JPS61253307A - Production of ultra-fine particles - Google Patents

Production of ultra-fine particles

Info

Publication number
JPS61253307A
JPS61253307A JP9540485A JP9540485A JPS61253307A JP S61253307 A JPS61253307 A JP S61253307A JP 9540485 A JP9540485 A JP 9540485A JP 9540485 A JP9540485 A JP 9540485A JP S61253307 A JPS61253307 A JP S61253307A
Authority
JP
Japan
Prior art keywords
arc
electrode
generated
base material
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9540485A
Other languages
Japanese (ja)
Inventor
Masatoshi Kanamaru
昌敏 金丸
Yoshiaki Ibaraki
茨木 善朗
Takeshi Araya
荒谷 雄
Susumu Hioki
日置 進
Kiju Endo
喜重 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9540485A priority Critical patent/JPS61253307A/en
Publication of JPS61253307A publication Critical patent/JPS61253307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain efficiently ultra-fine metallic particles by disposing one or both of electrodes in the form of ultra-fine particle raw material so as to face each other, inclining one electrode and generating the vapor flame of a base material in the magnetic blow direction. CONSTITUTION:The electrode 1 is disposed by inclining the same at 15-45% in the horizontal direction. The electrode 1 is acted as a cathode and a holding base 2 as an anode. An inert gas, gaseous hydrogen or gaseous hydrogen-contg. compd. is passed between the electrode 1 and the base material 3 on the base 2 and an arc is generated by current 6. The arc 7 and the arc 8 contg. metallic vapor are generated and a metallic vapor group 9 is conveyed by gaseous plasma flow 5. The electromagnetic force in the right direction shown in the figure is generated in this stage and the plasma flame flows in the same direc tion. The vapor group 9 is quickly conveyed. The efficiency for forming the ultra-fine particles in the entire current region is thus increased.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超微粒子、特に1μm以下の金属超微粒子を製
造する金属超微粒子の%[d方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing ultrafine metal particles, particularly ultrafine metal particles of 1 μm or less.

〔発明の背景〕[Background of the invention]

粒径1μm以下の超微粒子を安価に、大量に生産する方
法は確立していない、従来の製造方法では特公昭55−
44123号、特公昭57−44725号などの方法が
知られており、それぞれガス中蒸発法。
There is no established method to inexpensively produce large quantities of ultrafine particles with a particle size of 1 μm or less.
Methods such as No. 44123 and Japanese Patent Publication No. 57-44725 are known, each of which is an evaporation method in gas.

水素アーク加熱法と呼ばれ、超微粒子の有効な製造方法
である。しかし、ガス中蒸発法では大規模な製造装置を
必要でしかも熱効率が悪く生成効率が低いため、超微粒
子の価格を低下させることは難かしい。
This method is called hydrogen arc heating and is an effective method for producing ultrafine particles. However, the in-gas evaporation method requires large-scale production equipment and has poor thermal efficiency and low production efficiency, making it difficult to reduce the price of ultrafine particles.

一方、後者の水素アーク加熱法は、ガス中蒸発法と比較
すると超微粒子の生成速度が高く、製造装置も小規模で
よいため超微粒子を経済的に製造することができる。し
かし、水素アーク加熱法は水素を含有するガスを用い、
このガスが溶融金属中に溶解、対流、放出する機構を利
用しているが、アークの特性及び製造効率について配慮
されていなかった。
On the other hand, the latter hydrogen arc heating method has a higher production rate of ultrafine particles than the in-gas evaporation method, and requires only a small scale production apparatus, so that ultrafine particles can be economically produced. However, the hydrogen arc heating method uses gas containing hydrogen,
Although this method utilizes a mechanism in which this gas is dissolved in the molten metal, convected, and released, no consideration was given to arc characteristics and manufacturing efficiency.

〔発明の目的〕[Purpose of the invention]

本発明は、超微粒子、特に粒径1μm以下の金属超微粒
子を効率よく、安価に製造することが可能な方法を提供
することを目的とする。
An object of the present invention is to provide a method capable of efficiently and inexpensively producing ultrafine particles, particularly ultrafine metal particles having a particle size of 1 μm or less.

〔発明の概要〕[Summary of the invention]

本発明は(1)不活性ガス、(2)水素ガス、(3)水
素含有化合物ガスのうち単独または2種あるいは3種の
ガス雰囲気中で、蒸発させる母材と電極間でアークを発
生させて超微粒子を製造する方法において、電極の一方
または両方を超微粒子原材料として対向配置し、前記電
極を水平方向に対して傾斜させ母材の蒸気炎を磁気吹き
方向に発生させることを特徴とするものである。
The present invention generates an arc between a base material to be evaporated and an electrode in an atmosphere of one, two, or three of (1) inert gas, (2) hydrogen gas, and (3) hydrogen-containing compound gas. The method for producing ultrafine particles is characterized in that one or both of the electrodes are arranged facing each other as ultrafine particle raw materials, and the electrodes are tilted with respect to the horizontal direction to generate a vapor flame of the base material in the magnetic blowing direction. It is something.

アークによる加熱は、高温度が容易に得られ、母材1例
えば金属の蒸発には有効な方法である。
Heating with an arc can easily achieve a high temperature and is an effective method for evaporating the base material 1, such as metal.

しかし、金属を多量に蒸発させるには大電流を要する6
一般に電極を垂直に配置した不活性ガス中でのアークは
放電用電極よりすそ広がりのつりがね形状となり、超微
粒子を効率よく発生できない。
However, a large amount of current is required to evaporate a large amount of metal6.
Generally, an arc in an inert gas with vertically arranged electrodes takes on a bell-like shape with the base wider than the discharge electrode, making it impossible to efficiently generate ultrafine particles.

このアークを金属表面上の局小部分に集中させれば、よ
り高温度域を形成でき、発生効率を高くできる。
By concentrating this arc on a localized portion on the metal surface, a higher temperature region can be formed and generation efficiency can be increased.

本発明は超微粒子となる母材表面でアークにより母材蒸
気を発生させると、皿胸准−y 、−−−スよりも電離
に要するエネルギーがはるかに低いため、一旦金属蒸気
が発生するとアークはそこに集中し、さらに高温になり
蒸発が活発となる。さらにそこで電磁力を積極的に利用
すると、プラズマ気流により発生した多量の超微粒子を
効率よく製造することができるという現象に基づくもの
である。
In the present invention, when base material vapor is generated by an arc on the surface of the base material, which becomes ultrafine particles, the energy required for ionization is much lower than that of a countersunk. is concentrated there, becomes even hotter, and evaporates more actively. Furthermore, it is based on the phenomenon that by actively utilizing electromagnetic force, it is possible to efficiently produce a large amount of ultrafine particles generated by plasma airflow.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図にしたがって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において電極1を水平方向に対して傾斜させ、電
極1を陰極、保持台2を陽極とし、電極1と保持台2上
にある母材3の間にA r + 50%H2ガス4を流
し、電源6によりアークを発生させると、アーク7と金
属蒸気を含むアーク8が発生し、プラズマ気流5により
金属蒸気群9が搬送される。
In FIG. 1, the electrode 1 is tilted with respect to the horizontal direction, the electrode 1 is used as a cathode, the holding table 2 is used as an anode, and Ar + 50% H2 gas 4 is placed between the electrode 1 and the base material 3 on the holding table 2. When an arc is generated by the power source 6, an arc 7 and an arc 8 containing metal vapor are generated, and the metal vapor group 9 is transported by the plasma air flow 5.

この時の現象はつぎのとおりである。すなわち水平方向
に対して傾斜させて電極1と母材3との間にアークを発
生させるとアークは両者間の最短距離に発生し、母材の
表面に陽極点が形成される。
The phenomenon at this time is as follows. That is, when an arc is generated between the electrode 1 and the base material 3 at an angle with respect to the horizontal direction, the arc is generated at the shortest distance between the two, and an anode point is formed on the surface of the base material.

その陽極点は高温に加熱されるためにそこから金属蒸気
が発生し、かつその電離電圧が低いため、ガス4で熱的
ピンチ力及び電流による電磁ピンチ力を受けた収縮アー
クの電流がこの点に集中的に流入し、金属蒸気の発生を
助長する。またガスの組成によっては母材に解離ガスの
結合エネルギが与えられ、同様に金属蒸気の発生を助長
する。さらに電極1の陰極部及び、母材3の陽極点部で
は電流密度が高いので、この部分の圧力が上昇し、電極
間の中央部に向ってガス気流が発生する。このガス気流
が発生すると両極点でのガスを補うためにまわりから矢
示方向にプラズマ気流5が発生する。これらの現象に加
えて、電極、アーク、母材を流れる電流により、同図右
方向への電磁力が発生するので、その結果、プラズマ炎
は同図のように流れる。従って発生した金属蒸気群9は
電磁力とプラズマ気流によりアーク近傍より早急に搬送
される。
Since the anode point is heated to a high temperature, metal vapor is generated from there, and its ionization voltage is low, so the current of the contracting arc subjected to the thermal pinch force of gas 4 and the electromagnetic pinch force of the current flows to this point. and promotes the generation of metal vapor. Furthermore, depending on the composition of the gas, the bonding energy of the dissociated gas is given to the base material, which likewise promotes the generation of metal vapor. Furthermore, since the current density is high in the cathode part of the electrode 1 and the anode point part of the base material 3, the pressure in these parts increases, and a gas flow is generated toward the center part between the electrodes. When this gas stream is generated, a plasma stream 5 is generated from the surroundings in the direction of the arrow to supplement the gas at both poles. In addition to these phenomena, an electromagnetic force is generated in the right direction in the figure due to the current flowing through the electrode, arc, and base metal, and as a result, the plasma flame flows as shown in the figure. Therefore, the generated metal vapor group 9 is rapidly transported from the vicinity of the arc by electromagnetic force and plasma airflow.

本発明によれば電流を増大させると、それに比例して超
微粒子の生成量が増大する。これは入熱が増大するにし
たがって金属蒸気の発生が増大し、かつ電磁力の増加に
よりプラズマ気流それ自身の作る電磁力も強くなり、安
定した金属蒸気群9を得ることができるためである。そ
のため、従来では実現できなかった全電流域での超微粒
子生成効率を飛躍的に増大させることが可能となった。
According to the present invention, when the current is increased, the amount of ultrafine particles produced increases in proportion. This is because as the heat input increases, the generation of metal vapor increases, and as the electromagnetic force increases, the electromagnetic force generated by the plasma stream itself also becomes stronger, making it possible to obtain a stable metal vapor group 9. Therefore, it has become possible to dramatically increase the efficiency of producing ultrafine particles in the entire current range, something that could not be achieved in the past.

また、本発明は電極1を傾斜しているため、母材3から
発生した超微粒子は電極1に付着しにくくなり、電極1
の消耗劣化を防ぐことができ、長時間、アーク発生が可
能となる効果もある。
In addition, since the electrode 1 of the present invention is tilted, ultrafine particles generated from the base material 3 are difficult to adhere to the electrode 1.
It also has the effect of preventing wear and tear and allowing arc generation for a long time.

本発明は、電極を傾けたことによる電磁力とアーク自身
をしぼる効果によるもので、雰囲気ガスとして熱的ピン
チ効果の大きい水素ガス、水蒸気、ヘリウムガス等も用
いることが可能であり、冷却した雰囲気ガスを用いたり
、雰囲気ガスを旋回流にしてアークに吹きつけるとアー
クが母材表面の陽極点に集中し、能率よく超微粒子を生
成させることが可能である。
The present invention is based on the electromagnetic force caused by tilting the electrodes and the effect of squeezing the arc itself. Hydrogen gas, water vapor, helium gas, etc., which have a large thermal pinch effect, can also be used as the atmospheric gas, and a cooled atmosphere can be used. If a gas is used or if atmospheric gas is made into a swirling flow and blown onto the arc, the arc will be concentrated at the anode point on the surface of the base material, making it possible to efficiently generate ultrafine particles.

第2図に従来法と本方法のアーク電流の増加にともなう
超微粒子生成量との関係を示す。図の(a)曲線は従来
法で、(b)曲線は本方法によるものである。雰囲気ガ
スはAr+50%H2ガスを用いており、アーク電流を
種々変化させると、従来法では超微粒子生成量が少量で
あるが、本方法では超微粒子生成量が飛躍的に増加して
いることが分る。
Figure 2 shows the relationship between the amount of ultrafine particles produced as the arc current increases in the conventional method and the present method. The curve (a) in the figure is for the conventional method, and the curve (b) is for the present method. The atmospheric gas used was Ar + 50% H2 gas, and when the arc current was varied, the amount of ultrafine particles produced was small with the conventional method, but the amount of ultrafine particles produced with this method increased dramatically. I understand.

第3図はアーク電流150A、雰囲気ガスAr+50%
H2、電極は2%ナトリウム入りタングステンで外径4
閣、電圧35V、母材:ニッケルを使用した場合の条件
下で金属蒸気を発生させた時の電極角度と生成比との関
係を表したものである。電極角度が90度、つまり鉛直
に設置した場合の生成量比を1とすると、電極角度40
度の位置で生成量比は2.8 とピーク値を示す。ピー
ク値を示す理由は電極角度を40度以下にすると電磁ピ
ンチ力によるアークの硬直化、及び通電路変化による電
磁力が増大し、金属蒸気を水平に飛ばす力が増大するた
めで、その結果多量の金属蒸気が搬送される。また、水
素濃度を増加させた場合でも熱ピンチ力の増大による発
生量の増加が得られる。しかし、電極角度を15度以下
にするとアークスタートが非常に困難となり、アーク発
生時の溶融面の微小変化に対してアーク維持が困難でか
つ不安定となり、アーク切れを起こしやすいため電極角
度15度以上がよい。
Figure 3 shows arc current 150A, atmospheric gas Ar+50%
H2, electrode is tungsten with 2% sodium, outer diameter 4
This figure shows the relationship between the electrode angle and the production ratio when metal vapor is generated under the conditions of using a voltage of 35 V and a base material of nickel. If the electrode angle is 90 degrees, that is, the production ratio is 1 when installed vertically, the electrode angle is 40 degrees.
The production amount ratio shows a peak value of 2.8 at the position of 2.5 degrees. The reason for the peak value is that when the electrode angle is 40 degrees or less, the arc becomes rigid due to the electromagnetic pinch force, and the electromagnetic force due to changes in the current flow path increases, increasing the force that causes metal vapor to fly horizontally.As a result, a large amount of of metal vapor is conveyed. Furthermore, even when the hydrogen concentration is increased, the amount generated can be increased due to the increase in thermal pinch force. However, if the electrode angle is less than 15 degrees, it will be very difficult to start the arc, and it will be difficult and unstable to maintain the arc due to minute changes in the melting surface when the arc is generated, and the arc will break easily. The above is good.

本方法では高融点材料、W、Taから低融点材料、Sn
、Znおよび各種合金まで、金属超微粒子の製造が可能
であり、高融点材料の超微粒子を製造する場合は電極角
度を40度前後に、低融点材料の超微粒子を製造する場
合は電極角度を30度前後にするのが好ましい。低融点
材料を原材料とし、アークを発生させた場合、原材料は
アーク発生と同時に保持台上に均一に溶融し、広がるた
め、電極角度が低角度の方が効率が良い。
In this method, from high melting point material, W, Ta to low melting point material, Sn.
, Zn, and various alloys.When manufacturing ultrafine particles of high melting point materials, the electrode angle should be around 40 degrees, and when manufacturing ultrafine particles of low melting point materials, the electrode angle should be adjusted to around 40 degrees. It is preferable to set the temperature to around 30 degrees. When a low melting point material is used as a raw material and an arc is generated, the raw material melts and spreads uniformly on the holding table at the same time as the arc is generated, so a low electrode angle is more efficient.

より生成量の増大を計るには、電極を複数配置し、電極
の一方は共通電位にし、アークを発生させることにより
電極数に比例した生成量の増大が計れる。
To further increase the amount produced, arrange a plurality of electrodes, set one of the electrodes to a common potential, and generate an arc to increase the amount produced in proportion to the number of electrodes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば電極の一方または
両方を超微粒子の製造原料として対向配置し、電極を水
平方向に対して傾斜させ、アークを発生させると、プラ
ズマ気流と電磁力およびアークをしぼる効果により、従
来の水素アーク加熱法と比較して効率のよい超微粒子の
製造方法が得られる。
As explained above, according to the present invention, when one or both of the electrodes are arranged facing each other as raw materials for producing ultrafine particles, the electrodes are tilted with respect to the horizontal direction, and an arc is generated, plasma airflow, electromagnetic force, and arc Due to the effect of squeezing, a method for producing ultrafine particles can be obtained that is more efficient than the conventional hydrogen arc heating method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法の説明図、第2図はアーク電
流変化による超微粒子の生成量を示す図で曲線(a)は
従来方法による生産量、曲線(b)は本発明の製造方法
による生成量の説明図、第3図は水平方向に対する電極
角度と生成量比を示す図である。 1・・・電極、2・・・原材料保持台、3・・・母材(
対となる電極)、4・・・雰囲気ガス、5・・・プラズ
マ気流。
Figure 1 is an explanatory diagram of the manufacturing method of the present invention, and Figure 2 is a diagram showing the amount of ultrafine particles produced due to changes in arc current.Curve (a) is the production amount by the conventional method, and curve (b) is the manufacturing method of the present invention. FIG. 3, which is an explanatory diagram of the amount produced by the method, is a diagram showing the electrode angle with respect to the horizontal direction and the ratio of the amount produced. 1... Electrode, 2... Raw material holding stand, 3... Base material (
(pair electrode), 4... Atmosphere gas, 5... Plasma air flow.

Claims (1)

【特許請求の範囲】 1、不活性ガス、水素ガス、水素含有化合物ガスのうち
単独または2種あるいは3種のガス雰囲気中で、蒸発さ
せる母材と電極間でアークを発生させて超微粒子を製造
する方法において、電極の一方または両方を超微粒子原
材料として対向配置し、前記電極を水平方向に対して1
5度から45度に配置し母材の蒸気炎を磁気吹き方向に
発生させることを特徴とする超微粒子の製造方法。 2、特許請求の範囲第1項記載の方法において、電極を
複数ケ用い、かつ電極の一方を共通電位にすることを特
徴とする超微粒子の製造方法。
[Claims] 1. Ultrafine particles are generated by generating an arc between a base material to be evaporated and an electrode in an atmosphere of one, two, or three of inert gas, hydrogen gas, and hydrogen-containing compound gas. In the manufacturing method, one or both of the electrodes are arranged facing each other as ultrafine particle raw materials, and the electrodes are arranged horizontally at 1
A method for producing ultrafine particles characterized by arranging the base material at an angle of 5 to 45 degrees and generating a steam flame in the direction of magnetic blowing. 2. A method for producing ultrafine particles according to claim 1, characterized in that a plurality of electrodes are used and one of the electrodes is set at a common potential.
JP9540485A 1985-05-07 1985-05-07 Production of ultra-fine particles Pending JPS61253307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9540485A JPS61253307A (en) 1985-05-07 1985-05-07 Production of ultra-fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9540485A JPS61253307A (en) 1985-05-07 1985-05-07 Production of ultra-fine particles

Publications (1)

Publication Number Publication Date
JPS61253307A true JPS61253307A (en) 1986-11-11

Family

ID=14136731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9540485A Pending JPS61253307A (en) 1985-05-07 1985-05-07 Production of ultra-fine particles

Country Status (1)

Country Link
JP (1) JPS61253307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162705A (en) * 1987-12-19 1989-06-27 Res Dev Corp Of Japan Manufacture of metal super fine granule

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166605A (en) * 1983-03-11 1984-09-20 Tokyo Tekko Kk Apparatus for preparing ultra-fine particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166605A (en) * 1983-03-11 1984-09-20 Tokyo Tekko Kk Apparatus for preparing ultra-fine particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162705A (en) * 1987-12-19 1989-06-27 Res Dev Corp Of Japan Manufacture of metal super fine granule

Similar Documents

Publication Publication Date Title
US4610718A (en) Method for manufacturing ultra-fine particles
JPS6254005A (en) Production of hyperfine particles
US3515839A (en) Plasma torch
US4638488A (en) Fine grains producing apparatus
JPS61253307A (en) Production of ultra-fine particles
US3344256A (en) Method for producing arcs
NO170764B (en) COPOLYMERS OF CARBON MONOXIDE AND AT LEAST TWO ALFA-OLEFINICALLY UNSATURED COMPOUNDS
JPS60228609A (en) Production of ultrafine particles
JPS62103308A (en) Apparatus for producing ultrafine particles
JP2002220601A (en) Production method for low oxygen spherical metal powder using dc thermal plasma processing
JPS60228608A (en) Method and device for producing ultrafine particles
US3353061A (en) High temperature plasma generator having means for providing current flow through plasma discharge
JPH09148094A (en) Plasma spraying torch
US3446902A (en) Electrode having oxygen jets to enhance performance and arc starting and stabilizing means
JP2694659B2 (en) Method for producing ultrafine metal nitride particles
Redchits et al. Improving the energy efficiency of plasma welding
Nemchinsky Electrode evaporation in an arc with pulsing current
JPS62207802A (en) Apparatus for forming ultrafine particle
JPS60228607A (en) Manufacture of hyperfine particles
NO121150B (en)
RU2743474C2 (en) Method of plasma synthesis of powders of inorganic materials and apparatus for implementation thereof
JPS641234B2 (en)
JPH04139384A (en) Moving type plasma torch
JPS61295307A (en) Production of ultrafine particles
JPH06302398A (en) Electrode structure for plasma torch