okada
亮二 岡田
Yoshiaki Ibaraki
茨木 善朗
Susumu Hioki
日置 進
Takeshi Araya
荒谷 雄
Masatoshi Kanamaru
昌敏 金丸
Kiju Endo
喜重 遠藤
Mitsuaki Haneda
光明 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8371084A priority Critical patent/JPS60228604A/en
Priority to US06/726,651 priority patent/US4610718A/en
Priority to EP85105063A priority patent/EP0161563B1/en
Priority to DE8585105063T priority patent/DE3576782D1/en
Publication of JPS60228604A publication Critical patent/JPS60228604A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce efficiently ultrafine metallic particles in the stage of generating an arc between a base metal for evaporation and an electrode to form the ultrafine particles by making the current value to be passed as arc current smaller than the specific current value. CONSTITUTION:The base metal is evaporated in gaseous hydrogen or non- oxidizing hydrogen-contg. compd. or the gaseous mixture composed thereof or the gaseous mixture composed of such gas and inert gas and the arc is generated between the base metal and the electrode, by which the ultrafine particles are produced. The current smaller than the current value at which the arc begins to change from the shape diverging from the electrode to the base metal to the shape concentrating to the local part on the base metal as designated as IA is passed as the arc current. The current value IA in this case is IA=aL+b and L is the distance between the base metal and the electrode (mm.), (a), (b) are the values which vary mainly with the compsn. of the gaseous atmosphere, the compsn. of the base metal, the compsn., shape and diameter of the electrode, the flow rate of a shielding gas, atmospheric pressure, etc. and are the values within a 30A/mm.>=a>=2A/mm., 200A/mm.>=b>=0 range.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超微粒子、特に粒径1μm以下の金属超微粒子
を効率よく製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for efficiently producing ultrafine particles, particularly ultrafine metal particles having a particle size of 1 μm or less.

〔発明の背景〕[Background of the invention]

超微粒子の製造方法については、特公昭55−4412
3号、特公昭57−44725号、特公昭58−541
66号などの方法が知られている。これらはガス中蒸発
法、水素アーク加熱法と呼ばれ、超微粒子の有効な製造
方法である。しかし、ガス中蒸発法は大規模な製造装置
が必要であるため、超微粒子を経済的に製造することは
難しい。一方、水素アーク加熱法はガス中蒸発法と比べ
生成効率は高(2) いが、水素アークの持つ特性のアークの集中を利用した
更に効率の高い方法を利用していない。
Regarding the manufacturing method of ultrafine particles, see Japanese Patent Publication No. 55-4412.
3, Special Publication No. 57-44725, Special Publication No. 58-541
Methods such as No. 66 are known. These methods are called in-gas evaporation method and hydrogen arc heating method, and are effective methods for producing ultrafine particles. However, since the in-gas evaporation method requires large-scale production equipment, it is difficult to economically produce ultrafine particles. On the other hand, although the hydrogen arc heating method has a higher production efficiency (2) than the evaporation method in gas, it does not utilize a more efficient method that takes advantage of the hydrogen arc's characteristic of arc concentration.

〔発明の目的〕[Purpose of the invention]

本発明は、上記に鑑み従来にない高効率な超微粒子の製
造方法を提供することを目的とする。
In view of the above, an object of the present invention is to provide a method for producing ultrafine particles with unprecedented efficiency.

〔発明の概要〕[Summary of the invention]

本発明は、水素ガスまたは非酸化性の水素含有化合物ガ
ス(CH4,NH,等)もしくは両者の混合ガスあるい
はこれらのガスと不活性ガスとの混合ガス中で、蒸発さ
せる母材と電極間でアークを発生させる超微粒子の製造
方法において、前記アークが電極から母材上へ末広がり
の形状から、母材上の局部に集中する形状に変化し始め
る電流値を■8とした場合、 IA=aL+b ただし、L;母材と電極間の距離(mu)a、b;主に
雰囲気のガス組成、母材 の組成、電極の組成、形状・ 径、シールドガス流量、雰囲 気圧等によって変わる値であ (3) つて、 30A/nw++≧a≧2 A / mm200A/n
o≧b≧0 の範囲にある値。
The present invention provides a method for evaporating between a base material to be evaporated and an electrode in hydrogen gas, non-oxidizing hydrogen-containing compound gas (CH4, NH, etc.), a mixture of both, or a mixture of these gases and an inert gas. In the method for producing ultrafine particles that generates an arc, if the current value at which the arc starts to change from a shape that spreads from the electrode onto the base material to a shape that concentrates locally on the base material is 8, then IA=aL+b However, L: Distance between the base material and the electrode (mu) a, b: Values that vary mainly depending on the gas composition of the atmosphere, the composition of the base material, the composition of the electrode, the shape/diameter, the shielding gas flow rate, the atmospheric pressure, etc. (3) 30A/nw++≧a≧2 A/mm200A/n
A value in the range o≧b≧0.

で示される電流値■6よりも小さな電流値をアーク電流
として流すことを特徴とするものである。
This is characterized in that a current value smaller than the current value (6) shown by is caused to flow as an arc current.

本発明は次の新規な現象の発見に基づいてなされたもの
である。
The present invention has been made based on the discovery of the following new phenomenon.

水素ガスまたは非酸化性の水素含有化合物ガスもしくは
両者の混合ガスあるいはこれらのガスと不活性ガスの混
合ガス中で、放電用タングステン電極を陰極、水冷銅ル
ツボ上の母材例えば金属を陽極とし、両極間にアークを
発生させ、アークにより金属を加熱、蒸発させ超微粒子
を製造する際、ある電流値を境にアークの形状が−変し
、その変化に伴ない超微粒子の生成効率が大きく増加す
る現象を発見した。このアーク形状の変化とは、タング
ステン電極からすそ広がりのアークが、ある電流値を境
に、水冷銅ルツボ中の金属表面上の局部に集中する変化
のことである。
In hydrogen gas, a non-oxidizing hydrogen-containing compound gas, a mixture of both, or a mixture of these gases and an inert gas, a tungsten electrode for discharging is used as a cathode, and a base material such as a metal on a water-cooled copper crucible is used as an anode, When producing ultrafine particles by generating an arc between two poles and heating and evaporating metal with the arc, the shape of the arc changes after a certain current value, and as this change occurs, the production efficiency of ultrafine particles increases significantly. I discovered a phenomenon. This change in the shape of the arc is a change in which the arc spreading from the tungsten electrode to the base becomes concentrated in a localized area on the metal surface in the water-cooled copper crucible after a certain current value is reached.

(4) この現象は、前記公報(特公昭57−44725 、特
公昭58−54165)に述べられている 溶融金属中
への水素の溶解、放出反応とは異なる現象である。
(4) This phenomenon is different from the dissolution and release reaction of hydrogen in molten metal described in the above-mentioned publications (Japanese Patent Publication No. 57-44725, Japanese Patent Publication No. 58-54165).

この現象は次のように説明される。This phenomenon is explained as follows.

高湿アーク中では水素は熱解離によって原子状に解離し
ており、この解離熱のため100%不活性ガス中に比ベ
アークが絞られる。
In a high humidity arc, hydrogen is dissociated into atoms due to thermal dissociation, and the heat of dissociation causes the bare arc to be squeezed into 100% inert gas.

また原子状に解離した水素は、溶融金属表面にて、再結
合し解離エネルギー(4,4eV/水素1分子)に相当
するエネルギーを放出し、金属の蒸発を促進させる。
Further, the atomically dissociated hydrogen recombines on the surface of the molten metal and releases energy corresponding to the dissociation energy (4.4 eV/one molecule of hydrogen), promoting the evaporation of the metal.

一般に金属蒸気は、不活性ガス、または不活性ガスと他
のガスとの混合ガスよりも電離に要するエネルギーが小
さい。そのため陰極(この場合タングステン電極)より
放出された電子は金属蒸気の存在する部分に集中する9
その結果電流密度が高くなり、これと平衡するために熱
損失が大とならねばならず、金属の蒸発が促進される。
Generally, metal vapor requires less energy for ionization than an inert gas or a mixed gas of an inert gas and another gas. Therefore, the electrons emitted from the cathode (tungsten electrode in this case) concentrate in the area where the metal vapor is present.
The resulting high current density requires high heat losses to balance this, promoting metal evaporation.

この金属の蒸発により一層アークは集中する。この原因
と結果によってアークの集中が安定し、高温部が(5) 形成され金属の蒸発が効率よく行なわれる。
This evaporation of metal further concentrates the arc. Due to this cause and effect, the concentration of the arc is stabilized, a high temperature region (5) is formed, and the metal is efficiently evaporated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1〜11図により説明する。 Embodiments of the present invention will be described below with reference to FIGS. 1 to 11.

まず、第1図をもって装置の説明をする。1は真空チャ
ンバー、2はトーチ、3はタングステン電極であり、冷
却水W1により冷却されている。
First, the apparatus will be explained with reference to FIG. 1 is a vacuum chamber, 2 is a torch, and 3 is a tungsten electrode, which is cooled by cooling water W1.

4は水冷銅ルツボであり、冷却水W2により冷却されて
いる。5は母材、6はガスノズルを示す。
4 is a water-cooled copper crucible, which is cooled by cooling water W2. 5 is a base material, and 6 is a gas nozzle.

7はガス通路、8は吸引カバー、9は吸引ノズルを示す
。10は水冷銅ルツボ4を絶縁す、るための絶縁カバー
である。11はルツボ昇降機であり、これにより電極間
距離を操作する。12はフィルターであり、キャリアガ
スG1によって運ばれてくる超微粒子をこのフィルター
で捕える。13〜1.5がゲートバルブである。16は
循環ポンプであり、チャンバー1内のガスを循環させる
。17は真空ポンプ、18はガスボンベである。
7 is a gas passage, 8 is a suction cover, and 9 is a suction nozzle. 10 is an insulating cover for insulating the water-cooled copper crucible 4. 11 is a crucible elevator, which controls the distance between the electrodes. 12 is a filter, which captures ultrafine particles carried by the carrier gas G1. 13 to 1.5 are gate valves. A circulation pump 16 circulates the gas inside the chamber 1. 17 is a vacuum pump, and 18 is a gas cylinder.

まず、真空ポンプ15によって真空チャンバー1内を真
空排気後、アルゴンガスあるいは、アル(6) ボン水素雰囲気とする。ゲートバルブ15を閉じた後に
、循環ポンプ16により、チャンバー1内のガスを循環
させる。その後、タングステン電極3と母材5との間に
アークを生じさせる。発生した超微粒子は、ガスノズル
6より送られ、ガス通路7によって水冷銅ルツボ4の周
囲を吹き上げるキャリアガスG1に乗り、吸引カバー8
.吸引ノズル9内を運ばれてゆき、フィルター12に捕
えられる。このガス通路7、吸引力カバー8により、超
微粒子の捕集率が大幅に高められる。
First, the inside of the vacuum chamber 1 is evacuated by the vacuum pump 15, and then an atmosphere of argon gas or argon gas or argon gas or argon (6) hydrogen is created. After the gate valve 15 is closed, the gas in the chamber 1 is circulated by the circulation pump 16. Thereafter, an arc is generated between the tungsten electrode 3 and the base material 5. The generated ultrafine particles are sent from the gas nozzle 6, ride on the carrier gas G1 that is blown up around the water-cooled copper crucible 4 through the gas passage 7, and are passed through the suction cover 8.
.. It is carried through the suction nozzle 9 and captured by the filter 12. The gas passage 7 and the suction force cover 8 greatly increase the collection rate of ultrafine particles.

超微粒子をフィルター12で捕えた後ガスGlは、循環
ポンプ16により再び、シールドガスG2、キャリアガ
スG1として用いられる。
After the ultrafine particles are captured by the filter 12, the gas Gl is used again by the circulation pump 16 as the shield gas G2 and the carrier gas G1.

第2図に、本発明の製造方法において発生するアーク(
以下、高効率アークと称す)の形状を示す。なお、比較
のために従来法において発生するアーク(以下、一般ア
ークと称す)の形状を示す。
Figure 2 shows the arc (
The shape of the high-efficiency arc (hereinafter referred to as high-efficiency arc) is shown below. For comparison, the shape of an arc generated in a conventional method (hereinafter referred to as a general arc) is shown.

なお、アークはいずれもNDフィルタ(Nα9)で観察
したものである。
Note that all arcs were observed using an ND filter (Nα9).

第2,3図はアルゴン50%、水素50%の混(7) 合ガス雰囲気中で、放電用タングステン電極(2%ドリ
ア入り)を陰極、鉄を陽極とし、i!極間距離Lし10
+no+とじた時のアーク形状を示す。第2図はI =
 1.0 OA、第3図はI=20OAである。
Figures 2 and 3 show the i! Distance between poles L and 10
+no+ Shows the arc shape when closed. Figure 2 shows I =
1.0 OA, FIG. 3 shows I=20 OA.

図中に示すアの領域は水素雰囲気特有の赤色を示し、イ
の領域は鉄特有の青緑色を示す。なおニッケル、銅を母
材とした場合もイの領域は鉄に近い色を示し、チタンの
場合は白色を示す。
The region A shown in the figure shows the red color characteristic of a hydrogen atmosphere, and the region B shows the blue-green color characteristic of iron. Note that even when nickel or copper is used as the base material, the region A shows a color similar to that of iron, and in the case of titanium, it shows white.

第3図の一般アーク(1=20OA)は、タングステン
電極より末広がりの形状を示し、第2図の不法による高
効率アークは前述のごとく、母材の局部にアークが集中
する形状を示す。
The general arc (1=20OA) in FIG. 3 shows a shape that spreads out from the tungsten electrode, and the illegal high-efficiency arc in FIG. 2 shows a shape in which the arc is concentrated locally in the base metal, as described above.

両アークによる超微粒子の生成量を比較すると、高効率
アーク(I=100A)の場合の方が一般アーク(1=
20OA>よりもはるかに多く、約3倍程度である。こ
のように超微粒子製造に優れた高効率アークの存在域は
、アーク電流値、電極間距離、電極の形状・径・組成、
雰囲気ガスの組成・圧力、母材の種類、シールドガス流
量等によって変化する。
Comparing the amount of ultrafine particles produced by both arcs, the high-efficiency arc (I = 100A) is better than the general arc (1 =
20OA>, about 3 times as much. In this way, the existence range of a highly efficient arc that is excellent for producing ultrafine particles is determined by the arc current value, the distance between the electrodes, the shape, diameter, and composition of the electrodes.
It changes depending on the composition and pressure of the atmospheric gas, the type of base material, the shielding gas flow rate, etc.

(8) 一般アークから高効率アークへと変化し始める電流値■
4は、前述のごとく各要因によって変化する。この電流
値IAを電#i間距離を変化させ測定した結果、T、=
aL+bで示されることが解った。a、bは、前述の他
の因子、ガス組成、電極形状、組成、径、母材組成、雰
囲気圧、シールドガス流量等によって変化する。各種母
材、電極、ガス組成、圧力等幅広い実験結果より、aに
ついては2A/1rxn〜30A/me、 bについて
は、o〜200A/mo+の範囲にあることが確められ
た。
(8) The current value that starts to change from a general arc to a high-efficiency arc■
4 varies depending on various factors as described above. As a result of measuring this current value IA by changing the distance between wires #i, T, =
It was found that it is expressed as aL+b. a and b vary depending on the other factors mentioned above, gas composition, electrode shape, composition, diameter, base material composition, atmospheric pressure, shielding gas flow rate, etc. From the results of a wide range of experiments including various base materials, electrodes, gas compositions, and pressures, it was confirmed that a was in the range of 2A/1rxn to 30A/me, and b was in the range of o to 200A/mo+.

電流値■6を母材がニッケル、鉄の場合について測定し
た結果を第4.5.6@に示す。
The results of measuring the current value (■6) when the base material is nickel or iron are shown in Section 4.5.6@.

第4図は母材がニッケル、雰囲気ガスがA r −50
%H2、圧力1気圧、陰極がタングステン電極(径3.
2mn、2%ドリア入り)、シールドガス流量15 Q
 /winとした場合のアーク電流、電極間距離とアー
ク形状との関係を示す。
In Figure 4, the base material is nickel and the atmospheric gas is Ar-50.
%H2, pressure 1 atm, cathode is tungsten electrode (diameter 3.
2mm, 2% Doria), shielding gas flow rate 15Q
The relationship between arc current, interelectrode distance, and arc shape when /win is shown.

第4図に示される2本の直線の内、直線1 (高電流側
)が、一般のアーク形状から高効率アークへと変化しは
じめる電流値IAである。直線2(9) (低電流側)が一般アークから高効率アークへの変化の
終了を示す電流値である。この2本の直線1.2で分け
られた領域を以後、高電流側から、−股領域、遷移領域
、高効率領域と称す。
Of the two straight lines shown in FIG. 4, straight line 1 (high current side) is the current value IA at which the general arc shape begins to change to a high efficiency arc. Straight line 2 (9) (low current side) is the current value indicating the end of the change from the general arc to the high efficiency arc. The regions divided by these two straight lines 1.2 will be hereinafter referred to as the -crotch region, transition region, and high efficiency region from the high current side.

第5図は、母材を鉄とし、他は第4図と同条件、また第
6図は、雰囲気ガス組成をAr−36%H2とし、他は
第5図と同条件の場合である。第5図に比べ、遷移及び
高効率領域が低電流側に移行している。一般に水素濃度
を低下させると、遷移及び高効率領域が低電流側に移行
し、それに伴ない超微粒子の生成量も低下する。
5 shows the case where the base material is iron and other conditions are the same as in FIG. 4, and FIG. 6 shows the case where the atmospheric gas composition is Ar-36%H2 and the other conditions are the same as in FIG. 5. Compared to FIG. 5, the transition and high efficiency regions have shifted to the low current side. Generally, when the hydrogen concentration is lowered, the transition and high efficiency regions shift to the lower current side, and the amount of ultrafine particles produced decreases accordingly.

逆に水素濃度を上げると高電流側に移行し、超微粒子の
生成量も増加する。
Conversely, when the hydrogen concentration is increased, the current shifts to a higher current side and the amount of ultrafine particles produced also increases.

一般領域と高効率領域での超微粒子の生成量を比較する
と、高効率領域の方が、はるかに高い。
Comparing the amount of ultrafine particles produced in the general area and the high efficiency area, the amount in the high efficiency area is much higher.

これは、高効率領域でのアーク(高効率アーク)が母材
上の局部に集中するため、効率よく母材を蒸発できるか
らである。−股領域では、母材(約40gの鉄、または
ニッケル)の(1元どが溶解しているに対し、高効率領
域では、アークの集中しく10) た部分しか溶解しない。そのため、金属の蒸発以外に使
われる熱量が少なく、効率が高くなる。−股領域、高効
率領域における超微粒子の生成量の具体的数値を第7.
8.9図に示す。
This is because the arc in the high-efficiency region (high-efficiency arc) concentrates locally on the base material, so that the base material can be efficiently evaporated. - In the crotch region, only a portion of the base material (approximately 40 g of iron or nickel) is melted, whereas in the high efficiency region, only a portion of the base metal (approximately 40 g of iron or nickel) is melted, where the arc is concentrated. As a result, less heat is used for purposes other than metal evaporation, resulting in higher efficiency. -Specific numerical values for the amount of ultrafine particles produced in the crotch region and high efficiency region are shown in Section 7.
Shown in Figure 8.9.

第7図は母材をニッケル、A r −50%H2雰囲気
、圧力1気圧、電極間距離L=10〜12■、シールド
ガス流量151/m、曲線1は陰極を径3.2閣のタン
グステン電極(2%ドリア入り)、曲線2は陰極を径6
.4 mのタングステン電極(2%ドリア入り)とした
時のニッケル超微粒子の生成量である。
In Figure 7, the base material is nickel, Ar -50% H2 atmosphere, pressure is 1 atm, distance between electrodes L = 10~12cm, shielding gas flow rate is 151/m, and curve 1 is made of tungsten with a diameter of 3.2 cm as the cathode. Electrode (contains 2% Doria), curve 2 shows cathode diameter 6
.. This is the amount of ultrafine nickel particles produced when using a 4 m tungsten electrode (containing 2% doria).

電極の径、形状を変えると、高効率領域が移行し、第7
図に見られるように、−股領域の生成量の約6倍(約4
0g/h)も示す状態になる。この電極の径、形状、組
成の変化により、高効率領域が高電流側に移行し、より
効率よく超微粒子を生成する現象は他の金属でも確めら
れた。
By changing the diameter and shape of the electrode, the high efficiency region shifts and the seventh
As seen in the figure, the amount of production in the -crotch area is approximately 6 times (approximately 4
0g/h). This phenomenon, in which changes in the diameter, shape, and composition of the electrode shift the high efficiency region to the high current side and generate ultrafine particles more efficiently, has also been confirmed with other metals.

母材を鉄、チタンと変えた場合の超微粒子発生量を第8
,9図に示す。なお、第8,9図は、陰極に径3.2w
++のタングステン電極(2%ドリア入(11) す)を用い、他条件は第8図と同じである。
The amount of ultrafine particles generated when the base material is changed to iron or titanium is shown in Section 8.
, shown in Figure 9. In addition, in Figures 8 and 9, the diameter of the cathode is 3.2W.
A ++ tungsten electrode (containing 2% doria (11)) was used, and the other conditions were the same as in FIG.

第8図は母材が鉄の場合、第8図は母材がチタンの場合
の超微粒子の生成量である。第7図のニッケルの例で示
したように、鉄、チタンの場合においても高効率領域で
の生成量が一般領域でのそれと比較して、非常に高効率
である。
FIG. 8 shows the amount of ultrafine particles produced when the base material is iron, and FIG. 8 shows the amount of ultrafine particles produced when the base material is titanium. As shown in the example of nickel in FIG. 7, even in the case of iron and titanium, the production amount in the high efficiency range is much higher than that in the general range.

第10.11図に高効率領域で得られた鉄、ニッケルの
超微粒子の透過電子顕微鏡写真を示す。
Figure 10.11 shows transmission electron micrographs of ultrafine iron and nickel particles obtained in the high efficiency region.

両金属共に粒径が0.01〜0.1μmでそろっている
Both metals have a uniform particle size of 0.01 to 0.1 μm.

なお、高効率アークは、鉄、ニッケル、チタンを母材と
した場合に限らず、クロム、コバルト、鉄合金、ニッケ
ル合金、チタン合金等、各種金属合金その他物質にも同
様に発生する。
Note that high-efficiency arcs are generated not only in cases where iron, nickel, and titanium are used as base materials, but also in various metal alloys and other substances such as chromium, cobalt, iron alloys, nickel alloys, and titanium alloys.

上述した粒径1μm以下の金属超微粒子の生成量を一般
領域と比較し、まとめて第1表に示す。
The amount of the above-mentioned ultrafine metal particles with a particle size of 1 μm or less produced was compared with the general range and is summarized in Table 1.

(12) 第 1 表 また、超微粒子製造のために必要とする電力も、高効率
領域では一般領域に比べ、はるかに小さい。
(12) Table 1 Furthermore, the power required for producing ultrafine particles is also much smaller in the high efficiency range than in the general range.

第1表で示した一般領域、高効率領域での超微粒子の生
成量を投入電力で割った生成効率を第2表に示す。
Table 2 shows the production efficiency obtained by dividing the amount of ultrafine particles produced in the general region and high efficiency region shown in Table 1 by the input power.

第 2 表 上述のように、ガス中蒸発法の如く大規模の製造装置が
不要であるため超微粒子を経済的に製造することが可能
であり、また、従来法の水素アーク加熱法に比較して極
めて高効率に製造することができる。
Table 2 As mentioned above, ultrafine particles can be produced economically because large-scale production equipment is not required like in-gas evaporation method, and compared to the conventional hydrogen arc heating method. It can be manufactured with extremely high efficiency.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば鉄、ニッケル、チ
タン、及びこれに合金、その他クロム、コバルト等の各
種金属及び合金その他の物質等の超微粒子、特に粒径1
μm以下の金属超微粒子を小さい消費電力で高効率に製
造することが可能になった。
As explained above, according to the present invention, ultrafine particles of iron, nickel, titanium, alloys thereof, various metals such as chromium, cobalt, alloys, and other substances, especially particles with a particle size of 1
It has become possible to produce ultrafine metal particles of μm or less with high efficiency and low power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法で使用する製造装置に概略説
明図、第2図は本発明の製造方法において発生するアー
ク(NDフィルターでIS)の概略説明図、第3図は従
来の製造方法において発生するアークを観察した説明図
、第4.5.6図は従来の製造方法(−股領域)と本発
明の製造方法(遷移領域、高効率領域)におけるアーク
電流・電極間距離の関係図、第7.8.9図はアーク電
流・超微粒子生成量の関係図、第10.11図は(14
) 本発明の製造方法で得られた超微粒子の透過性電子顕微
鏡写真(倍率i10万倍)である。 ■・・・チャンバー、2・・・トーチ、3・・・タング
ステン電極、4・・・水冷銅ルツボ、5・・・母材、6
・・・ガスノズル、7・・・ガス通路、8・・・吸引カ
バー、9・・・吸引ノズル、10・・・絶縁カバー、1
1・・ルツボ昇降機、12・・・フィルター、13,1
4,15・・・ゲートバルブ、16・・・循環ポンプ、
17・・・真空ポンプ、18・・・ガスボンベ、19・
・・タングステン電極、20・・・母材、G1・・・キ
ャリアガス、G2・・・シールドガス、Wl、W2・・
・冷却ガス。 代理人 弁理士 高橋明夫 (15) η Z 図 λ 某 3 図 て4図 電半÷間f巨志龜L(索−Q 第 5 図 θ 2 4 δ ざ lθ 電極間距韓「(催−) f−J 6 図 θ Z4 tθ 電ネ母間距駐L(素気) 不 7 m アー7電洗 L (A) 第 3 図 了−り電し敵 1 (A) 第 q 図 アーク室 ンL T−(Aジ 第1θ図 葛 11 図 41−
Fig. 1 is a schematic explanatory diagram of the manufacturing equipment used in the manufacturing method of the present invention, Fig. 2 is a schematic explanatory diagram of the arc (IS with an ND filter) generated in the manufacturing method of the present invention, and Fig. 3 is a schematic explanatory diagram of the manufacturing equipment used in the manufacturing method of the present invention. Figure 4.5.6 is an explanatory diagram showing the arc generated in the method, and shows the arc current and interelectrode distance in the conventional manufacturing method (-crotch region) and the manufacturing method of the present invention (transition region, high efficiency region). The relationship diagram, Figure 7.8.9 is the relationship diagram between arc current and ultrafine particle generation amount, and Figure 10.11 is (14
) This is a transmission electron micrograph (magnification i: 100,000 times) of ultrafine particles obtained by the production method of the present invention. ■...Chamber, 2...Torch, 3...Tungsten electrode, 4...Water-cooled copper crucible, 5...Base material, 6
...Gas nozzle, 7...Gas passage, 8...Suction cover, 9...Suction nozzle, 10...Insulation cover, 1
1... Crucible elevator, 12... Filter, 13, 1
4, 15...Gate valve, 16...Circulation pump,
17... Vacuum pump, 18... Gas cylinder, 19.
...Tungsten electrode, 20...Base material, G1...Carrier gas, G2...Shield gas, Wl, W2...
・Cooling gas. Agent Patent attorney Akio Takahashi (15) -J 6 Fig. θ Z4 tθ Distance between electric power source L (plain air) No 7 m Ar7 electric washing L (A) Fig. 3 - Rechargeable enemy 1 (A) Fig. q Arc chamber N L T- (Aji 1θ Figure 11 Figure 41-

Claims (1)

【特許請求の範囲】 1、水素ガスまたは非酸化性の水素含有化合物ガスもし
くは両者の混合ガスあるいはこれらのガスと不活性ガス
との混合ガス中で、蒸発させる母材と電極間でアークを
発生させて超微粒子を製造する方法において、前記アー
クが電極から母材へ末広がりの形状から、母材上の局部
に集中する形状に変化し始める電流値を工いとした場合
、 ■よ=aL+b ただし、L;母材と電極間の距離(m、)a、b;主に
雰囲気のガス組成、母 材の組成、電極の組成、形 状・径、シールドガス流量、 雰囲気圧等によって変わる 値。 で示される電流値IAよりも小さな電流値をアーク電流
として流すことを特徴とする超微粒子(1) の製造方法。 2、a、bを 30 A / m≧a≧2AA/+am200A/+m
≧b≧0 とすることを特徴とする特許請求の範囲第1項記載の超
微粒子の製造方法。
[Claims] 1. Generating an arc between the base material to be evaporated and the electrode in hydrogen gas, non-oxidizing hydrogen-containing compound gas, a mixture of both, or a mixture of these gases and an inert gas. In the method of manufacturing ultrafine particles by causing the arc to spread from the electrode to the base material, if the current value starts to change from a shape that spreads from the electrode to the base material to a shape that concentrates locally on the base material, L: Distance between base material and electrode (m,) a, b: Value that changes mainly depending on the gas composition of the atmosphere, composition of the base material, composition of the electrode, shape/diameter, shielding gas flow rate, atmospheric pressure, etc. A method for producing ultrafine particles (1), characterized in that a current value smaller than the current value IA shown by is passed as an arc current. 2, a, b to 30 A/m≧a≧2AA/+am200A/+m
The method for producing ultrafine particles according to claim 1, characterized in that ≧b≧0.
JP8371084A 1984-04-27 1984-04-27 Production of ultrafine particles Pending JPS60228604A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8371084A JPS60228604A (en) 1984-04-27 1984-04-27 Production of ultrafine particles
US06/726,651 US4610718A (en) 1984-04-27 1985-04-24 Method for manufacturing ultra-fine particles
EP85105063A EP0161563B1 (en) 1984-04-27 1985-04-25 Method of and apparatus for manufacturing ultra-fine particles
DE8585105063T DE3576782D1 (en) 1984-04-27 1985-04-25 METHOD AND DEVICE FOR PRODUCING ULTRAFINE PARTICLES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8371084A JPS60228604A (en) 1984-04-27 1984-04-27 Production of ultrafine particles

Publications (1)

Publication Number Publication Date
JPS60228604A true JPS60228604A (en) 1985-11-13

Family

ID=13810051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8371084A Pending JPS60228604A (en) 1984-04-27 1984-04-27 Production of ultrafine particles

Country Status (1)

Country Link
JP (1) JPS60228604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162705A (en) * 1987-12-19 1989-06-27 Res Dev Corp Of Japan Manufacture of metal super fine granule
JP2016510300A (en) * 2013-01-22 2016-04-07 エムセデ テクノロジーズ ソシエテ ア レスポンサビリテ リミティー Method and apparatus for generating carbon nanostructures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118803A (en) * 1982-12-27 1984-07-09 Pioneer Electronic Corp Production of ultrafine metallic particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118803A (en) * 1982-12-27 1984-07-09 Pioneer Electronic Corp Production of ultrafine metallic particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162705A (en) * 1987-12-19 1989-06-27 Res Dev Corp Of Japan Manufacture of metal super fine granule
JP2016510300A (en) * 2013-01-22 2016-04-07 エムセデ テクノロジーズ ソシエテ ア レスポンサビリテ リミティー Method and apparatus for generating carbon nanostructures

Similar Documents

Publication Publication Date Title
Lee et al. Synthesis of Mn–Al alloy nanoparticles by plasma arc discharge
CN104233379B (en) Electro-deposition preparation method of carbon nano tube-copper base composite powder
US3621310A (en) Duct for magnetohydrodynamic thermal to electrical energy conversion apparatus
CN109719303A (en) A kind of submicron order iron-nickel alloy powder producing method of soft magnetic materials
CA2025015C (en) Direct smelting process
JPS60228604A (en) Production of ultrafine particles
KR20130069190A (en) Synthetic method for tungsten metal nanopowder using rf plasma
KR101310949B1 (en) Synthetic method for molybdenum metal nanopowder using rf plasma
KR101171555B1 (en) Positive electrode for non-aqueous electrolyte secondary battery and method for producing the same
KR20160049093A (en) Preparation method of cubic boron nitride nanopowder by thermal plasma, and the cubic boron nitride nanopowder thereby
Wang et al. Effects of RE2O3 doping on the reduction behavior of molybdenum oxide and properties of molybdenum powder
CN101497954A (en) Aluminum gallium alloy
KR101525957B1 (en) The method for fabrication of silicone-carbon nanotube composite and the silicone-carbon nanotube composite thereby
CN111036929A (en) Preparation method of superfine flaky bronze powder
JPS60228608A (en) Method and device for producing ultrafine particles
JPH02153807A (en) Production of ultrafine particle of metal nitride
KR101370631B1 (en) Method for manufacturing ferro titan silicide nano composite for anode active material of lithium secondary batteries
Lee et al. Two-layered Zr-base amorphous alloy/metal surface composites fabricated by high-energy electron-beam irradiation
JPH01252781A (en) Plasma cvd device utilizing pressure gradient type discharge
CN1410573A (en) Electrode material of alloy element added with tungsten oxide and its preparation technique
JPS6383240A (en) Electric contact material and its production
JPS61295307A (en) Production of ultrafine particles
Xu et al. A series of plasma innovation technologies by the double glow discharge phenomenon
JP3578486B2 (en) Method and apparatus for producing single-phase γ'-Fe4N ultrafine particles
RU2685564C1 (en) Method of synthesis of metal nanoparticles by deposition on a porous carbon material