JPS59118803A - Production of ultrafine metallic particle - Google Patents

Production of ultrafine metallic particle

Info

Publication number
JPS59118803A
JPS59118803A JP22659982A JP22659982A JPS59118803A JP S59118803 A JPS59118803 A JP S59118803A JP 22659982 A JP22659982 A JP 22659982A JP 22659982 A JP22659982 A JP 22659982A JP S59118803 A JPS59118803 A JP S59118803A
Authority
JP
Japan
Prior art keywords
arc
column
ultrafine
particles
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22659982A
Other languages
Japanese (ja)
Other versions
JPH0474409B2 (en
Inventor
Takamasa Yoshikawa
高正 吉川
Yasuhiro Unosawa
保弘 宇野沢
Satoru Takasugi
知 高杉
Kiyohide Ogasawara
清秀 小笠原
Hiroshi Ito
寛 伊藤
Nobuhiro Tsukagoshi
塚越 庸弘
Takahiro Kobayashi
高広 小林
Satoru Fukutake
福岳 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp, Pioneer Electronic Corp filed Critical Pioneer Corp
Priority to JP22659982A priority Critical patent/JPS59118803A/en
Publication of JPS59118803A publication Critical patent/JPS59118803A/en
Publication of JPH0474409B2 publication Critical patent/JPH0474409B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain easily ultrafine particles of a high melting point metal with a small-sized device and with high efficiency without requiring much electric power by converging the arc column generated between the metallic material on an anode and a cathode onto the molten surface of the metallic material and producing the ultrafine metallic particles. CONSTITUTION:Arc discharge is generated between a cathode 2 and a metallic material 4 of the same polarity placed on an anode 3 when an arc voltage is impressed on a power source 5 after the inside of a vessel 1 is maintained in an inert gaseous atmosphere of Ar, He, etc. If, for example, gaseous H2 is blown to an arc column 6, the column 6 is made into the shape of an inverted triangle converged to the material 4 as shown in the figure and therefore ultrafine metallic particles are generated from around the column 6. The kind of the arc current, the range of the arc voltage, the kind and compsn. of the atmosphere gas in the vessel 1, the pressure in the vessel 1, etc. are the possible conditions for converging the column 6.

Description

【発明の詳細な説明】 この発BAは、アーク放電を利用して#1.径が良ぐ揃
った金属超微粒子を製造できる金属超微粒子の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION This BA generates #1 using arc discharge. The present invention relates to a method for producing ultrafine metal particles that can produce ultrafine metal particles with well-uniformed diameters.

従来、1μm以下の寸法の磁気記録媒体用の金属超微粒
子を製造する方法としては例えば下記に示すものがある
。このうち1つは、固体塩の気体による還元まfcは熱
分解によって金属超微粒子を製造する化学的方法である
。この方法は、酸化物、シヱウ酸塩等を還元して得られ
る金属超微粒子は1μm以下の微細な単結晶に形成され
るが、凝集して複雑な粒子形態をと9易いという欠点が
ある。
Conventionally, as a method for manufacturing ultrafine metal particles for magnetic recording media having a size of 1 μm or less, there are, for example, the following methods. One of these is reduction of a solid salt with a gas.fc is a chemical method for producing ultrafine metal particles by thermal decomposition. This method has the disadvantage that ultrafine metal particles obtained by reducing oxides, oxalates, etc. are formed into fine single crystals of 1 μm or less, but they tend to agglomerate into complex particle shapes.

2つ目はこ例えばNaB I H4などの反応性の強い
還元剤を用いて磁界中で鉄、コバルトなどの塩化物を溶
液から沈澱して析出させ金属やその化合物の超微粒子を
製造する化学的方法である。この方法でも凝集粒子を形
成し易い傾向にある。ところがこの方法は実験室的に高
性能な合金超微粒子が得られるが量産した場合公害上の
問題があり、またコスト高で蓋産向きではない。さらに
3つ目の方法は真空中又は低圧の不活性ガス中で金属又
はその合金を加熱溶解して蒸発させ金属超微粒子を製造
する物理的方法である。
The second is a chemical method in which chlorides such as iron and cobalt are precipitated from solution in a magnetic field using a highly reactive reducing agent such as NaB I H4 to produce ultrafine particles of metals and their compounds. It's a method. This method also tends to form aggregated particles. However, although this method can produce high-performance ultrafine alloy particles in the laboratory, it poses pollution problems when mass-produced, and is not suitable for lid production due to high cost. The third method is a physical method in which ultrafine metal particles are produced by heating and melting a metal or its alloy in a vacuum or low-pressure inert gas to evaporate it.

この方法は第1図に示すように、チャンバー1内でその
内部に設けた金属材料4を低い圧力下でアルゴン、ヘリ
ウム等の低圧不活性ガス中で萬周波コイル7による誘導
溶解によって加熱、蒸発させて凝結、固化させる。この
方法によると、0.1μm以下の金属もしくはその合金
の粒径の揃った金属超微粒子が得られる。しかもこの方
法はチャ/パー1内での雰囲気ガスの種類と圧力および
蒸発温度を制御させると、その粒径を数十父〜数千2の
範囲で制御することができる。そしてこれに伴い、金属
材料として強磁性金属、合金を用いた場合その磁気特性
を広範囲に変えることができる。金属の溶解手段として
上記属周波加熱のほかに電子ビーム溶解、プラズマジェ
ット、アーク放電、GO2ガスレーザーなどの加熱法が
ある。また、これ等の蒸発法による方法は前記2つの方
法に比べて化学的に安定である利点がある。
As shown in FIG. 1, this method involves heating and evaporating a metal material 4 provided inside a chamber 1 under low pressure by induction melting using a multi-frequency coil 7 in a low-pressure inert gas such as argon or helium. Let it coagulate and solidify. According to this method, ultrafine metal particles of metal or its alloy having a uniform particle size of 0.1 μm or less can be obtained. Moreover, in this method, by controlling the type and pressure of the atmospheric gas in the cha/par 1 and the evaporation temperature, the particle size can be controlled within the range of several tens of tens of thousands to several thousand. Accordingly, when a ferromagnetic metal or alloy is used as the metal material, its magnetic properties can be varied over a wide range. In addition to the above-mentioned high frequency heating, there are heating methods such as electron beam melting, plasma jet, arc discharge, and GO2 gas laser as means for melting metal. Furthermore, these evaporation methods have the advantage of being chemically stable compared to the above two methods.

反面、この蒸発法は金属材料を加熱させてその蒸発を単
に利用したものでちるため、金属微粒子の製造効率が低
い欠点がある。また高融点金属、例えばNb、Taなど
の金属超微粒子への製造が困難でおり、さらには溶融金
属の表面積を増すために製造装置が大型化し、多大な電
力が必要となシ、コスト高である。
On the other hand, this evaporation method simply uses the evaporation of the metal material by heating it, so it has the disadvantage of low production efficiency of metal fine particles. In addition, it is difficult to produce ultrafine metal particles of high-melting point metals, such as Nb and Ta.Furthermore, the production equipment becomes larger to increase the surface area of the molten metal, and a large amount of electricity is required, resulting in high costs. be.

本発明は上述の如き点に鑑みてなされたものであシその
目的とするところは、金属超微粒子の製造効率が筒く、
しかも高融点金属でもその製造が容易で、さらには製造
装置が小型で多大な電力が必ずしも必要としないコスト
安な金属超微粒子を製造する方法を提供するのにある。
The present invention has been made in view of the above points, and its purpose is to improve the production efficiency of ultrafine metal particles.
Moreover, it is an object of the present invention to provide a method for manufacturing ultrafine metal particles that is easy to manufacture even with high-melting-point metals, and that is inexpensive in that the manufacturing apparatus is small and does not necessarily require a large amount of electric power.

以下本発明の概要を第2図乃至第5図に従って、1吏用
をする装置Sとともに説明する。
The outline of the present invention will be explained below with reference to FIGS. 2 to 5, together with a device S for one-person use.

1は耐熱性の密閉された容器、2はこの容器1内に挿入
された陰極用の電極であり、この陰極用の電極2は2例
えばタングステン等の材料で形成されている。3は前記
容器1の底部を構成する例えばハース銅で形成された陽
極であシ、この陽極には前記陰極に対向して金属超微粒
子を製造すべき金属材料4を載置している。
1 is a heat-resistant sealed container, 2 is a cathode electrode inserted into the container 1, and the cathode electrode 2 is made of a material such as tungsten. Reference numeral 3 denotes an anode made of hearth copper, for example, constituting the bottom of the container 1, and a metal material 4 from which ultrafine metal particles are to be produced is placed on this anode, facing the cathode.

5は電源で、この電源5に重圧を印加すると、陰極用の
電極2と陽極となシ得る金属材料4との間にアーク柱6
が形成される。
5 is a power source, and when heavy pressure is applied to this power source 5, an arc column 6 is created between the cathode electrode 2 and the metal material 4 which can be used as an anode.
is formed.

そして容器1内をアルゴン、ヘリウム、ネオン等の不活
性ガス算囲気にして電源5にアーク重圧を印加すると、
陰極用の電極2と陽極用の電極3の上面に載置された同
極の金属材料4とにアーク放電が行われる。この除、ア
ーク柱6に例えば水素ガスを吹き付けると、このアーク
柱6の形状は第3図に示すように金属材料4に絞シ込ま
れた形状になるため、アーク柱6附近から金属超微粒子
が生成する。アルゴン、ヘリウム、ネオン等の不活性ガ
スを用いたのは他の元素と反応し難く安定であるからで
ある。この金属超微粒子4の製造効率は顕著でその平均
粒径が小さくなシ、粒径分布の良い金属超微粒子が製造
できる。このようにアーク柱6にガスを吹き付けたこと
によりアーク柱6が絞シ込まれた形状になる埋山には熱
損失が大きくなるため、′アーク柱6はこの損失を最小
限度に止めるようにその断面が自己収縮するからである
。これは熱的ピンチ作用と呼ばれている。またアーク柱
6が絞り込まれる他の要因として磁気的ピンチ作用があ
る。これはアーク柱6の中の金属材料3の電子、イオン
(電子流エレメント)は、アーク柱6の中心線に11ぼ
平行に流れているが、これらの電子、イオンはそれの発
生する磁界のために互いに吸収力が発生し、アーク柱6
の断面を収縮するようになるからである。この磁気的ピ
ンチ作用はアーク電流に比例し、80ムmperθ以上
で最も顕著になる。これらの熱的ピンチ作用および磁気
的ピンチ作用のためにアーク柱6は自己収縮し、陽極3
上にある金属材料4に対してアーク柱6が一点に集中す
る。その結果、その近傍は非常に高温、例えば5000
〜10000 K″になシ、金属材料4の溶融金属の一
部が原子状態になシ、アーク柱6の中に入れ込む。電離
電圧はFe17,13V。
Then, when the inside of the container 1 is surrounded by an inert gas such as argon, helium, neon, etc., and arc pressure is applied to the power source 5,
Arc discharge is performed between the metal material 4 of the same polarity placed on the upper surface of the cathode electrode 2 and the anode electrode 3. Apart from this, when hydrogen gas is sprayed onto the arc column 6, for example, the shape of the arc column 6 becomes a shape squeezed into the metal material 4 as shown in FIG. is generated. Inert gases such as argon, helium, and neon are used because they are stable and do not easily react with other elements. The production efficiency of the ultrafine metal particles 4 is remarkable, and ultrafine metal particles with a small average particle size and a good particle size distribution can be produced. As a result of blowing the gas onto the arc column 6, the arc column 6 becomes constricted in shape, resulting in large heat loss, so the arc column 6 is designed to minimize this loss. This is because the cross section self-shrinks. This is called a thermal pinch effect. Another factor that narrows down the arc column 6 is the magnetic pinch effect. This is because the electrons and ions (electron flow elements) of the metal material 3 in the arc column 6 flow approximately 11 parallel to the center line of the arc column 6, but these electrons and ions are affected by the magnetic field generated by it. Therefore, mutual absorption force is generated, and the arc column 6
This is because the cross section of This magnetic pinch effect is proportional to the arc current and becomes most noticeable at mperθ of 80 mm or more. Due to these thermal pinching effects and magnetic pinching effects, the arc column 6 self-contracts, and the anode 3
The arc column 6 is concentrated at one point with respect to the metal material 4 above. As a result, the vicinity has very high temperatures, e.g.
~10,000 K'', a part of the molten metal of the metal material 4 is in an atomic state and is introduced into the arc column 6.The ionization voltage is Fe17, 13V.

Co 8.5 V、 Ni7.6 V、 Hz 13.
5V、 Ar15.9Vテ金属の方がアルゴンなどの周
囲のガスよシも低いので一度;金属原子が溶融金属から
発生し始めると、iiL流の集中が増大し、アーク柱6
が溶解金属の陽極附近で一層収縮する。このようにして
原因、結果が相加わってアーク柱6の形状が第3図に示
すように金属材料4表面に対して略逆三角形状に絞シ込
まれるようになる。この結果、金属材料4Fi原子状態
になって多量にアーク柱6の中に入シ込み続ける。そし
て、電離された金属原子はアーク柱6を陰極2方向に進
むうちに拡散されて電子により中和されるため、金属原
子の状態に戻シ、アーク柱6の外に飛散する。この金属
原子はII!8囲の不活性ガス又は水素ガスと衝突して
凝結、固化して金属超微粒子になる。
Co 8.5 V, Ni 7.6 V, Hz 13.
5V, Ar15.9V Since the resistance of metal is lower than that of surrounding gases such as argon, once metal atoms begin to be generated from the molten metal, the concentration of the iiL flow increases, and the arc column 6
The molten metal shrinks further near the anode. In this way, due to the combination of causes and effects, the shape of the arc column 6 is squeezed into a substantially inverted triangular shape with respect to the surface of the metal material 4, as shown in FIG. As a result, the metal material 4Fi becomes atomic and continues to enter the arc column 6 in large quantities. Then, the ionized metal atoms are diffused as they travel along the arc column 6 in the direction of the cathode 2 and are neutralized by electrons, so that they return to the state of metal atoms and scatter outside the arc column 6. This metal atom is II! It collides with the surrounding inert gas or hydrogen gas and condenses and solidifies into ultrafine metal particles.

また熱的ピンチ作用を発生させる他の手段として、容器
1内に導入した不活性ガス、例えばアルゴン、ヘリウム
、ネオン等よシも軽いM量の元素、例えば水素(純水素
)を用いた場合にも熱的ピンチ作用が得られる。これは
水素はアルゴンに比べて軽い元素でおるために粒子速度
が大きくなシ、熱を奪う能力が大きいためである。すな
わち冷却作用が強いのでアーク柱6にガスを吹き付けた
時と同様に自己収縮するためである。このように雰囲気
ガスとして水素を用いた場合にもアーク柱6を金属材1
−) 4に対して笛3図のように絞シ込むことができる
As another means of generating a thermal pinch effect, an inert gas introduced into the container 1, such as argon, helium, neon, etc., may be used. A thermal pinch effect can also be obtained. This is because hydrogen is a lighter element than argon, has a higher particle velocity, and has a greater ability to absorb heat. In other words, since the cooling effect is strong, the arc column 6 self-contracts in the same way as when gas is blown onto the arc column 6. Even when hydrogen is used as the atmospheric gas in this way, the arc column 6 is connected to the metal material 1.
-) You can squeeze the whistle as shown in Figure 3 for 4.

このようにアーク柱6を絞シ込むための条件としては、
アーク電流の種類、アーク電圧の範囲、容器1内の雰囲
気ガスの種類とその組成、さらにはその容器1内の圧力
等が考えられる。これをFe−Ni合金の金属超微粒子
を製造する場合に、アーク?I!、MU100〜600
600ムre 、 7−り電圧15〜160Volt、
 7−り長5〜15真、不活性ガスとしてアルゴンを用
いて実験を行うと、アルゴン中に導入される水素イオン
一度(重置パーセント)と容器1内の雰囲気圧力との関
係は第4図のようになシ、直線tが得られた。すなわぢ
Fe−Ni合金の金属超微粒子を製造する場合には第4
図から直線tの上の部分において平均粒径が小さく粒径
分布が良く且つ製造動量の艮いFe−Ni合金の金属超
微粒子が製造できる。この場合の流径分布は第5図に示
すとおシである。因に容器1内の圧力が80 TOrr
の圧力下ではアーク電流200ム、アークtEE25 
V 、 7−り長8 mノ下にアーク放電を行うと、ア
ーク柱6は最も絞シ込まれた状態になる。
The conditions for narrowing down the arc pillar 6 in this way are as follows:
The type of arc current, the range of arc voltage, the type and composition of atmospheric gas in the container 1, the pressure in the container 1, etc. can be considered. When producing ultrafine metal particles of Fe-Ni alloy, arc? I! ,MU100~600
600 mre, 7-re voltage 15-160 Volt,
When conducting an experiment using argon as an inert gas with a length of 5 to 15 mm, the relationship between the hydrogen ions introduced into the argon (overlapping percentage) and the atmospheric pressure in the container 1 is shown in Figure 4. A straight line t was obtained as shown below. In other words, when producing ultrafine metal particles of Fe-Ni alloy, the fourth
As can be seen from the figure, in the area above the straight line t, ultrafine Fe--Ni alloy metal particles can be produced that have a small average particle size, a good particle size distribution, and a high production rate. The flow diameter distribution in this case is shown in FIG. Incidentally, the pressure inside container 1 is 80 Torr.
Under the pressure of , arc current is 200 μm, arc tEE is 25
When arc discharge is performed below the V,7 length of 8 m, the arc column 6 is in the most narrowed state.

次に本発明の幾つかの実施例につき説明する。Next, some embodiments of the present invention will be described.

実施例1 金属材料4としてFe−Ni合金(Fe:Niの割合が
i 00 : 9m景バーセント)″を用い、また、不
活性ガ・スとしてアルゴンいてこの中に水素ガスをアル
ゴンガスに対して90欣tパーセントm合し、アーク電
流200人mpθre 、アーク電圧25v。
Example 1 Fe-Ni alloy (Fe:Ni ratio: i 00 : 9 m view percent) was used as the metal material 4, and hydrogen gas was added to the argon gas in an argon cage as the inert gas. 90% m, arc current 200 mpθre, arc voltage 25v.

アーク長7譲の下にアーク放電を時間120分程、行っ
た場合に製造効率1.2 (Ii/win)、平均粒径
3ooa)、飽オロ磁化σS 150(emu/、9)
 、保磁力Ha 1400(Os)、角形比Br/Bs
 0.55+7)特性を有するFa−Ni合金の金属超
微粒子が得られた。
When arc discharge is performed for about 120 minutes with an arc length of 7%, the manufacturing efficiency is 1.2 (Ii/win), the average grain size is 3ooa), and the saturated magnetization σS is 150 (emu/, 9).
, coercive force Ha 1400 (Os), squareness ratio Br/Bs
0.55+7) ultrafine metal particles of Fa-Ni alloy were obtained.

実施例2 金属材料4としてFa−Go金合金Fe:Coの割合が
100:38重童バーセント)を用い、また、不活性ガ
スとしてアルゴンを用い、このアルゴン内に水素ガスを
90重量パーセント混合し、アークNt& 200 A
mpere 、アーク電圧25V、7−り長1鰭の下に
アーク放電を時間120分程、行った場合にW過動54
1.2 (N/min )、平均粒径200−(&)、
飽和a化σs160 (6mu/y )、保磁力Ha 
14’00 (Oe)、角形比Br/Bs0.58の特
性を有するFe−GO合金の金属超微粒子が得られた。
Example 2 Fa-Go gold alloy (Fe:Co ratio: 100:38) was used as the metal material 4, argon was used as the inert gas, and 90% by weight of hydrogen gas was mixed in the argon. , Arc Nt & 200 A
mpere, when arc voltage is 25V and arc discharge is performed under the 7-length 1 fin for about 120 minutes, W overmotion 54
1.2 (N/min), average particle size 200-(&),
Saturation a σs160 (6mu/y), coercive force Ha
Ultrafine metal particles of Fe-GO alloy having characteristics of 14'00 (Oe) and a squareness ratio Br/Bs of 0.58 were obtained.

このよりに実施例1,2から装造されたFe −Ni合
金、・Fe−Go金合金金属超微粒子は鉄系強磁性合金
の単磁区粒子に相当する粒径をもち、その粒径分布も鋭
く、球状微粒子が連なった連鎖状の超微粒子粉が得られ
、高密度記録媒体に適する。
As a result, the Fe-Ni alloy and Fe-Go gold alloy metal ultrafine particles packed in Examples 1 and 2 have particle sizes corresponding to single domain particles of iron-based ferromagnetic alloys, and the particle size distribution also increases. A chain-like ultrafine particle powder consisting of sharp, spherical fine particles is obtained, and is suitable for high-density recording media.

上瀘のように本発明はアーク柱にガスを吹き付けるか又
は容器内のアーク放電雰囲気を重音の異なるガス芽囲気
にしたことによって熱的ピンチ作用と磁気的ピンチ作用
とによシアーク柱の形状を自己収縮させて金属材料の溶
融表面に絞シ込むことができるため、従来の蒸発法に比
べて例えば溶融点金属でも製造効率が数十乃至数百倍と
高く、平均粒径で粒径分布も鋭い等の優れた特性を有し
、また設備が小型で小電力になるため低コストの金属超
微粒子が得られる。
As in Kamiro, the present invention changes the shape of the shear arc column by thermal pinching action and magnetic pinching action by blowing gas onto the arc pillar or by making the arc discharge atmosphere in the container surrounded by gas buds with different density. Since it can be self-shrinked and squeezed onto the molten surface of the metal material, the production efficiency is tens to hundreds of times higher than conventional evaporation methods, even for melting point metals, and the average particle size and particle size distribution are also small. It has excellent characteristics such as sharpness, and because the equipment is small and requires low power, ultrafine metal particles can be obtained at low cost.

また容器内に導入するガスの種類、容器内圧力。Also, the type of gas introduced into the container and the pressure inside the container.

金属材料の種類と組成を選択することによって製造すべ
き金属超微粒子の粒径、磁気特性等を適当に制御できる
By selecting the type and composition of the metal material, the particle size, magnetic properties, etc. of the ultrafine metal particles to be produced can be appropriately controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高周波加熱による蒸発法を示した断面1
図、第2図は同じく本発明に使用する装置の一例を示し
た断面図、第′3図は本発明を実施した場のアーク柱の
形状の一例を示した側面図、第4図はアルゴン中に送入
される水素イオン濃度と各器内の内圧との関係における
金属超微粒子の製造効率を示した特性図、第5図は粒径
分布を示した曲線図である。 1・・・容器、2・・・陰極、3・・・陽極、4・・・
金属材料、6・・・アーク柱。 特許出願人  パイオニア株式会社 所沢市花園4丁目2610番地パイ オニア株式会社所沢工場内 (η)発 明 者 福岳悟 所沢市花園4丁目2610番地パイ オニア株式会社所沢工場内
Figure 1 is a cross section 1 showing the conventional evaporation method using high frequency heating.
2 is a sectional view showing an example of the apparatus used in the present invention, FIG. FIG. 5 is a characteristic diagram showing the production efficiency of ultrafine metal particles in relation to the hydrogen ion concentration fed into the container and the internal pressure inside each vessel, and FIG. 5 is a curve diagram showing the particle size distribution. 1... Container, 2... Cathode, 3... Anode, 4...
Metal material, 6... arc pillar. Patent applicant: Pioneer Co., Ltd., 4-2610 Hanazono, Tokorozawa City, Pioneer Co., Ltd. Tokorozawa Factory (η) Inventor: Gogo Fukutake, 4-2610 Hanazono, Tokorozawa City, Pioneer Co., Ltd. Tokorozawa Factory

Claims (1)

【特許請求の範囲】[Claims] 陽極に載置した金属材料と陽極との間に7−ク柱を発生
させて金属超微粒子を製造する方法であって、前記アー
ク柱の形状を前記金属材料の溶融表面に絞シ込んだこと
を特徴とする金属超微粒子の製造方法。
7. A method for producing ultrafine metal particles by generating arc pillars between a metal material placed on an anode and the anode, the shape of the arc pillar being squeezed onto the molten surface of the metal material. A method for producing ultrafine metal particles characterized by:
JP22659982A 1982-12-27 1982-12-27 Production of ultrafine metallic particle Granted JPS59118803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22659982A JPS59118803A (en) 1982-12-27 1982-12-27 Production of ultrafine metallic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22659982A JPS59118803A (en) 1982-12-27 1982-12-27 Production of ultrafine metallic particle

Publications (2)

Publication Number Publication Date
JPS59118803A true JPS59118803A (en) 1984-07-09
JPH0474409B2 JPH0474409B2 (en) 1992-11-26

Family

ID=16847712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22659982A Granted JPS59118803A (en) 1982-12-27 1982-12-27 Production of ultrafine metallic particle

Country Status (1)

Country Link
JP (1) JPS59118803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228604A (en) * 1984-04-27 1985-11-13 Hitachi Ltd Production of ultrafine particles
WO2011054113A1 (en) * 2009-11-05 2011-05-12 Ap&C Advanced Powders & Coatings Inc. Methods and apparatuses for preparing spheroidal powders

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117167A (en) * 1974-08-03 1976-02-10 Nippon Steel Corp PURAZUMAJETSUTONYORU KINZOKU FUNTAINO SEIZOHOHO
JPS5544123A (en) * 1978-09-20 1980-03-28 Kamiichi Denshi Kk Device for automatically shutting off main valve
JPS58104103A (en) * 1981-12-17 1983-06-21 Natl Res Inst For Metals Method and device for producing fine metallic particle
JPS58130205A (en) * 1982-01-29 1983-08-03 Natl Res Inst For Metals Electrode device in producing device for fine metallic particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117167A (en) * 1974-08-03 1976-02-10 Nippon Steel Corp PURAZUMAJETSUTONYORU KINZOKU FUNTAINO SEIZOHOHO
JPS5544123A (en) * 1978-09-20 1980-03-28 Kamiichi Denshi Kk Device for automatically shutting off main valve
JPS58104103A (en) * 1981-12-17 1983-06-21 Natl Res Inst For Metals Method and device for producing fine metallic particle
JPS58130205A (en) * 1982-01-29 1983-08-03 Natl Res Inst For Metals Electrode device in producing device for fine metallic particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228604A (en) * 1984-04-27 1985-11-13 Hitachi Ltd Production of ultrafine particles
WO2011054113A1 (en) * 2009-11-05 2011-05-12 Ap&C Advanced Powders & Coatings Inc. Methods and apparatuses for preparing spheroidal powders

Also Published As

Publication number Publication date
JPH0474409B2 (en) 1992-11-26

Similar Documents

Publication Publication Date Title
US2884319A (en) Acicular metal particles from metal carbonyls and method of preparation
JPS6254005A (en) Production of hyperfine particles
Kusaka et al. Magnetic properties of ferromagnetic metal alloy fine particles prepared by evaporation in inert gases
JPS60162704A (en) Production of magnetic fluid
US4526611A (en) Process for producing superfines of metal
JPS59118803A (en) Production of ultrafine metallic particle
JP3442375B2 (en) Amorphous soft magnetic alloy
JPS6116793B2 (en)
JPS5832767B2 (en) Manufacturing method for hard magnetic materials
JPS59190304A (en) Manufacture of fine sphere of amorphous metal
US5549951A (en) Composite ultrafine particles of nitrides, method for production and sintered article thereof
Crisan et al. Novel gas-stabilized iron clusters: synthesis, structure and magnetic behaviour
Goldsmith et al. Distribution of peak temperature and energy flux on the surface of the anode in a multi-cathode spot pulsed vacuum arc
JPS60130103A (en) Magnetic powder and manufacture thereof
JPH0313510A (en) Manufacture of fine powder by laser beam
Popplewell et al. The long term stability of magnetic liquids for energy conversion devices
JPS59140307A (en) Manufacturing apparatus of ultrafine metallic particle
Shevchenko et al. Granular thin film deposition by simultaneous spark erosion and sputtering
JPS60228606A (en) Electrode for manufacturing hyperfine particles
JPS59140303A (en) Manufacture of ultrafine metallic particle
Putimtsev Conditions of preparation and properties of atomized iron and iron-alloy powders
Jiawei et al. Fabrication and Soft Magnetic Properties of Fe81. 3Si4B10P4Cu0. 7 Amorphous Powders by Using the Spinning-water Atomization Process
JPS62114118A (en) Magnetic recording material and its production
US10290406B2 (en) Metallic magnetic material with controlled curie temperature and processes for preparing the same
Huh et al. Fabrication of ferromagnetic nanocluster rods by magnetic trapping