JPS59166605A - Apparatus for preparing ultra-fine particle - Google Patents

Apparatus for preparing ultra-fine particle

Info

Publication number
JPS59166605A
JPS59166605A JP3918983A JP3918983A JPS59166605A JP S59166605 A JPS59166605 A JP S59166605A JP 3918983 A JP3918983 A JP 3918983A JP 3918983 A JP3918983 A JP 3918983A JP S59166605 A JPS59166605 A JP S59166605A
Authority
JP
Japan
Prior art keywords
gas
melting chamber
pipe
stock material
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3918983A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sasaki
佐々木 弘行
Hideaki Shibuya
渋谷 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tekko Co Ltd
Original Assignee
Tokyo Tekko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tekko Co Ltd filed Critical Tokyo Tekko Co Ltd
Priority to JP3918983A priority Critical patent/JPS59166605A/en
Publication of JPS59166605A publication Critical patent/JPS59166605A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently prepare a uniform ultra-fine particle by discharging the generated ultra-fine particle from a melting chamber within a short time, by obliquely arranging an electrode member, a gas inflow pipe and a gas outflow pipe so as to form a predetermined angle with respect to the stock material of the melting chamber. CONSTITUTION:An electrode member 3, a gas inflow pipe 1 and a gas outflow pipe 2 are obliquely arranged in an angle range of about 40-80 deg. with respect to the stock material A such as an alloy received in the recessed part 11a of the crucible 11 in a melting chamber 13. Predetermined gas (hydrogen-containing gas or nitrogen-containing gas) is flowed from nozzle pipes 6, 7 and an auxiliary nozzle pipe 8 to generate an arc between the leading end of an electrode element 5 and the upper surface of the stock material A. The stock material A is melted and the atmospheric gas is activated by said arc while an ultra-fine particle is generated from the molten stock material A by the reaction of the molten stock material A and the inert gas. The discharged gas containing the ultra-fine particle is rapidly exhausted from the gas outflow pipe 2 and is not stayed in the melting chamber 13.

Description

【発明の詳細な説明】 本発明はアーク(プラズマアークを含む)を用いた超微
粒子製造装置に関し、特に雰囲気ガスの流れの改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing ultrafine particles using an arc (including a plasma arc), and particularly relates to an improvement in the flow of atmospheric gas.

近年、超微粒子の特異な性質が注目されておシ、今後エ
レクトロニクス、触媒化学等広範囲な技術分野での応用
が期待されている。
In recent years, the unique properties of ultrafine particles have attracted attention, and their future applications in a wide range of technical fields such as electronics and catalytic chemistry are expected.

超微粒子の製造装置については種々開発されているが、
その一つとしてアークを利用したものがある。詳述する
と、溶融室内に長尺の電極部材が垂直に設置され、また
溶融室の下端部には電極の下方に位置して坩堝が設置さ
れている。そして、溶融室の上部から下方に向かって水
素含有ガスまたは置床含有ガスを流し、さらにこのガス
を溶融室の真上、真横または真下に向って連結されたガ
ス流出管へ導くようになっている。
Various types of ultrafine particle manufacturing equipment have been developed, but
One of them is one that uses an arc. Specifically, a long electrode member is installed vertically within the melting chamber, and a crucible is installed at the lower end of the melting chamber below the electrode. Then, hydrogen-containing gas or bed-containing gas flows downward from the top of the melting chamber, and this gas is further guided to a gas outlet pipe connected directly above, beside, or below the melting chamber. .

上述した従来の製造装置では、ガスが溶融室上部から下
方に向かって吹きつけられるため、溶融原料よ多発生す
る超微粒子を含んだ放出ガスとがぶつかって激しい乱流
を発生させてしまう。このため、超微粒子が高温の溶融
室内に長時間滞留し、この結果、超微粒子同志が付着し
て粒子の成長を起こし粗粒となったシ、また炉内各所に
超微粒子が付着し焼結を起こす等の不具合が生ずる。
In the above-described conventional manufacturing apparatus, gas is blown downward from the top of the melting chamber, so that it collides with the molten raw material and the discharged gas containing ultrafine particles that are generated in large numbers, generating severe turbulence. For this reason, the ultrafine particles stay in the high-temperature melting chamber for a long time, and as a result, the ultrafine particles adhere to each other and grow, resulting in coarse grains.Also, the ultrafine particles adhere to various places in the furnace and cause sintering. This may cause problems such as .

本発明はこのような事情にもとづきなされたもので、そ
の目的とするところはガスの流れを円滑にすることによ
り粒径が小さく均一な超微粒子を効率よく製造できる装
置を提供することにある。
The present invention has been made based on the above circumstances, and its purpose is to provide an apparatus that can efficiently produce ultrafine particles with a small particle size and uniformity by smoothing the flow of gas.

以下、本発明の一実施例を図面を参照して説明する。図
中1は外周部を水冷されるガス流入管であシ、このガス
流入管1は約45°傾いて設置されている。このガス流
入管1の下端部には、外周部を水冷される溶融室13が
連結されている。この溶融室13に外周部を水冷される
ガス流出管2が連結されている。ガス流出管2も約45
°傾いて設置されている。ガス流入管1とガス流出管2
とは第2図に示すように互に約180°対向した姿勢で
配置されている。ガス流入管1内には長尺な電極部材3
がガス流入管1の軸線に沿って斜めに傾いて設置されて
いる。電極部材3は、水冷銅管4とその下端に固定され
た電極エレメント5によシ構成されている。水冷鋼管4
はガス流入管1の上部に支持されている。電極部材3は
二重のノズル管6.7によシ包囲されている。電極部材
3と内側の第1ノズル管6との間隔および第1ノズル管
6と外側の第2ノズル管7との間隔は比較的狭くなって
いる。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. In the figure, reference numeral 1 denotes a gas inflow pipe whose outer periphery is water-cooled, and this gas inflow pipe 1 is installed at an angle of approximately 45°. A melting chamber 13 whose outer periphery is water-cooled is connected to the lower end of the gas inlet pipe 1 . A gas outlet pipe 2 whose outer periphery is water-cooled is connected to the melting chamber 13. Gas outflow pipe 2 is also approximately 45
°It is installed at an angle. Gas inflow pipe 1 and gas outflow pipe 2
As shown in FIG. 2, they are arranged at about 180 degrees opposite each other. Inside the gas inflow pipe 1 is a long electrode member 3.
is installed obliquely along the axis of the gas inflow pipe 1. The electrode member 3 is composed of a water-cooled copper tube 4 and an electrode element 5 fixed to the lower end thereof. water cooled steel pipe 4
is supported on the upper part of the gas inflow pipe 1. The electrode element 3 is surrounded by a double nozzle tube 6.7. The distance between the electrode member 3 and the first nozzle pipe 6 on the inside and the distance between the first nozzle pipe 6 and the second nozzle pipe 7 on the outside are relatively narrow.

溶融室13の側面部には補助ノズル管8が貫装されてい
る。この補助ノズル管8は第2図に示スように電極部材
3やノズル管6,7と平行ではなく所定角度交叉して溶
融室13内に臨んでおシ、その先端は溶融室13のI1
1壁に向いている。溶融室13の下端にはフランジ9が
固定され、この7ランジ9には他の7ランジ10が連結
されている。
An auxiliary nozzle pipe 8 is inserted through the side surface of the melting chamber 13 . As shown in FIG. 2, this auxiliary nozzle pipe 8 faces into the melting chamber 13 not in parallel with the electrode member 3 and the nozzle pipes 6 and 7, but intersects with it at a predetermined angle.
1 facing the wall. A flange 9 is fixed to the lower end of the melting chamber 13, and seven other flange 10 are connected to this seven flange 9.

フランジ10には、坩堝11が支持されている。A crucible 11 is supported on the flange 10.

坩堝11の中央部には凹部11aが形成されておシ、と
の凹部11aには原料Aが収容されるようになっている
。フランジ10の下面にはケース12が固定されておシ
、このケース12内を流れる冷却水により坩堝11を冷
却するようになっている。
A recess 11a is formed in the center of the crucible 11, and the raw material A is accommodated in the recess 11a. A case 12 is fixed to the lower surface of the flange 10, and the crucible 11 is cooled by cooling water flowing inside the case 12.

図中12aは冷却水の入口部、12bは出口部である。In the figure, 12a is an inlet portion of the cooling water, and 12b is an outlet portion.

上述の構成において、原料Aとして金属や半金属、半導
体を用いることができる。そして第1ノズル管6.第2
ノズル肯7から所定のガスが原料Aの上面に吹′きつけ
られる。また、ガス流入管1の上部から坩堝11に向っ
て所定のガスが流れる。
In the above configuration, a metal, a metalloid, or a semiconductor can be used as the raw material A. and a first nozzle pipe 6. Second
A predetermined gas is blown onto the upper surface of the raw material A from the nozzle No. 7. Further, a predetermined gas flows from the upper part of the gas inflow pipe 1 toward the crucible 11 .

さらに、補助ノズル管8からも所定のガスが流入する。Furthermore, a predetermined gas also flows in from the auxiliary nozzle pipe 8.

ここで所定のガスとは水素含有ガスまたは望素含有ガス
である。ガスの流速は、通常第1ノズル管6の内側が最
も速く、次に第2ノズル管7の内側で、鳴臀論幕1の内
側が最も遅いがそれぞれの流速を調節することができる
The predetermined gas here is a hydrogen-containing gas or an element-containing gas. The gas flow rate is usually fastest inside the first nozzle pipe 6, then slowest inside the second nozzle pipe 7, and then slowest inside the ringing curtain 1, but each flow speed can be adjusted.

上述のようにガスを流通させた状態で、電極エレメント
5の先端と原料Aの上面との間にアークを発生させる。
With the gas flowing as described above, an arc is generated between the tip of the electrode element 5 and the upper surface of the raw material A.

このアークによシ原料Aが浴融される。またアークによ
り上述した雰囲気ガスが活性化され、溶融原料Aと活性
化ガスとの反応によシ、浴融原料Aから超微粒子が発生
する。
This arc causes the raw material A to be melted in the bath. Further, the above-mentioned atmospheric gas is activated by the arc, and ultrafine particles are generated from the bath molten raw material A due to the reaction between the molten raw material A and the activated gas.

上述のようにして溶融原料Aから発生した超微粒子を含
んだ放出ガスは、ノズル管6,7およびガス流入管1か
ら斜めに吹き込んでくるガスに運ばれて速やかにガス流
出管2へ送られる。このため、超微粒子は発生してから
溶融室13内に滞留することなく短時間のうちにガス流
出管2へ送られ、超微粒子同志が付着して粗粒となった
り溶融室13の内面に焼結する等の不具合を解消できる
The released gas containing ultrafine particles generated from the molten raw material A as described above is carried by the gas obliquely blown from the nozzle pipes 6 and 7 and the gas inflow pipe 1, and is promptly sent to the gas outflow pipe 2. . Therefore, after the ultrafine particles are generated, they are sent to the gas outlet pipe 2 within a short time without staying in the melting chamber 13, and the ultrafine particles adhere to each other and become coarse particles, or the inner surface of the melting chamber 13. Problems such as sintering can be resolved.

また、溶融室13の周壁部近傍では超微粒子の一部が滞
留することも考えられるが、補助ノズル管8から出たガ
スが第2図に示すように溶融室13の周壁部に沿って流
れるため超微粒子の滞留を防止することができる。
Furthermore, although some of the ultrafine particles may remain near the peripheral wall of the melting chamber 13, the gas discharged from the auxiliary nozzle pipe 8 flows along the peripheral wall of the melting chamber 13 as shown in FIG. Therefore, retention of ultrafine particles can be prevented.

なお、本発明は上述した実施例に制約されず種々の態様
が可能である。
Note that the present invention is not limited to the embodiments described above, and various embodiments are possible.

たとえば、ガス流入管およびガス流出管の傾斜角度は4
5°に限定されず水平面に対して40〜80゜の範囲で
任意に選択できる。ガス流入管およびガス流出管の傾斜
角度が40°以下であるとアークが不安定とな9808
以上であるとガスの流れが円滑でなくなる。さらに、%
極部材はプラズマアークを発生式せる構成であってもよ
い。
For example, the inclination angle of the gas inflow pipe and gas outflow pipe is 4
The angle is not limited to 5 degrees, but can be arbitrarily selected within the range of 40 to 80 degrees with respect to the horizontal plane. If the inclination angle of the gas inflow pipe and gas outflow pipe is less than 40°, the arc will become unstable9808
If it is more than that, the gas flow will not be smooth. moreover,%
The pole member may be configured to generate a plasma arc.

以上説明したように本発明装置によれば、ガスの流れを
改良することによって発生した超微粒子を速やかに炉外
へ送ることができ、この結果、粒径が小さく均一な超微
粒子を効率よく尖造できる。
As explained above, according to the device of the present invention, the generated ultrafine particles can be quickly sent out of the furnace by improving the gas flow, and as a result, the ultrafine particles with small and uniform particle size can be efficiently sharpened. Can be built.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の縦断面図、第2図は同じく一部破
断して示す平面図である。 1・・・・・・ガス流入管、2・・・・・・ガス流出管
、3・・・・・・逝極部材、6,7・・・・・・ノズル
管、8・・・・・・補助ノズル管、11・・・・・・坩
堝、13・・・・・・溶融室、A・・・・・・原料。 出願人東扉鉄鋼株式会社 代理人 弁理士 渡 辺  昇 手続補正書(自発) 昭和rg年 各月lρ日 特許庁長官 殿 1、事件の表示 昭和58年特許願第39189号 2、発明の名称 超微粒子製造装置 3、補正をする者 事件との関係 特許出願人 4、 代  理  人  〒151 明細書の「発明の詳細な説明」の欄 6、補正の内容 (1)明細書第6頁第19行〜第7頁第4行目に、「た
とえば、ガス流入管・・・・・・円滑でなくなる。」と
あるを下記のとおシ訂正する。 「たとえば、ガス流入管およびガス流出管の傾斜角カイ
5°に限定されず、ガス流入管は水平面に対して、ガス
流出管は垂直線に対してそれぞれ40〜80°の範囲で
任意に選択できる。ガス流入管の傾斜角度が40°以下
であるとアークが不安定とな9806以上であるとガス
の流れが円滑でなくなる。 また、ガス流出管の傾斜角度が40°以下であるとガス
の流れが円滑でなくな9806以上であるとアークが不
安定となる。」
FIG. 1 is a longitudinal sectional view of the apparatus of the present invention, and FIG. 2 is a partially cutaway plan view. 1... Gas inflow pipe, 2... Gas outflow pipe, 3... End electrode member, 6, 7... Nozzle pipe, 8... ... Auxiliary nozzle pipe, 11 ... Crucible, 13 ... Melting chamber, A ... Raw material. Applicant Higashidoor Steel Co., Ltd. Agent Patent Attorney Watanabe Written amendment to promotion procedure (spontaneous) Showa RG Year 1 day of every month Director General of the Patent Office 1. Indication of the case 1989 Patent Application No. 39189 2. Title of the invention Particulate manufacturing device 3, relationship with the case of the person making the amendment Patent applicant 4, agent 151 Column 6 of “Detailed description of the invention” of the specification, content of amendment (1) Specification, page 6, item 19 In the fourth line of page 7, the statement ``For example, the gas inflow pipe...will no longer be smooth.'' will be corrected as follows. For example, the inclination angle of the gas inflow pipe and the gas outflow pipe is not limited to 5 degrees, but can be arbitrarily selected within the range of 40 to 80 degrees for the gas inflow pipe and the vertical line, respectively. If the inclination angle of the gas inlet pipe is less than 40°, the arc will be unstable; if the inclination angle is 9806 or more, the gas flow will not be smooth.In addition, if the inclination angle of the gas outlet pipe is less than 40°, the gas flow will be unstable. If the flow is not smooth and the value is 9806 or higher, the arc will become unstable.

Claims (1)

【特許請求の範囲】 水素または水素含有ガスあるいは窒素または窒素含有ガ
ス中で純金属、半金属、半導体または合金をアークによ
シ加熱・溶融すると同時に水素ガスおるいは窒素ガスを
活性化し、その活性化ガスと溶融物とを反応させて超微
粒子を製造する装置において、 (イ)下部に溶融物収納坩堝を具備した溶融室と(ロ)
水平面に対し斜めに傾いて設置され、下端部が上記溶融
物収納坩堝の上方に配置された長尺な電極部材と、 (ハ)下端部が上記溶融室と連結し、上記電極部材を包
囲する2層以上のガス流入管と、 に)上記ガス流入管とほぼ対向した位置で下端部が上記
溶融室と連結し、水平面に対して斜めに傾いて設置され
たガス流出管と、 (ホ)上記溶融室の側面部を貫装する補助ノズル管とを
具備し、 発生した超微粒子を溶融室よシ円滑に流出させることを
特徴とした超微粒子製造装置。
[Claims] Pure metals, metalloids, semiconductors, or alloys are heated and melted by arc in hydrogen or hydrogen-containing gases, or nitrogen or nitrogen-containing gases, and at the same time the hydrogen gas or nitrogen gas is activated. An apparatus for producing ultrafine particles by reacting an activated gas with a melt, which includes (a) a melting chamber equipped with a crucible for storing the melt at the bottom; and (b)
(c) a long electrode member installed obliquely with respect to a horizontal plane, the lower end of which is placed above the melt storage crucible; (c) the lower end of which is connected to the melting chamber and surrounds the electrode member; (e) a gas inflow pipe having two or more layers; (b) a gas outflow pipe whose lower end is connected to the melting chamber at a position substantially opposite to the gas inflow pipe and is installed obliquely with respect to a horizontal plane; An apparatus for producing ultrafine particles, comprising an auxiliary nozzle pipe that penetrates a side surface of the melting chamber, and allows generated ultrafine particles to smoothly flow out of the melting chamber.
JP3918983A 1983-03-11 1983-03-11 Apparatus for preparing ultra-fine particle Pending JPS59166605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3918983A JPS59166605A (en) 1983-03-11 1983-03-11 Apparatus for preparing ultra-fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3918983A JPS59166605A (en) 1983-03-11 1983-03-11 Apparatus for preparing ultra-fine particle

Publications (1)

Publication Number Publication Date
JPS59166605A true JPS59166605A (en) 1984-09-20

Family

ID=12546157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3918983A Pending JPS59166605A (en) 1983-03-11 1983-03-11 Apparatus for preparing ultra-fine particle

Country Status (1)

Country Link
JP (1) JPS59166605A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242631A (en) * 1985-04-20 1986-10-28 Nippon Soken Inc Method and device for producing ultrafine particles of compound
JPS61253307A (en) * 1985-05-07 1986-11-11 Hitachi Ltd Production of ultra-fine particles
JPS62103308A (en) * 1985-10-30 1987-05-13 Hitachi Ltd Apparatus for producing ultrafine particles
JPS62207802A (en) * 1986-03-10 1987-09-12 Hitachi Ltd Apparatus for forming ultrafine particle
US5545360A (en) * 1993-06-08 1996-08-13 Industrial Technology Research Institute Process for preparing powders with superior homogeneity from aqueous solutions of metal nitrates
JP2013007096A (en) * 2011-06-24 2013-01-10 Shoei Chem Ind Co Plasma apparatus for producing metal powder
JP2014515792A (en) * 2011-04-27 2014-07-03 マテリアルズ アンド エレクトロケミカル リサーチ コーポレイション Low cost processing method to produce spherical titanium and spherical titanium alloy powder
JP2015187309A (en) * 2015-06-26 2015-10-29 昭栄化学工業株式会社 Plasma apparatus for producing metal powder and method for producing metal powder

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242631A (en) * 1985-04-20 1986-10-28 Nippon Soken Inc Method and device for producing ultrafine particles of compound
JPH0526536B2 (en) * 1985-04-20 1993-04-16 Nippon Jidosha Buhin Sogo Kenkyusho Kk
JPS61253307A (en) * 1985-05-07 1986-11-11 Hitachi Ltd Production of ultra-fine particles
JPS62103308A (en) * 1985-10-30 1987-05-13 Hitachi Ltd Apparatus for producing ultrafine particles
JPS62207802A (en) * 1986-03-10 1987-09-12 Hitachi Ltd Apparatus for forming ultrafine particle
US5545360A (en) * 1993-06-08 1996-08-13 Industrial Technology Research Institute Process for preparing powders with superior homogeneity from aqueous solutions of metal nitrates
JP2014515792A (en) * 2011-04-27 2014-07-03 マテリアルズ アンド エレクトロケミカル リサーチ コーポレイション Low cost processing method to produce spherical titanium and spherical titanium alloy powder
JP2013007096A (en) * 2011-06-24 2013-01-10 Shoei Chem Ind Co Plasma apparatus for producing metal powder
CN104148660A (en) * 2011-06-24 2014-11-19 昭荣化学工业株式会社 Plasma device for manufacturing metallic powder and method for manufacturing metallic powder
JP2015187309A (en) * 2015-06-26 2015-10-29 昭栄化学工業株式会社 Plasma apparatus for producing metal powder and method for producing metal powder

Similar Documents

Publication Publication Date Title
US4534917A (en) Metal powders and a process for the production thereof
US2402441A (en) Reduction of metals to powdered or granular form
JPH02203932A (en) Method and apparatus for producing ultrafine particles
JPS59166605A (en) Apparatus for preparing ultra-fine particle
CN107130239B (en) Method for laser cladding forming of metal or alloy under local atmosphere protection
JPH04504981A (en) Induced skull spinning of reactive alloys
CN106216649A (en) A kind of aluminum alloy continuous casting tandem rolling production line with ladling apparatus
CN112584950A (en) Granulation method and apparatus
US3475158A (en) Production of particulate,non-pyrophoric metals and product
US4638488A (en) Fine grains producing apparatus
TWI673122B (en) Continuous casting method of steel and method for manufacturing thin steel sheet
US5280884A (en) Heat reflectivity control for atomization process
JPH10298615A (en) Production of spherical metal grain
JP4734073B2 (en) Manufacturing method of hot dip galvanized steel
EP0425525A1 (en) Method for grain refining of metals
ES2955265T3 (en) Grain refining with direct vibratory coupling
EP1989336B1 (en) Reactor intended for titanium production
JPS5852408A (en) Production of metallic particles
US4735773A (en) Inertial mixing method for mixing together molten metal streams
JPS6021345A (en) Production of composite material consisting of metallic matrix dispersed with metallic particles
JP3578486B2 (en) Method and apparatus for producing single-phase γ'-Fe4N ultrafine particles
JPH0280506A (en) Method and apparatus for heating steel bath in ladle
JPS627804A (en) Production of hyperfine particle
JPH0250963B2 (en)
JP3109072B2 (en) Continuous metal production equipment