JPS60228123A - Manufacture of biaxially oriented polyester film - Google Patents

Manufacture of biaxially oriented polyester film

Info

Publication number
JPS60228123A
JPS60228123A JP8497384A JP8497384A JPS60228123A JP S60228123 A JPS60228123 A JP S60228123A JP 8497384 A JP8497384 A JP 8497384A JP 8497384 A JP8497384 A JP 8497384A JP S60228123 A JPS60228123 A JP S60228123A
Authority
JP
Japan
Prior art keywords
stretching
film
stage
temperature
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8497384A
Other languages
Japanese (ja)
Other versions
JPH0371976B2 (en
Inventor
Takeo Kanezaki
兼崎 建夫
Shigeo Uchiumi
滋夫 内海
Yoshinojo Tomitaka
吉之丞 富高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP8497384A priority Critical patent/JPS60228123A/en
Publication of JPS60228123A publication Critical patent/JPS60228123A/en
Publication of JPH0371976B2 publication Critical patent/JPH0371976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain economically the high-quality titled film which is flat and superior in lubricity and adhesive properties, by a method wherein an amorphous state film made of polyethylene terephthalate is oriented in a longitudinal direction in a plurality of times and then the film is oriented in a lateral direction. CONSTITUTION:Super-draw orientation of an amorphous state film having polyethylene terephthalate for its main ingredient is performed desirably at magnification of more than 1.9 times at the temperature of 100-150 deg.C so that an index of birefringence becomes 0.001-0.020 in a longitudinal direction, to begin with, and then the same is oriented into 1.3-3.5 times at the temperature of 80-120 deg.C so that the index of birefringence becomes 0.015-0.055 in the longitudinal direction. Then after the film has been oriented into 1.1-2.0 times at the temperature of 85-120 deg.C and longitudinal orientation magnification of the same has been made more than 4.0 so that the index of birefringence becomes 0.040-0.080 in the longitudinal direction further, the film is oriented in a lateral direction at orientation magnification of 2.5-5.0 at the temperature of 90-140 deg.C and an aimed product is obtained by fixing the same thermally at the temperature of 150-250 deg.C further.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二軸延伸ポリエステルフィルムの製造方法に
関する。更に詳しくは、平坦易滑性・ :〔従来の技術
〕 ポリーーテー二軸延伸フイームは、優れた機 ;械的性
質、熱的性質、電気的性質、耐薬品性を有するため各種
用途に多用されているが、とりわけ磁気テープ用ベース
フィルムとして極メチ有用なフィルムである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a biaxially oriented polyester film. For more details, please refer to the following for more details. However, it is an extremely useful film, especially as a base film for magnetic tapes.

特にビデオの急激な普及に伴い、高品質で安価なビデオ
用磁気テープが要望されている。こうした要望をみたす
ために、ベースフィルムとしての高品質を維持しながら
、いかにコストを下げるかが最大の課題となってきてい
る。
In particular, with the rapid spread of video, there is a demand for high quality and inexpensive video magnetic tapes. In order to meet these demands, the biggest challenge has become how to reduce costs while maintaining the high quality of the base film.

これまで、磁気テープ用ベースフィルムの高品質化は、
多種多用の方法で達成されてき念が、なかでも、通常用
いられる一段延伸法に比べて縦延伸温度を上げ、縦延伸
倍率を低くしたフィルムがフィルムの平坦易滑化、磁性
層との接着性等に極めて優れていることが知られている
Up until now, improvements in the quality of base films for magnetic tapes have been
This goal has been achieved using a wide variety of methods, but in particular, films that increase the longitudinal stretching temperature and lower the longitudinal stretching ratio compared to the commonly used one-step stretching method improve the flatness and smoothness of the film, as well as the adhesion with the magnetic layer. It is known to be extremely superior in

(特開昭j7−66936.37−/l’9122、r
r−J −? 3.2 J、31−!317/ 5’、
!I−2/1722、jr−717,29および61−
760123号公報等)。
(JP 7-66936.37-/l'9122, r
r-J-? 3.2 J, 31-! 317/5',
! I-2/1722, jr-717, 29 and 61-
760123, etc.).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した方法による高品質化が実現されつつちるが、上
記した方法で得られるフィルムは。
Although high quality is being realized by the above-mentioned method, the film obtained by the above-mentioned method is...

縦延伸方向の配向を低めに押さえ、二軸延伸固定後の面
配向度を極力低くしたフィルムであるため1通常の延伸
処方に比べると、縦方向の延伸倍率を低くシ軽ければな
らないという欠点が存在した。しかるにポリエステルフ
ィルム製造時の生産性は、巻き取りスピードつまシ縦方
向の総合延伸倍率に強く依存するので、通常の延伸倍率
に比べて2〜3割製膜スピードを遅くする上記方法は、
生産性を犠牲にしたものである。
Since the film has a low orientation in the longitudinal direction and the degree of plane orientation after biaxial stretching and fixation is as low as possible, it has the disadvantage that the longitudinal stretching ratio must be lower and lighter than normal stretching formulations. Were present. However, the productivity during polyester film production strongly depends on the winding speed and the overall stretching ratio in the longitudinal direction.
This comes at the expense of productivity.

そこで本発明者らは、上記欠点を解消すべく特願昭jr
−/6194り等において、商品質化を維持して延伸倍
率を上げる方法を提案してきた。
Therefore, in order to eliminate the above-mentioned drawbacks, the present inventors filed a patent application
-/6194, etc., we have proposed a method of increasing the stretching ratio while maintaining product quality.

しかしながら、該延伸法は、縦延伸を2段階で行うので
、横延伸前の縦延伸倍率が≠、θ倍程度と、従来から知
られている通常の延伸倍率とほぼ等しいものである。現
在では縦延伸後のlnをo、oro以上にするのであれ
ば、上記出願の方法に従っても、また、他の延伸方法(
特開昭60−7!、 10−/34361.オLびj#
−J’47.2号公報等)によっても、よ倍以上の延伸
倍率が達成されている。しかるに、先の提案のごとく横
延伸前の縦延伸倍率が高々ti、o倍程度では、コスト
を現状維持にとどめることはできても、到底これを下げ
るのは不可能であった。そこで、高品質を維持しつつ、
コストを下げるべく、縦延伸後の複屈折率をできるだけ
低く押さえた状態で更に横延伸前の縦方向延伸倍率を高
めることが強く要求されている。
However, since this stretching method performs longitudinal stretching in two stages, the longitudinal stretching ratio before the transverse stretching is about ≠, θ times, which is approximately the same as the conventionally known normal stretching ratio. Currently, as long as ln after longitudinal stretching is set to o, oro or more, even if the method of the above application is followed, other stretching methods (
Tokukai 60-7! , 10-/34361. Oh Lbij#
- J'47.2, etc.), a stretching ratio of more than 100% has been achieved. However, as in the previous proposal, if the longitudinal stretching ratio before the lateral stretching was at most ti, o times, it was impossible to reduce the cost even if it was possible to maintain the current level. Therefore, while maintaining high quality,
In order to reduce costs, it is strongly required to further increase the longitudinal stretching ratio before transverse stretching while keeping the birefringence after longitudinal stretching as low as possible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、このような要請に答えるべく。 The present inventors aimed to answer such a request.

鋭意検討の結果、縦方向の延伸段数を3段階以上にし、
しかも最初の縦延伸に、延伸しても配向が生じないいわ
ゆるスーパードロー延伸を取シ入れ、しかも縦延伸後の
複屈折率を低く押さえ バることによシ、平坦易滑性、磁性層との接着性等磁気
テープの品質を高く保持した11、厚さ斑を悪化させる
ことなくしかも高倍率で延伸できる方法を見出したもの
である。
After careful consideration, we decided to increase the number of stretching stages in the longitudinal direction to three or more stages.
Moreover, by incorporating so-called super draw stretching in which no orientation occurs during the initial longitudinal stretching, and by keeping the birefringence low after longitudinal stretching, we have achieved flatness, easy slipping, and a magnetic layer. We have discovered a method that maintains high quality of the magnetic tape, such as adhesive properties, and allows stretching at a high magnification without worsening thickness unevenness.

すなわち本発明の要旨は、(1)ポリエチレンテレフタ
レートを主成分とする実質的に非晶状態のフィルムをま
ず縦方向に複屈折率(Δn+)がo、ooi −o、O
,zoとなるように少くとも1段階で延伸しく第1段延
伸)、ついで縦方向に複屈折率(Δnz)が0.0/j
 〜0.061となるように少くとも1段階で姑伸しく
第2段延伸)、その後頁に縦方向に複屈折率(Δna)
がO2θgo−o、oroとなるように、少くとも1段
階で延伸して(第3段延伸)、横延伸前の縦延伸倍率が
ψ、0倍以上となるように縦延伸した後横延伸すること
を特徴とする二軸延伸ポリエステルフィルムの製造方法
である。
That is, the gist of the present invention is as follows: (1) First, a substantially amorphous film containing polyethylene terephthalate as a main component is heated in the longitudinal direction so that the birefringence (Δn+) is o, ooi −o, O
.
〜0.061 (at least one step and second step stretching), then the birefringence (Δna) in the vertical direction on the page
Stretch in at least one stage (third stage stretching) so that O2θgo-o, oro, and stretch longitudinally and then transversely so that the longitudinal stretching ratio before transverse stretching is ψ, 0 times or more. This is a method for producing a biaxially stretched polyester film.

本発明に用いるポリエステルとは、エチレンテレフタレ
ート単位を10重量%以上含むポリエステルであって、
残りの20重量%以下は。
The polyester used in the present invention is a polyester containing 10% by weight or more of ethylene terephthalate units,
The remaining 20% by weight or less.

共重合ポリエステルまたは他のポリマーであってもよい
。該ポリエステル中には例えばリン酸、亜リン酸および
それらのエステル等の安定剤や二酸化チタン、微粒子状
シリカ、カオリン等の添加剤、滑剤などが含まれていて
もよい。
It may also be a copolymerized polyester or other polymer. The polyester may contain stabilizers such as phosphoric acid, phosphorous acid and esters thereof, additives such as titanium dioxide, particulate silica and kaolin, and lubricants.

本発明忙おいては、ポリエステル未延伸フィルムを、ま
ずln、が0.00/ −0,020となるように縦方
向に少くとも1段階で延伸する。本段階の縦延伸の目的
は、フィルムの結晶化、配向を出来るだけ押さえて、開
缶率延伸することである。従って、延伸倍率が低いと、
延伸の高速化に寄与しない。第1段の好ましい延伸倍率
は、八り倍以上である。一方、第1段で高倍率延伸し、
かつ結晶化を押さえてΔnlをo、ooi以下にするの
は事実上不可能である。逆に延伸倍率を高めてΔn1を
o、o、2o以上にすると2段目以降の延伸倍率が高く
ならないので、結局全体としての縦延伸倍率を高めるこ
とができないので好ましくない。延伸倍率を高くして延
伸し、Δn1を0.00/ −0,0,20の範囲にす
るには、いわゆるスーパードロー延伸を適用しなければ
ならず、ioo℃以上izo℃以下で延伸するのが好ま
しい。100℃以下では配向が進みすぎて好ましくなく
、一方izo℃以上では結晶化が進みすぎて好ましくな
い。このようKして得られたフィルム(以下rB−0フ
ィルム」という。)を延伸波ガラス転移温度以下に冷却
すると、厚みが均一化されるので好ましい。
In the present invention, an unstretched polyester film is first stretched in at least one step in the longitudinal direction so that ln is 0.00/-0,020. The purpose of the longitudinal stretching at this stage is to suppress the crystallization and orientation of the film as much as possible and stretch the film at an open rate. Therefore, if the stretching ratio is low,
It does not contribute to increasing the speed of stretching. A preferable stretching ratio in the first stage is 8 times or more. On the other hand, in the first stage, high magnification stretching is performed,
Moreover, it is virtually impossible to suppress crystallization and reduce Δnl to below o, ooi. On the other hand, if the stretching ratio is increased to make Δn1 more than o, o, 2o, the stretching ratio in the second and subsequent stages will not become high, and the overall longitudinal stretching ratio cannot be increased, which is not preferable. In order to stretch at a high draw ratio and make Δn1 in the range of 0.00/-0,0,20, it is necessary to apply so-called super draw stretching, and it is necessary to draw at a temperature higher than or equal to ioo°C and lower than or equal to izo°C. is preferred. At temperatures below 100° C., orientation progresses too much, which is undesirable. On the other hand, at temperatures above Izo° C., crystallization progresses too much, which is undesirable. It is preferable to cool the film obtained by K in this way (hereinafter referred to as "rB-0 film") to a temperature below the stretching wave glass transition temperature because the thickness becomes uniform.

上記B−0フィルムの配向が低いほど、次工程での同フ
ィルムの延伸性が改良されるので、必要に応じて配向緩
和のために熱処理をすることも可能である。その際の配
向緩和のための熱処理工程は、1段目の延伸を終えたフ
ィルムを表面が100〜/jO℃にコントロールされた
ロールIc3秒以下接触させなから/、03倍以上の延
伸を行なうものである。このような配向緩和処理を含め
る場合は、配向緩和後のフィルム(以下「B−lフィル
ム」という。)のΔn7はo、ooi −o、o、y、
oの範囲になければならない。上記緩和工程においてロ
ール表面温度がioo℃未満では、配向緩和効果が発揮
されないし、710℃以上では厚み均一性が悪化する。
The lower the orientation of the B-0 film, the better the stretchability of the film in the next step, so it is also possible to perform heat treatment to relax the orientation, if necessary. At that time, the heat treatment step for relaxing the orientation is such that the surface of the film after the first stretching is brought into contact with a roll Ic controlled at 100~/jO℃ for less than 3 seconds/03 times or more. It is something. When such orientation relaxation treatment is included, Δn7 of the film after orientation relaxation (hereinafter referred to as "B-l film") is o, ooi -o, o, y,
Must be within the range o. In the above-mentioned relaxation step, if the roll surface temperature is less than 100° C., the orientation relaxing effect will not be exhibited, and if it is 710° C. or more, the thickness uniformity will deteriorate.

なお。In addition.

配向緩和を長時間行うと、結晶化が進みすぎて、横延伸
性を悪化させる恐れがある。上記した第1段延伸後のフ
ィルムの好ましいΔn1の範囲はo、ooiから0.0
 / 2未満である。
If the orientation is relaxed for a long time, crystallization may proceed too much, which may deteriorate the lateral stretchability. The preferable range of Δn1 of the film after the first stage stretching is from o, ooi to 0.0.
/ Less than 2.

かくして得られたΔn1がo、ooiから0.020の
範囲にあるB−0もしくはB−lフィルムを、ついで好
ましくは、to℃〜l、20℃の温度、/、3〜j、7
倍の延伸倍率で複屈折率(Δn2)が0.0/j −0
,Ojjとなるように装置縦方向に延伸する。
The thus obtained B-0 or B-1 film in which Δn1 is in the range of o, ooi to 0.020 is then preferably heated to a temperature of 20° C. to 1, 3 to 7
Birefringence (Δn2) is 0.0/j −0 at a stretching ratio of
, Ojj in the longitudinal direction of the device.

第一段延伸後のフィルムのΔn2が0.01jよル低い
場合には、第3段延伸でΔnHをθ、oro以下にする
と縦方向の厚さ斑が極めて悪化するので好ましくない。
If the Δn2 of the film after the first-stage stretching is lower than 0.01j, it is not preferable to reduce the ΔnH to θ, oro or less in the third-stage stretching because the thickness unevenness in the longitudinal direction will be extremely worsened.

一方、第1段延伸でin2をo、ozs以上とすると、
第2段延伸後の厚さ斑が、最終段工程で矯正し得ない程
度Ktで悪化するので好ましくない。しかるに、第2段
延伸後のΔn2が本発明方法に従って、o、oiz 〜
o、osjの範囲にあると、第2段延伸後の厚さ斑は極
めて良好とは言えないものの、驚くべきことには次の最
終段延伸工程で、厚み斑を急激に矯正することができる
。なお、第3段延伸をすることなくΔn2をo、ois
 −o、orzの範囲にしたままで縦延伸を終えて横延
伸しただけでは、フィルムでの厚さ斑が悪化しかつ縦方
向の機械的性質が不足するため、好ましくない。一方、
厚さ斑および機械的強度の不足を補うための第2段延伸
後のΔn2がo、otz〜o、ossの範囲のフィルム
を横延伸し、更にその後再縦延伸する方法が知られてい
る。(%開昭tr−iir2コ0号公報等)しかしなが
ら、同方法では、再延伸をするためバランスフィルム用
に再延伸機が必要となシ、当然設備費が高くなる欠点が
ある。なお、本発明方法における第2段延伸後のΔnz
 it、、好ましくはo、oコo−o、oダj、更に好
ましくは0.02j〜o、oIIzの範囲にある。
On the other hand, if in2 is set to more than o, ozs in the first stage stretching,
This is not preferable because the thickness unevenness after the second stage stretching becomes worse at Kt to such an extent that it cannot be corrected in the final stage process. However, according to the method of the present invention, Δn2 after the second stage stretching is o, oiz ~
o, osj range, the thickness unevenness after the second stage stretching cannot be said to be extremely good, but surprisingly, the thickness unevenness can be rapidly corrected in the next final stage stretching step. . Note that Δn2 is o, ois without third-stage stretching.
It is not preferable to simply carry out transverse stretching after finishing the longitudinal stretching while keeping the film in the range of -o, orz, since the thickness unevenness in the film will deteriorate and the mechanical properties in the longitudinal direction will be insufficient. on the other hand,
In order to compensate for uneven thickness and lack of mechanical strength, a method is known in which a film having Δn2 in the range of o, otz to o, oss after the second stage stretching is horizontally stretched, and then longitudinally stretched again. (% Kaisho TR-IIR 2 Co. No. 0, etc.) However, this method requires a re-stretching machine for the balance film for re-stretching, which naturally increases the equipment cost. In addition, Δnz after the second stage stretching in the method of the present invention
it, preferably in the range of o, o-o-o, o-da-j, more preferably in the range of 0.02j to o, oIIz.

かくして、平坦易滑性、厚み斑ともに優れたフィルムを
得るためには、本発明方法に従い、縦延伸を行ない、そ
の後横延伸工程に移ることが必須である。
Thus, in order to obtain a film that is excellent in both flatness and slipperiness and uneven thickness, it is essential to perform longitudinal stretching and then proceed to the transverse stretching step according to the method of the present invention.

第2段延伸の温度がrθ℃以下では、ネッキング延伸と
なシフイルムに厚薄がつき好ましくない。一方、120
℃以上では、縦延伸後の結晶化度が高くなりすぎて、横
延伸が困難となる。
If the temperature of the second stage stretching is below rθ°C, the film becomes thick and thin due to necking stretching, which is not preferable. On the other hand, 120
If the temperature is higher than 0.degree. C., the degree of crystallinity after longitudinal stretching becomes too high, making transverse stretching difficult.

また、低温程延伸性がよいので、更に好ましくはioz
℃以下である。Δnlが0.0−〇以下のB−〇または
B−lフィルムからΔn2が0.0/jt〜0.0!r
Jo第λ段延伸後のフィルムを作る第2段延伸の延伸段
数は7〜3段である。つt、bΔn2=0.0/!tか
らo、 o t tの間で多数に延伸することも可能で
ある。但し、好ましく′は1段で延伸するのが良い。ま
た、この過程での延伸倍率が/、3以下では延伸倍率向
上の寄与が少なく本目的には不適である。一方、3.を
倍以上という高延伸倍率で延伸するには、高温で延伸す
る必要があるが、その結果縦延伸後の結晶化度が高くな
ルすぎるので、やはシ横延伸が困難となシ好ましくない
。当然、この過程において配向緩和過程を適用するのが
好ましい。かくして得られたフィルムを以下、「B−λ
」という。
In addition, since the lower the temperature, the better the stretchability is, more preferably Ioz
below ℃. From B-〇 or B-l film with Δnl of 0.0-〇 or less, Δn2 is 0.0/jt~0.0! r
The number of stretching stages in the second stage of stretching to produce the film after the Jo λ stage stretching is 7 to 3 stages. t, bΔn2=0.0/! It is also possible to stretch multiple times between t and o, o t t. However, it is preferable that '' be drawn in one stage. Further, if the stretching ratio in this process is /,3 or less, there is little contribution to improving the stretching ratio and it is unsuitable for this purpose. On the other hand, 3. In order to stretch the film at a high draw ratio of more than double, it is necessary to stretch at a high temperature, but as a result, the degree of crystallinity after longitudinal stretching is too high, making transverse stretching difficult. . Naturally, it is preferable to apply an orientation relaxation process in this process. The film thus obtained is hereinafter referred to as "B-λ
”.

ついで、第3段延伸としてrr℃〜iio℃以下の温度
で好ましくは/、/−2,0倍の延伸倍率で複屈折率(
Δn3)がo、oroを超えないように縦方向に延伸す
る。縦方向の最終段延伸工程における延伸温度がざju
よシ低いとΔn3がo、oro以下であっても二軸延伸
フィルムの厚さ斑が改良されないし、120℃よシ高い
と横延伸性を悪化させる。従って、厚さ斑を改良するた
めには、り0℃以上が好ましい。更に好ましくは、りj
℃以上である。更に第3段延伸においては、Δn3が0
.0IOからo、o r o、好ましくはo、ozzか
ら0.07に更に好ましくはo、o 6゜から0.07
0を越えないように延伸することが、平坦易滑化、横延
伸時の破断防止のためKは有利である。第3段延伸は、
通常縦延伸工程の最終段階として実施され1段階で、短
時間に行うことが好ましい。
Then, as the third stage of stretching, the birefringence (
The film is stretched in the longitudinal direction so that Δn3) does not exceed o or oro. The stretching temperature in the final stage stretching process in the longitudinal direction is
If it is too low, the thickness unevenness of the biaxially stretched film will not be improved even if Δn3 is less than o or oro, and if it is higher than 120°C, the transverse stretchability will be deteriorated. Therefore, in order to improve thickness unevenness, the temperature is preferably 0°C or higher. More preferably,
℃ or higher. Furthermore, in the third stage stretching, Δn3 is 0.
.. 0IO to o, o r o, preferably o, ozz to 0.07, more preferably o, o 6° to 0.07
It is advantageous for K to be stretched so as not to exceed 0 in order to facilitate flatness and prevent breakage during lateral stretching. The third stage stretching is
It is usually carried out as the final step of the longitudinal stretching process, and is preferably carried out in one step in a short period of time.

上記した縦延伸工程で用いるロール表面は、粘着しやす
いポリエステルを高温で延伸するので、セラミックまた
は、エンストマー(例えば、6フッ化プロピレンとフン
化ビニリデンを主とする共重合体、シリコーン樹脂、エ
チレンプロピレン共重合系、クロロスルホン化ポリエチ
レンなど)あるいは、四フッ化エチレン・パーフルオロ
プロピルビニルエーテル共重合体、四フッ化エチレン等
のフッ素樹脂または四フッ化エチレンにポリイミド等を
充填させたもの等で、被覆されていることが好ましい。
The surface of the rolls used in the longitudinal stretching process described above is made of ceramic or entomer (e.g., a copolymer mainly composed of propylene hexafluoride and vinylidene fluoride, silicone resin, ethylene propylene copolymer, chlorosulfonated polyethylene, etc.) or fluororesins such as tetrafluoroethylene/perfluoropropyl vinyl ether copolymer, tetrafluoroethylene, or tetrafluoroethylene filled with polyimide, etc. Preferably, it is coated.

なお、熱伝達係数が大きく、粘着が起きにくい材質なら
上記の材質以外でも使用し得る。なお、上記縦延伸工程
での加熱は、上記したロールからの伝熱以外の方法(例
えばラジエーションヒーター、熱風、熱媒中)等を組合
わせてもよい。
Note that materials other than those mentioned above may be used as long as they have a large heat transfer coefficient and are not prone to adhesion. Note that the heating in the longitudinal stretching step may be performed in combination with a method other than the above-described heat transfer from the rolls (for example, using a radiation heater, hot air, in a heat medium), etc.

以上述べた方法で得られる縦延伸フィルムは、そのit
でも使用できるが、通常は、常法によシ、延伸温度り0
−/(40℃、延伸倍率コ、j〜j、0倍で横方向に延
伸し、さらに/ j O−210℃で熱固定して、寸法
安定性の優れたフィルムを得る。更に、再延伸を行なっ
て縦方向テンサフイルム、横方向テンサフイルム、縦横
方向テンサフイルムを作ることもできる。例えば、再縦
延伸の場合は、横延伸を?o−1ao℃、2.3− <
1’、j倍の倍率で行ない、縦方向に広幅ロールを用い
てり0−170℃でi、i〜3.0倍延伸後、//5O
−230℃で熱処理すると良い。
The longitudinally stretched film obtained by the method described above is
Although it can be used at
-/(stretched in the transverse direction at 40°C, stretching ratio j to j, 0 times, and further heat-set at /j O-210°C to obtain a film with excellent dimensional stability.Furthermore, re-stretched. It is also possible to make a tensa film in the longitudinal direction, a tensa film in the transverse direction, and a tensa film in the longitudinal and lateral directions.
After stretching i, i to 3.0 times at 0-170°C using wide rolls in the longitudinal direction, //5O
Heat treatment at -230°C is recommended.

本発明方法に従って、横延伸前の縦延伸工程を3段階以
上で行い、かつ、横延伸前の縦延伸倍率をμ、θ倍以上
、好ましくは、り、1倍以上にする。
According to the method of the present invention, the longitudinal stretching step before the transverse stretching is performed in three or more stages, and the longitudinal stretching ratio before the transverse stretching is μ, θ times or more, preferably μ, 1 times or more.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、厚さむらを増幅させることなく、
しかも磁気テープ特にビデオ用ベースフィルムとして適
した平坦易滑性、接着性に優れた性質を維持しながら、
横延伸前の縦延伸倍率を極めて高くすることができるの
で、製造コストを低減できる。
According to the method of the present invention, without amplifying thickness unevenness,
Moreover, it maintains the flatness and smoothness and excellent adhesion properties suitable for magnetic tape, especially as a base film for video.
Since the longitudinal stretching magnification before lateral stretching can be made extremely high, manufacturing costs can be reduced.

〔実施例〕〔Example〕

以下実施例によって本発明を説明するが、フィルムの該
性質の測定方法は、以下の通シである。
The present invention will be explained below with reference to Examples, and the method for measuring the properties of the film is as follows.

(1)厚さ斑 安置電気社製連続フィルム厚さ測定器によシ、二軸延伸
フィルムの横方向中央部を縦方向に沿って測足し、次式
によシ算出した。
(1) Thickness Using a continuous film thickness measuring device manufactured by Madara Anki Denki Co., Ltd., the thickness was measured along the longitudinal direction at the horizontal center of the biaxially stretched film, and the thickness was calculated according to the following formula.

(2)動摩擦係数(μd) 固定した硬質クロムメッキ金属ロール(直径A was
 )に、フィルムを巻き付角/310(ので接触させ、
j 、? f (T2)の荷重を一端にかけて/ m/
mの速度でこれを走行させて他端の抵抗力(T+ (f
) )を測定し、次式によシ走行中の摩擦係数をめた。
(2) Coefficient of dynamic friction (μd) Fixed hard chrome-plated metal roll (diameter A was
), the film is brought into contact with the wrapping angle /310 (so
j,? Apply a load of f (T2) to one end / m /
By running this at a speed of m, the resistance force at the other end (T+ (f
) ) was measured, and the coefficient of friction during running was calculated using the following formula.

(3) 中心線平均表面粗さくRa) 小板研究所社製表面粗さ測定器(SFi−JFK)Kよ
って次のようにめた。触針の先端半径は2μm、荷重は
30ηである。フィルム断面曲線からその中心線の方向
に基準長さL(,2,7wn)の部分を抜き取シ、この
抜き取シ部分の中心線lx軸、縦倍率の方向をY軸とし
て、粗さ曲線y = f (xiで表わしたとき、次の
式で与えられた値をμmで表わす。但し、カットオフ値
はI Opmである。Raは縦方向に5点、横方向に5
点の計10点の平均値をめた。
(3) Center line average surface roughness (Ra) Measured as follows using a surface roughness measuring instrument (SFi-JFK) manufactured by Koita Research Institute. The tip radius of the stylus was 2 μm, and the load was 30η. A part with a reference length L (, 2, 7wn) is extracted from the film cross-sectional curve in the direction of its center line, and the roughness curve is created by taking the center line of this extracted part as the lx axis and the vertical magnification direction as the y axis. y = f (When expressed as xi, the value given by the following formula is expressed in μm. However, the cutoff value is I Opm. Ra is 5 points in the vertical direction and 5 points in the horizontal direction.
The average value of a total of 10 points was calculated.

一!jJJf: l f(x)f ax(4)極限粘度
(〔ダ〕) 試料200■をフェノール/テトラクロロエタン=rO
/10の混合溶液20ydに加え、約/10℃で1時間
加熱溶解後30℃で測定した。
one! jJJf: l f(x) f ax (4) Intrinsic viscosity ([da]) Sample 200■ is phenol/tetrachloroethane = rO
The mixture was added to 20 yd of a mixed solution of /10 and dissolved by heating at about /10°C for 1 hour, and then measured at 30°C.

(5)複屈折率 カールツアイス社製偏光顕微鏡によシ、リターデーショ
ンを測定し、次式により複屈折率(Δn)をめた。
(5) Birefringence The retardation was measured using a polarizing microscope manufactured by Carl Zeiss, and the birefringence (Δn) was calculated using the following formula.

Δn=− 但し R;リターデーション d;フィルム厚さ く6) フィルム温度 バーンズ社製赤外線放射温度計によシ延伸部のフィルム
温度を測定した。
Δn=− where R; retardation d; film thickness 6) Film temperature The temperature of the film at the stretched portion was measured using an infrared radiation thermometer manufactured by Burns.

実施例1 (ポリエステルの製造法) ジメチルテレフタレート100部、エチレンクリコール
70部、酢酸カルシウム−水塩0.10部及び酢醪すチ
ウムニ水塩0./7部を反応器に仕込み、加熱昇温する
と共にメタノールを留出させてエステル交換反応を行な
い、反応開始後釣り時間を要して230T:、に達せし
め、実質的にエステル交換を終了した。
Example 1 (Manufacturing method of polyester) 100 parts of dimethyl terephthalate, 70 parts of ethylene glycol, 0.10 part of calcium acetate hydrate, and 0.1 part of thiium dihydrate in vinegar. /7 parts was charged into a reactor, heated to raise the temperature, and methanol was distilled off to perform a transesterification reaction.After the start of the reaction, it took some time to reach 230T, and the transesterification was substantially completed. .

次にこの反応生成物にトリエチルホスフェート0..3
!部を添の口し、更に重縮合触媒として三酸化アンチモ
ンo、or部を添加した後、常法に従って重合し、ポリ
エステルを得た。該ポリエステル中には粒径およそ0.
3−/μ程度の均一で微細なカルシウム、リチウム及び
リン元素を含む析出粒子が多数間められた。該ポリエス
テルAは〔η) = o、b sであった。
Next, 0.0% triethyl phosphate was added to the reaction product. .. 3
! After addition of o and or parts of antimony trioxide as a polycondensation catalyst, polymerization was carried out according to a conventional method to obtain a polyester. The polyester has a particle size of approximately 0.
A large number of uniform and fine precipitated particles containing calcium, lithium, and phosphorus elements of about 3-/μ were interspersed. The polyester A had [η) = o, b s.

別途このような内部析出粒子を殆んど含まないポリエス
テルB([η”J=0.61)を製造し、先のポリエス
テルとA/B = i/l (重量比)の割合で混合し
製膜用原料とした。
Separately, polyester B ([η”J=0.61) containing almost no such internal precipitated particles was produced and mixed with the above polyester at a ratio of A/B = i/l (weight ratio). It was used as a raw material for membranes.

(製膜法) ポリエチレンテレフタレー)未[伸フィルムを縦方向延
伸装置とテンター(横方向延伸及び熱固足装置)を用い
て二軸延伸フィルムに製膜した。以下に製膜法の詳細を
述べる。
(Film Forming Method) The unstretched polyethylene terephthalate film was formed into a biaxially stretched film using a longitudinal stretching device and a tenter (lateral stretching and heat setting device). The details of the film forming method are described below.

先ず原料ポリエステルを乾燥後、溶融押出し、厚さ1A
O−200μの未延伸フィルム(〔η〕=0.62)を
得た。次いで、縦延伸装置にこれを通し、最初の数本の
ロールでフィルムをrj℃に予熱した後低速ロールと高
速ロールとの周速差によシ、ロール温度/30℃で2.
3倍第1段延伸しΔfll = 0.006のフィルム
を得た。引き続き第一段目の低速ロールと高速ロールと
の周速差でロール温度rz℃で2.0倍に第2段延伸し
てΔn2 = 0.OF Oのフィルムを得た。更に。
First, after drying the raw material polyester, it is melt extruded to a thickness of 1A.
An unstretched film ([η]=0.62) of O-200μ was obtained. Next, the film was passed through a longitudinal stretching device, and after being preheated to rj°C with the first few rolls, the film was stretched to 2.0°C at a roll temperature of 30°C due to the difference in circumferential speed between the low speed roll and the high speed roll.
The film was stretched 3 times in the first stage to obtain a film with Δfll = 0.006. Subsequently, the second stage stretching is carried out by 2.0 times at a roll temperature of rz°C using the peripheral speed difference between the first stage low speed roll and the high speed roll, and Δn2 = 0. A film of OFO was obtained. Furthermore.

同フィルムを第3段目の延伸ロールでロール温度りj℃
延伸倍率八へよ倍で第3段延伸してΔna= 0.OA
 jのフィルムを得た。なお、第1段延伸および第3段
延伸における延伸ロールの間では、赤外線ヒーターを併
用して加熱を行ってお夛、赤外線ヒーターの反対面から
赤外放射温度計で第1段延伸部及び第3段延伸部のフィ
ルム温度を測定したところ、それぞれ1.20℃および
103℃であった。かくして得られた縦延伸フィルムを
テンターで1tIo℃で3.1倍に横方向に延伸し1.
z ircで熱固定して厚さ/jμの二軸延伸フィルム
を得た。
The same film was passed through the third stage of stretching rolls to a temperature of J℃.
The third stage of stretching was carried out at a stretching ratio of 8 to 8 to give Δna=0. OA
A film of j was obtained. In addition, between the stretching rolls in the first-stage stretching and the third-stage stretching, an infrared heater is used in combination to heat the rolls, and an infrared radiation thermometer is used to measure the first-stage stretching and the The film temperatures in the three-stage stretching section were measured to be 1.20°C and 103°C, respectively. The thus obtained longitudinally stretched film was stretched in the transverse direction by a factor of 3.1 at 1tIo°C using a tenter.
A biaxially stretched film having a thickness of /jμ was obtained by heat setting with zirc.

実施例コ 第λ段延伸温度をrr℃から102℃とし、延伸倍率を
1.j倍とした以外は実施例1と同様にして厚さtrμ
の二軸延伸フィルムを得た。
Example K The λ-th stage stretching temperature was set from rr°C to 102°C, and the stretching ratio was 1. The thickness trμ was made in the same manner as in Example 1 except that it was multiplied by j.
A biaxially stretched film was obtained.

比較例1 実施例/と同様子熱を行ない、第1段延伸として、延伸
ロール温度/30℃延伸倍率3.q倍で第1段延伸を行
ない、Δn=o、oaoのフィルムを得たのち、第2段
目の延伸ロール間でロール温度り5℃で/、、21倍延
伸を行ないΔn=0.063の縦延伸フィルムを得た。
Comparative Example 1 Child heating was carried out in the same manner as in Example/, and as the first stage stretching, the stretching roll temperature/30°C stretching ratio was 3. After performing the first stage stretching at q times to obtain a film with Δn=o, oao, the second stage stretching was performed at a roll temperature of 5°C between the second stage stretching rolls, and 21 times stretching, Δn=0.063. A longitudinally stretched film was obtained.

横延伸以後は実施例1と同様の処理を行ない、厚さ/j
μの二軸延伸フィルムを得た。第1段目および第2段延
伸においてはともに赤外線ヒーター加熱を併用した。
After the lateral stretching, the same treatment as in Example 1 was performed, and the thickness/j
A biaxially stretched film of μ was obtained. Infrared heater heating was used in both the first and second stage stretching.

比較例λ 実施例1と同様子熱を行ない第1段目の延伸ロールで赤
外線ヒーター加熱を併用し、ロール−で横延伸温度/1
0℃、横延伸倍率3.2倍で横延伸したのち2/j℃で
熱固定して厚さljμの二軸延伸フィルムを得た。
Comparative Example λ Child heating was performed in the same manner as in Example 1, and infrared heater heating was also used on the first drawing roll, and the transverse drawing temperature was set at /1 with the roll.
After transverse stretching at 0° C. and a transverse stretching ratio of 3.2 times, the film was heat-set at 2/j° C. to obtain a biaxially stretched film having a thickness of ljμ.

以上の各フィルムの性質を表1に示す。Table 1 shows the properties of each of the above films.

表1から明らかなように縦延伸後のΔnを低くすること
により、平坦易滑性が良好で、かつ3段階延伸を行なう
ことによって縦延伸後のΔnが低いにもかかわらず延伸
倍率が極めて高くかつ厚さ斑の小さい、磁気テープ用に
適したフィルムが得られる。
As is clear from Table 1, by lowering Δn after longitudinal stretching, the flatness and smoothness are good, and by performing three-step stretching, the stretching ratio is extremely high despite the low Δn after longitudinal stretching. In addition, a film suitable for magnetic tape with small thickness unevenness can be obtained.

表 lTable l

Claims (1)

【特許請求の範囲】 (リ ポリエチレンテレフタレートを主成分とする実質
的に非晶状態のフィルムをまず縦方向に複屈折率(Δn
+)が0.00I No、020となるように少くとも
1段階で延伸しく第1段延伸)、ついで縦方向に複屈折
率(Δzu)が0,0/j〜0.011となるように少
くとも1段階で延伸しく第2段延伸)、その後頁に縦方
向に複屈折率(Δns)がo、oao−o、oroとな
るように、少くとも1段階で延伸して(第3段延伸)、
横延伸前の縦延伸倍率が1.1.0倍以上となるように
縦延伸した後、横延伸することを特徴とする二軸延伸ポ
リエステルフィルムの製造方法。 (2) 第1段延伸をtoo℃以上izo℃以下で、第
2段延伸をざO℃以上lコO℃以下で第3段延伸なti
c以上1.20℃以下で延伸することを特徴とする特許
請求の範囲97項記載の二軸延伸ポリエステルフィルム
の製造方法。 (3)第1段延伸倍率が少くともハタ倍である特許請求
の範囲第1項または第2項記載の二軸延伸ポリエステル
フィルムの製造方法。
[Claims]
+) is 0.00I No. 020 (first stage stretching), and then the birefringence index (Δzu) in the longitudinal direction is 0.0/j to 0.011. Stretching is performed in at least one stage (second stage stretching), and then stretched in at least one stage (third stage stretching) so that the birefringence index (Δns) becomes o, oao-o, oro in the longitudinal direction of the page. stretching),
A method for producing a biaxially stretched polyester film, which comprises longitudinally stretching the film so that the longitudinal stretching ratio before the transverse stretching is 1.1.0 times or more, and then transversely stretching the film. (2) The first stage stretching is carried out at a temperature of 0°C or more and 10°C or less, and the 3rd stage drawing is carried out at a temperature of 0°C or more and 0°C or less.
98. The method for producing a biaxially stretched polyester film according to claim 97, wherein the stretching is carried out at a temperature of 1.20° C. or higher and 1.20° C. or lower. (3) The method for producing a biaxially stretched polyester film according to claim 1 or 2, wherein the first stage stretching ratio is at least 100%.
JP8497384A 1984-04-26 1984-04-26 Manufacture of biaxially oriented polyester film Granted JPS60228123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8497384A JPS60228123A (en) 1984-04-26 1984-04-26 Manufacture of biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8497384A JPS60228123A (en) 1984-04-26 1984-04-26 Manufacture of biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JPS60228123A true JPS60228123A (en) 1985-11-13
JPH0371976B2 JPH0371976B2 (en) 1991-11-15

Family

ID=13845565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8497384A Granted JPS60228123A (en) 1984-04-26 1984-04-26 Manufacture of biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JPS60228123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867937A (en) * 1987-02-17 1989-09-19 Minnesota Mining And Manufacturing Company Process for producing high modulus film
US5139727A (en) * 1988-11-11 1992-08-18 Daifoil Company, Limited Process for producing biaxially oriented polyester film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548672A (en) * 1977-06-21 1979-01-23 Toray Ind Inc Production of polyester film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548672A (en) * 1977-06-21 1979-01-23 Toray Ind Inc Production of polyester film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867937A (en) * 1987-02-17 1989-09-19 Minnesota Mining And Manufacturing Company Process for producing high modulus film
US5139727A (en) * 1988-11-11 1992-08-18 Daifoil Company, Limited Process for producing biaxially oriented polyester film

Also Published As

Publication number Publication date
JPH0371976B2 (en) 1991-11-15

Similar Documents

Publication Publication Date Title
US4617164A (en) Process for stretching polyester films
JPS5936851B2 (en) Manufacturing method of polyester film
JPS60228123A (en) Manufacture of biaxially oriented polyester film
JP2611421B2 (en) Method for producing polyester film
JPH0348017B2 (en)
US4610833A (en) Process for preparing biaxially stretched polyester films
JPS6243857B2 (en)
JPS60176743A (en) Manufacture of biaxially oriented polyester film
JPS6061233A (en) Manufacture of biaxially oriented polyester film
JP2611425B2 (en) Method for producing low shrinkage polyester film
JPH0355293B2 (en)
KR0140299B1 (en) Process for preparing biaxially oriented polyester film
JPH01165423A (en) Preparation of biaxially oriented polyester film
JPH0367630A (en) Biaxially oriented polyester film
KR970002307B1 (en) Forming method for biaxial polyester film
JPH0773877B2 (en) Method for producing biaxially oriented polyester film
JPS6147235A (en) Manufacturing method of polyester film
JP2002018948A (en) Method for manufacturing stretched film
KR0140311B1 (en) Process for preparing biaxially oriented polyester film
KR0140295B1 (en) Process for preparing biaxially oriented polyester film
JP2825728B2 (en) Method for producing biaxially oriented polyester film
JPS6360731A (en) Preparation of biaxially oriented polyethylene-2,6-naphthalate film having high strength in longitudinal direction
JPS6360732A (en) Polyethylene-2,6-naphthalate film
JPH0425855B2 (en)
JPH0410919A (en) Manufacture of polyethylene-2,6-naphthalate film