JPS60228608A - Method and device for producing ultrafine particles - Google Patents

Method and device for producing ultrafine particles

Info

Publication number
JPS60228608A
JPS60228608A JP8371484A JP8371484A JPS60228608A JP S60228608 A JPS60228608 A JP S60228608A JP 8371484 A JP8371484 A JP 8371484A JP 8371484 A JP8371484 A JP 8371484A JP S60228608 A JPS60228608 A JP S60228608A
Authority
JP
Japan
Prior art keywords
arc
ultrafine particles
base material
generated
evaporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8371484A
Other languages
Japanese (ja)
Inventor
Ryoji Okada
亮二 岡田
Yoshiaki Ibaraki
茨木 善朗
Takeshi Araya
荒谷 雄
Susumu Hioki
日置 進
Masatoshi Kanamaru
昌敏 金丸
Kiju Endo
喜重 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8371484A priority Critical patent/JPS60228608A/en
Publication of JPS60228608A publication Critical patent/JPS60228608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce efficiently ultrafine metallic particles by forming a local high-temp. part by the other heat source to the arc concentrating surface of the metal to be evaporated to accelerate evaporation and concentrating the arc to said part by the vapor of the generated ultrafine particles. CONSTITUTION:The inside of a chamber 2 is evacuated to a vacuum and thereafter an atmosphere of argon or a gaseous mixture composed of hydrogen and argon is maintained therein. An arc 10 is then generated with a tungsten electrode 3 as a cathode and the base metal 4 on a water cooled copper crucible 5 as an anode. Carbon dioxide laser light 7 is projected locally on the part where the arc 10 and the base metal 4 contact with each other via a germanium lens 6 after generation of the arc to heat locally said part. The evaporation of the base metal 4 in said part is thereby accelerated and the arc 10 is concentrated to said part by the vapor of the ultrafine particles generated therefrom, by which the amt. of the ultrafine particles to be formed is increased.

Description

【発明の詳細な説明】 (1) 〔発明の利用分野〕 本発明は超微粒子、特に1μm以下の金属超微粒子を効
率よく製造する方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) [Field of Application of the Invention] The present invention relates to a method and apparatus for efficiently producing ultrafine particles, particularly ultrafine metal particles of 1 μm or less.

〔発明の背景〕[Background of the invention]

現在、粒径1μm以下の超微粒子を安価に、大量に生産
する方法は確立していない。従来の製造方法では特公昭
55−44123号、特公昭57−44725などの方
法が知られており、それぞれガス中蒸発法、水素アーク
加熱法と呼ばれる有効な方法である。しかし、ガス中蒸
発法では大規模な製造装置を必要とし、超微粒子の価格
を低下させることは難かしい。
Currently, there is no established method for inexpensively producing large quantities of ultrafine particles with a particle size of 1 μm or less. As conventional manufacturing methods, methods such as Japanese Patent Publication No. 55-44123 and Japanese Patent Publication No. 57-44725 are known, and these are effective methods called evaporation in gas method and hydrogen arc heating method, respectively. However, the in-gas evaporation method requires large-scale production equipment, and it is difficult to reduce the price of ultrafine particles.

水素アーク加熱法は、効率に優れるが、水素アークの特
性、アークの集中現象を利用していない。
Although the hydrogen arc heating method has excellent efficiency, it does not take advantage of the characteristics of the hydrogen arc and the arc concentration phenomenon.

〔発明の目的〕[Purpose of the invention]

本発明は、超微粒子、特に粒径1μm以下の金属超微粒
子を効率よく、安価に製造することが可能な方法及び装
置を提供することを目的とする。
An object of the present invention is to provide a method and apparatus capable of efficiently and inexpensively producing ultrafine particles, particularly ultrafine metal particles having a particle size of 1 μm or less.

〔発明の概要〕[Summary of the invention]

(2) 水素ガス、あるいは水素ガスと不活性ガスの混合ガス、
あるいは不活性ガス中で、蒸発させるべき母材と電極間
にアークを発生させて超微粒子を製造する方法において
、蒸発させるべき金属のアークの集中面に、他の熱源に
より局部的高温部を形成し、その部分での母材の蒸発を
促進させ、そこから発生する超微粒子の蒸気によってア
ークを前記部分に集中させることを特徴とするものであ
る。
(2) Hydrogen gas or a mixed gas of hydrogen gas and inert gas,
Alternatively, in a method of producing ultrafine particles by generating an arc between the base material to be evaporated and an electrode in an inert gas, a localized high-temperature area is formed by another heat source on the surface of the metal to be evaporated where the arc is concentrated. The method is characterized in that the evaporation of the base material is promoted in that part, and the arc is concentrated in the part by the vapor of ultrafine particles generated therefrom.

アークによる加熱は、高温度が容易に得られ、母材、例
えば金属の蒸発には有効な方法である。
Heating by arc can easily achieve high temperatures and is an effective method for evaporating base materials, such as metals.

しかし、金属を多量に蒸発させるには、大電流を要する
。一般に不活性ガス中でのアークは、放電用電極よりす
そ広がりの形状となるが、このアークを金属面上の周心
部分に集中させれば、よい高い温度域を形成でき、より
効率よく金属を蒸発できる。
However, a large amount of current is required to evaporate a large amount of metal. Generally, an arc in an inert gas has a shape that is wider at the base than the discharge electrode, but if this arc is concentrated at the periphery of the metal surface, a high temperature region can be formed, and the metal surface can be more efficiently can be evaporated.

金属原子には周囲のガスよりも電離に要するエネルギー
がはるかに低いため、一旦金属蒸気が発生すると、アー
クはそこに集中し、さらに高温に(3) より蒸発が活発となる。本発明はこの原理に基づき、母
材とアークの接する面上に、前記アークとは別の熱源に
よって局部的高温部を形成し、あるいは磁力によってア
ークの集中を生み出したもの明する。
Metal atoms require much less energy to ionize than the surrounding gas, so once metal vapor is generated, the arc concentrates there, and the vaporization becomes more active at higher temperatures (3). The present invention is based on this principle, and discloses a method in which a localized high-temperature area is formed on the surface where the base material and the arc are in contact with each other by a heat source other than the arc, or the arc is concentrated by magnetic force.

まず第1図によって、他熱源によって局部加熱し、アー
ク集中を生み出した実施例を示す。
First, FIG. 1 shows an example in which local heating was performed using another heat source to create arc concentration.

■はトーチであり、冷却水W1によりタングステン電極
3を冷却しである。2が真空チャンバー、4が母材、5
が水冷銅ルツボである。6がゲルマニウムレンズであり
炭酸ガスレーザー7を母材4上の一点に集中させる。8
,9がキャリアガスノズルと吸引ノズルであり、キャリ
アガスG1により発生した超微粒子を運び去る。10が
アークを示す。
(2) is a torch, which cools the tungsten electrode 3 with cooling water W1. 2 is the vacuum chamber, 4 is the base material, 5
is a water-cooled copper crucible. 6 is a germanium lens, which focuses the carbon dioxide laser 7 on one point on the base material 4. 8
, 9 are a carrier gas nozzle and a suction nozzle, which carry away ultrafine particles generated by the carrier gas G1. 10 indicates an arc.

まず、チャンバー2内を真空排気後、アルゴンまたは水
素アルゴン混合ガス雰囲気とする。その後、タングステ
ン電極3を陰極、水冷銅ルツボ5(4) 」二の母材4を陽極としアーク10を発生させる。
First, the inside of the chamber 2 is evacuated to an argon or hydrogen-argon mixed gas atmosphere. Thereafter, an arc 10 is generated using the tungsten electrode 3 as a cathode and the base material 4 of the water-cooled copper crucible 5 (4) as an anode.

アーク発生後、炭酸ガスレーザー光7をゲルマニウムレ
ンズ6により、アーク10と母材の接する部分の局部に
当て、局部的に加熱する。本実施例では、高出力を得ら
れる炭酸ガスレーザーを用いた。
After the arc is generated, the carbon dioxide laser beam 7 is applied to a local part of the contact area between the arc 10 and the base material through the germanium lens 6 to locally heat it. In this example, a carbon dioxide laser that can obtain high output was used.

まずAr−50%H2雰囲気での結果を示す。First, the results in an Ar-50% H2 atmosphere will be shown.

参考のため、レーザー加熱を加えない場合のアーク形状
とアーク電流・電極間距離の関係を第2図に示す。この
図において、一般領域とは、タングステン電極よりすそ
広がりのアークの存在する従来法による領域、高効率領
域とは母材上の局部に集中したアークの存在する本発明
の製造方法による領域、遷移領域とは、その中間のアー
クの存在する領域で本発明の方法を含む領域を各々示す
For reference, Figure 2 shows the relationship between arc shape, arc current, and distance between electrodes when laser heating is not applied. In this figure, the general region is the region produced by the conventional method where an arc spreading from the tungsten electrode exists, and the high efficiency region is the region produced by the manufacturing method of the present invention where there is a locally concentrated arc on the base material, and the transition The term "region" refers to a region where an arc exists between the regions and which includes the method of the present invention.

高効率領域での超微粒子の生成効率は、一般領域の生成
効率をはるかに上まわり、′母材を鉄とした場合一般領
域の生成量の約6倍、□ニッケルの場合約6倍、チタン
の場合約20倍と優れた効率を示す。
The production efficiency of ultrafine particles in the high-efficiency range is far higher than that in the general range; when the base material is iron, the amount produced is approximately 6 times that of the general range; shows excellent efficiency of about 20 times.

(5) 炭酸ガスレーザー加熱を加えた場合、第2図に示す高効
率領域が高電流側に移行し、電流増加に伴ない超微粒子
の生成量も大幅に増加した。
(5) When carbon dioxide laser heating was applied, the high efficiency region shown in Figure 2 shifted to the high current side, and the amount of ultrafine particles produced increased significantly as the current increased.

次にアルゴン雰囲気での結果を次に示す。アルゴン雰囲
気中では、アルゴン、水素混合ガス中でのように、容易
にアークの集中現象は生じない。
Next, the results in an argon atmosphere are shown below. In an argon atmosphere, the arc concentration phenomenon does not occur easily as in a mixed gas of argon and hydrogen.

しかし、レーザー加熱を加えると、A r −50%H
2雰囲気に比べ、低電流側ではあるが、アークの集中現
象が生じた。この時の超微粒子の生成量は、Ar−50
%H2雰囲気での超微粒子の生成量よりは少ないが、ア
ルゴン雰囲気でレーザー加熱を加えない場合の生成量よ
りは大幅に上回った。
However, when laser heating is applied, Ar −50%H
Although the current was on the lower side compared to the No. 2 atmosphere, a phenomenon of arc concentration occurred. The amount of ultrafine particles produced at this time is Ar-50
Although the amount of ultrafine particles produced in a %H2 atmosphere was smaller, it was significantly higher than the amount produced in an argon atmosphere without laser heating.

次に第3,4図により、磁力によってアークを集中する
他の実施例を示す。
Next, FIGS. 3 and 4 show another embodiment in which the arc is concentrated by magnetic force.

第3,4図において、2は真空チャンバー1がトーチを
示す。11は吸引カバーを示し、このカバーにより発生
した超微粒子の飛散を防ぎ、回集効率を高める。12は
電磁石を示し、第3図のごとく配置する。第4図は、第
3図に示した母材4゜水冷銅ルツボ5.電磁石12の配
置を上方より見(6) た際の図である。13は吸引ノズル、14はキャリアガ
スのガス通路である。ガス通路14より上方に吹き上げ
られるキャリアガスG2により発生した超微粒子は吸引
ノズル13へ運ばれる。
In FIGS. 3 and 4, 2 indicates the vacuum chamber 1 and the torch. Reference numeral 11 indicates a suction cover, which prevents the generated ultrafine particles from scattering and increases collection efficiency. Reference numeral 12 indicates an electromagnet, which is arranged as shown in FIG. Figure 4 shows the base material 4° water-cooled copper crucible 5. shown in Figure 3. FIG. 6 is a diagram of the arrangement of the electromagnets 12 viewed from above. 13 is a suction nozzle, and 14 is a gas passage for carrier gas. Ultrafine particles generated by the carrier gas G2 blown upward from the gas passage 14 are carried to the suction nozzle 13.

まず、チャンバー2内を真空排気後、アルゴンまたはア
ルゴン水素混合ガス雰囲気とする。放電用タングステン
電極3を陰極、水冷銅ルツボ5上の母材4を陽極としア
ークを発生させる。
First, the inside of the chamber 2 is evacuated to create an argon or argon hydrogen mixed gas atmosphere. An arc is generated using the discharge tungsten electrode 3 as a cathode and the base material 4 on the water-cooled copper crucible 5 as an anode.

アーク発生後、磁石12により、すそ広がり状のアーク
を母材4上の局部に集中させる。発生した超微粒子はキ
ャリアガスG2により吸引カバー11内を通り、吸引ノ
ズル13へと吸い込まれ捕集器(図示せず)へ運ばれる
After the arc is generated, the magnet 12 concentrates the arc in the shape of a base material 4 on a local area on the base material 4. The generated ultrafine particles pass through the suction cover 11 by the carrier gas G2, are sucked into the suction nozzle 13, and are transported to a collector (not shown).

Ar−50%H2雰囲気中でアークを拘束するような磁
力を加えると、第2図に示す高効率領域が高置側に移行
し、その電流増加に伴ない超微粒子の生成量も増加した
When a magnetic force that restrained the arc was applied in an Ar-50% H2 atmosphere, the high efficiency region shown in FIG. 2 shifted to the higher position side, and the amount of ultrafine particles produced increased as the current increased.

アルゴン雰囲気中ではA r −50%H2雰囲気のよ
うなアークの集中現象は見られない。磁力によってアー
クを母材上に集中させると、その超微(7) 粒子生成量は、A r −50%H2雰囲気における磁
気によるアーク集中の生成量に比べ少ないが、アルゴン
雰囲気中でアークを絞らない状態に比べれば、その生成
量は大+11に上回った。
In the argon atmosphere, the arc concentration phenomenon unlike in the Ar-50%H2 atmosphere is not observed. When the arc is concentrated on the base metal by magnetic force, the amount of ultrafine(7) particles produced is smaller than the amount produced when the arc is concentrated by magnetism in an Ar-50%H2 atmosphere, but when the arc is constricted in an argon atmosphere, Compared to the state without it, the amount produced was a huge +11.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、ガス中蒸発法の
如く大規模の製造装置が不要であるため経済的に製造す
ることが可能となり、また従来法の水素アーク加熱法に
比較しても極めて高効率に製造することができる。
As explained above, according to the present invention, it is possible to manufacture economically because large-scale manufacturing equipment is not required as in the case of the in-gas evaporation method, and compared to the conventional hydrogen arc heating method, It can also be manufactured with extremely high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超微粒子製造装置の説明図、第2
図はアーク電流、電極間距離とアーク形状との関係の説
明図、第3図は本発明による超微粒子製造装置の説明図
で、第4図は、本発明による超微粒子製造−置内の母材
、磁石の配置を示す説明図である。 ■・・・トーチ、2・・・真空チャンバー、3・・・タ
ングステン電極、4・・・母材、5・・・水冷銅ルツボ
、6・・・Gaレンズ、7・・・CO2レーザー光、8
・・・ガスノ(8) ズル、9・・・吸引ノズル、10・・・アーク、11・
・・吸引カバー、12・・・電磁石、13・・・吸引ノ
ズル、14・・・ガス通路。 (9) ■ 1 図 第2図 了 0 0′ 序 /シ ′;° −郁並戎 −2゜ 4 104杼甑 ・り /0.財0 7、/ 丁 1 1 ■3図 4 冨 4 図 0 24681ρ 電 極 間 y巨島ILL(りyi x−)62−
FIG. 1 is an explanatory diagram of the ultrafine particle manufacturing apparatus according to the present invention, and FIG.
Fig. 3 is an explanatory diagram of the relationship between arc current, interelectrode distance, and arc shape, Fig. 3 is an explanatory diagram of the ultrafine particle production apparatus according to the present invention, and Fig. 4 is an explanatory diagram of the ultrafine particle production equipment according to the present invention. FIG. 4 is an explanatory diagram showing the arrangement of materials and magnets. ■...Torch, 2...Vacuum chamber, 3...Tungsten electrode, 4...Base material, 5...Water-cooled copper crucible, 6...Ga lens, 7...CO2 laser beam, 8
... Gas nozzle (8) Zuru, 9... Suction nozzle, 10... Arc, 11.
... Suction cover, 12... Electromagnet, 13... Suction nozzle, 14... Gas passage. (9) ■ 1 Figure 2 0 0' Introduction /shi';° -Ikunami Ebisu -2゜4 104 Shukoshiri/0. Wealth 0 7, / Ding 1 1 ■3 Figure 4 Tomi 4 Figure 0 24681ρ between electrodes y Kyoshima ILL (riyi x-) 62-

Claims (1)

【特許請求の範囲】 1、水素ガス、あるいは水素ガスと不活性ガスの混合ガ
ス、あるいは不活性ガス中で、蒸発させるべき母材と電
極間にアークを発生させて超微粒子を製造する方法にお
いて、蒸発させるべき金属のマークの集中面に前記アー
クとは別の熱源により局部的高温部を形成し、その部分
での母材の蒸発を促進させ、そこから発生する超微粒子
の蒸気によってアークを前記部分に集中させることを特
徴とする超微粒子の製造方法。 2、磁気によりアークを蒸発させるべき母材上の局部に
集中させることを特徴とする特許請求の範囲第1項記載
の超微粒子の製造方法。 3、密閉容量中で、放電用電極とうけ台上の母材を対向
して配置し、さらに電極と母材間を囲むように電磁石を
配置したことを特徴とする超微粒子の製造装置。
[Claims] 1. A method for producing ultrafine particles by generating an arc between a base material to be evaporated and an electrode in hydrogen gas, a mixed gas of hydrogen gas and an inert gas, or an inert gas. A heat source other than the arc is used to form a localized high-temperature area on the concentrated surface of the metal mark to be evaporated, the evaporation of the base metal is promoted in that area, and the vapor of ultrafine particles generated from the area causes the arc to be activated. A method for producing ultrafine particles, characterized by concentrating them in the above portion. 2. The method for producing ultrafine particles according to claim 1, characterized in that the arc is concentrated locally on the base material to be evaporated by magnetism. 3. An apparatus for producing ultrafine particles, characterized in that a discharge electrode and a base material on a receiving stand are arranged facing each other in a sealed capacity, and an electromagnet is further arranged to surround the space between the electrode and the base material.
JP8371484A 1984-04-27 1984-04-27 Method and device for producing ultrafine particles Pending JPS60228608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8371484A JPS60228608A (en) 1984-04-27 1984-04-27 Method and device for producing ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8371484A JPS60228608A (en) 1984-04-27 1984-04-27 Method and device for producing ultrafine particles

Publications (1)

Publication Number Publication Date
JPS60228608A true JPS60228608A (en) 1985-11-13

Family

ID=13810168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8371484A Pending JPS60228608A (en) 1984-04-27 1984-04-27 Method and device for producing ultrafine particles

Country Status (1)

Country Link
JP (1) JPS60228608A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254005A (en) * 1985-09-02 1987-03-09 Hitachi Ltd Production of hyperfine particles
CN109719393A (en) * 2019-01-25 2019-05-07 大连理工大学 The continuous producing method of hot arc and laser composite heat power supply metal compound nano body
CN109759708A (en) * 2019-01-25 2019-05-17 大连理工大学 Hot arc and laser composite heat power supply evaporated metal/carbon nanopowder body continuous producing method
CN109759601A (en) * 2019-01-25 2019-05-17 大连理工大学 Laser evaporation Multicarity metal/carbon nano-powder continuous producing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254005A (en) * 1985-09-02 1987-03-09 Hitachi Ltd Production of hyperfine particles
JPH0565561B2 (en) * 1985-09-02 1993-09-20 Hitachi Ltd
CN109719393A (en) * 2019-01-25 2019-05-07 大连理工大学 The continuous producing method of hot arc and laser composite heat power supply metal compound nano body
CN109759708A (en) * 2019-01-25 2019-05-17 大连理工大学 Hot arc and laser composite heat power supply evaporated metal/carbon nanopowder body continuous producing method
CN109759601A (en) * 2019-01-25 2019-05-17 大连理工大学 Laser evaporation Multicarity metal/carbon nano-powder continuous producing method

Similar Documents

Publication Publication Date Title
EP0328033B1 (en) Thin film forming apparatus and ion source utilizing plasma sputtering
US8878422B2 (en) Device for producing an electron beam
US3479545A (en) Surface ionization apparatus and electrode means for accelerating the ions in a curved path
JPS60221566A (en) Thin film forming device
JPS6254005A (en) Production of hyperfine particles
JPS60228608A (en) Method and device for producing ultrafine particles
JPS6037700A (en) Anionic ion source
JPH0770741A (en) Evaporation source
JPS60224706A (en) Production of ultrafine metallic particles
JPH0488165A (en) Sputtering type ion source
JP5962979B2 (en) Deposition equipment
JPH0660393B2 (en) Plasma concentrated high-speed sputter device
JPS59190357A (en) Supersaturated electron type ion plating method
Miao et al. Process and suppression method of backward current in a diode packaged with permanent magnet
JPS60228609A (en) Production of ultrafine particles
JPS62103308A (en) Apparatus for producing ultrafine particles
JPS6331703Y2 (en)
JPS61253307A (en) Production of ultra-fine particles
JPS5873770A (en) Ion plating device of high efficiency utilizing magnetic field of magnet and coil
JPS61295307A (en) Production of ultrafine particles
JPH04191364A (en) Method and device for ion plating
JPH02153807A (en) Production of ultrafine particle of metal nitride
JPH05171426A (en) Laser ion plating device
JPH0645871B2 (en) Reactive ion plating method
JPS60228604A (en) Production of ultrafine particles