JPH0371976B2 - - Google Patents

Info

Publication number
JPH0371976B2
JPH0371976B2 JP59084973A JP8497384A JPH0371976B2 JP H0371976 B2 JPH0371976 B2 JP H0371976B2 JP 59084973 A JP59084973 A JP 59084973A JP 8497384 A JP8497384 A JP 8497384A JP H0371976 B2 JPH0371976 B2 JP H0371976B2
Authority
JP
Japan
Prior art keywords
stretching
film
stage
longitudinal
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59084973A
Other languages
Japanese (ja)
Other versions
JPS60228123A (en
Inventor
Takeo Kanezaki
Shigeo Uchiumi
Yoshinojo Tomitaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP8497384A priority Critical patent/JPS60228123A/en
Publication of JPS60228123A publication Critical patent/JPS60228123A/en
Publication of JPH0371976B2 publication Critical patent/JPH0371976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二軸延伸ポリエステルフイルムの製
造方法に関する。更に詳しくは、平坦易滑性・接
着性に優れた二軸配向ポリエチレンテレフタレー
トフイルムの高速製膜法に関する。 〔従来の技術〕 ポリエステル二軸延伸フイルムは、優れた機械
的性質、熱的性質、電気的性質、耐薬品性を有す
るため各種用途に多用されているが、とりわけ磁
気テープ用ベースフイルムとして極めて有用なフ
イルムである。 特にビデオの急激な普及に伴い、高品質で安価
なビデオ用磁気テープが要望されている。こうし
た要望をみたすために、ベースフイルムとしての
高品質を維持しながら、いかにコストを下げるか
が最大の課題となつてきている。 これまで、磁気テープ用ベースフイルムの高品
質化は、多種多用の方法で達成されてきたが、な
かでも、通常用いられる一段延伸法に比べて縦延
伸温度を上げ、縦延伸倍率を低くしたフイルムが
フイルムの平坦易滑化、磁性層との接着性等に極
めて優れていることが知られている。(特開昭57
−66936、57−189822、58−23323、58−53419、
58−215722、58−78729および58−160123号公報
等)。 〔発明が解決しようとする問題点〕 上記した方法による高品質化が実現されつつあ
るが、上記した方法で得られるフイルムは、縦延
伸方向の配向を低めに押さえ、二軸延伸固定後の
面配向度を極力低くしたフイルムであるため、通
常の延伸処方に比べると、縦方向の延伸倍率を低
くしなければならないという欠点が存在した。し
かるにポリエステルフイルム製造時の生産性は、
巻き取りスピードつまり縦方向の総合延伸倍率に
強く依存するので、通常の延伸倍率に比べて2〜
3割製膜スピードを遅くする上記方法は、生産性
を犠牲にしたものである。 そこで本発明者らは、上記欠点を解消すべく特
願昭58−168969等において、商品質化を維持して
延伸倍率を上げる方法を提案してきた。しかしな
がら、該延伸法は、縦延伸を2段階で行うので、
横延伸前の縦延伸倍率が4.0倍程度と、従来から
知られている通常の延伸倍率とほぼ等しいもので
ある。現在では縦延伸後のΔnを0.080以上にする
のであれば、上記出願の方法に従つても、また、
他の延伸方法(特開昭50−75、50−136365、およ
び54−8672号公報等)によつても、5倍以上の延
伸倍率が達成されている。しかるに、先の提案の
ごとく横延伸前の縦延伸倍率が高々4.0倍程度で
は、コストを現状維持にとどめることはできて
も、到底これを下げるのは不可能であつた。そこ
で、高品質を維持しつつ、コストを下げるべく、
縦延伸後の複屈折率をできるだけ低く押さえた状
態で更に横延伸前の縦方向延伸倍率を高めること
が強く要求されている。 〔問題点を解決するための手段〕 本発明者らは、このような要請に答えるべく、
鋭意検討の結果、縦方向の延伸段数を3段階以上
にし、しかも最初の縦延伸に、延伸しても配向が
生じないいわゆるスーパードロー延伸を取り入
れ、しかも縦延伸後の複屈折率を低く押さえるこ
とにより、平坦易滑性、磁性層との接着性等磁気
テープの品質を高く保持したまま、厚さ斑を悪化
させることなくしかも高倍率で延伸できる方法を
見出したものである。 すなわち本発明の要旨は、1ポリエチレンテレ
フタレートを主成分とする実質的に非晶状態のフ
イルムをまず縦方向に複屈折率(Δn1)が0.001〜
0.020となるように少くとも1段階で延伸し(第
1段延伸)、ついで縦方向に複屈折率(Δn2)が
0.015〜0.055となるように少くとも1段階で延伸
し(第2段延伸)、その後更に縦方向に複屈折率
(Δn3)が0.040〜0.080となるように、少くとも1
段階で延伸して(第3段延伸)、横延伸前の縦延
伸倍率が4.0倍以上となるように縦延伸した後横
延伸することを特徴とする二軸延伸ポリエステル
フイルムの製造方法である。 本発明に用いるポリエステルとは、エチレンテ
レフタレート単位を80重量%以上含むポリエステ
ルであつて、残りの20重量%以下は、共重合ポリ
エステルまたは他のポリマーであつてもよい。該
ポリエステル中には例えばリン酸、亜リン酸およ
びそれらのエステル等の安定剤や二酸化チタン、
微粒子状シリカ、カオリン等の添加剤、滑剤など
が含まれていてもよい。 本発明においては、ポリエステル未延伸フイル
ムを、まずΔn1が0.001〜0.020となるように縦方
向に少くとも1段階で延伸する。本段階の縦延伸
の目的は、フイルムの結晶化、配向を出来るだけ
押さえて、高倍率延伸することである。従つて、
延伸倍率が低いと、延伸の高速化に寄与しない。
第1段の好ましい延伸倍率は、1.9倍以上である。
一方、第1段で高倍率延伸し、かつ結晶化を押さ
えてΔn1を0.001以下にするのは事実上不可能であ
る。逆に延伸倍率を高めげΔn1を0.020以上にする
と2段目以降の延伸倍率が高くならないので、結
局全体としての縦延伸倍率を高めることができな
いので好ましくない。延伸倍率を高くして延伸
し、Δn1を0.001〜0.020の範囲にするには、いわ
ゆるスーパードロー延伸を適用しなければなら
ず、100℃以上150℃以下で延伸するのが好まし
い。100℃以下では配向が進みすぎて好ましくな
く、一方150℃以上では結晶化が進みすぎて好ま
しくない。このようにして得られたフイルム(以
下「B−0フイルム」という。)を延伸後ガラス
転移温度以下に冷却すると、厚みが均一化される
ので好ましい。 上記B−0フイルムの配向が低いほど、次工程
での同フイルムの延伸性が改良されるので、必要
に応じて配向緩和のために熱処理をすることも可
能である。その際の配向緩和のための熱処理工程
は、1段目の延伸を終えたフイルムを表面が100
〜150℃にコントロールされたロールに3秒以下
接触させながら1.03倍以上の延伸を行なうもので
ある。このような配向緩和処理を含める場合は、
配向緩和後のフイルム(以下「B−1フイルム」
という。)のΔn1は0.001〜0.020の範囲になければ
ならない。上記緩和工程においてロール表面温度
が100℃未満では、配向緩和効果が発揮されない
し、150℃以上では厚み均一性が悪化する。なお、
配向緩和を長時間行うと、結晶化が進みすぎて、
横延伸性を悪化させる恐れがある。上記した第1
段延伸後のフイルムの好ましいΔn1の範囲は0.001
から0.012未満である。 かくして得られたΔn1が0.001から0.020の範囲
にあるB−0もしくはB−1フイルムを、ついで
好ましくは、80℃〜120℃の温度、1.3〜3.5倍の
延伸倍率で複屈折率(Δn2)が0.015〜0.055とな
るように再度縦方向に延伸する。 第2段延伸後のフイルムのΔn2が0.015より低い
場合には、第3段延伸でΔn3を0.080以下にすると
縦方向の厚さ斑が極めて悪化するので好ましくな
い。一方、第2段延伸でΔn2を0.055以上とする
と、第2段延伸後の厚さ斑が、最終段工程で矯正
し得ない程度にまで悪化するので好ましくない。
しかるに、第2段延伸後のΔn2が本発明方法に従
つて、0.015〜0.055の範囲にあると、第2段延伸
後の厚さ斑は極めて良好とは言えないものの、驚
くべきことには次の最終段延伸工程で、厚み斑を
急激に矯正することができる。なお、第3段延伸
をすることなくΔn2を0.015〜0.055の範囲にした
ままで縦延伸を終えて横延伸しただけでは、フイ
ルムでの厚さ斑が悪化しかつ縦方向の機械的性質
が不足するため、好ましくない。一方、厚さ斑お
よび機械的強度の不足を補うための第2段延伸後
のΔn2が0.015〜0.055の範囲のフイルムを横延伸
し、更にその後再縦延伸する方法が知られてい
る。(特開昭58−118220号公報等)しかしながら、
同方法では、再延伸をするためバランスフイルム
用に再延伸機が必要となり、当然設備費が高くな
る欠点がある。なお、本発明方法における第2段
延伸後のΔn2は、好ましくは0.020〜0.045、更に
好ましくは0.025〜0.045の範囲にある。 かくして、平坦易滑性、厚み斑ともに優れたフ
イルムを得るためには、本発明方法に従い、最終
段縦延伸前つまり第2段延伸後のΔn2を0.015〜
0.055の間で止め、少くとも更に第3段目の縦延
伸を行ない、その後横延伸工程に移ることが必須
である。 第2段延伸の温度が80℃以下では、ネツキング
延伸となりフイルムに厚薄がつき好ましくない。
一方、120℃以上では、縦延伸後の結晶化度が高
くなりすぎて、横延伸が困難となる。また、低温
程延伸性がよいので、更に好ましくは105℃以下
である。Δn1が0.020以下のB−0またはB−1フ
イルムからΔn2が0.015〜0.055の第2段延伸後の
フイルムを作る第2段延伸の延伸段数は1〜3段
である。つまりΔn2=0.015から0.055の間で多数
に延伸することも可能である。但し、好ましくは
1段で延伸するのが良い。また、この過程での延
伸倍率が1.3以下では延伸倍率向上の寄与が少な
く本目的には不適である。一方、3.5倍以上とい
う高延伸倍率で延伸するには、高温で延伸する必
要があるが、その結果縦延伸後の結晶化度が高く
なりすぎるので、やはり横延伸が困難となり好ま
しくない。当然、この過程において配向緩和過程
を適用するのが好ましい。かくして得られたフイ
ルムを以下、「B−2」という。 ついで、第3段延伸として85℃〜120℃以下の
温度で好ましくは1.1〜2.0倍の延伸倍率で複屈折
率(Δn3)が0.080を越えないように縦方向に延伸
する。縦方向の最終段延伸工程における延伸温度
が85℃より低いとΔn3が0.080以下であつても二軸
延伸フイルムの厚さ斑が改良されないし、120℃
より高いと横延伸性を悪化させる。従つて、厚さ
斑を改良するためには、90℃以上が好ましい。更
に好ましくは、95℃以上である。更に第3段延伸
においては、Δn3が0.050から0.080、好ましくは
0.055から0.075更に好ましくは0.060から0.070を
越えないように延伸することが、平坦易滑化、横
延伸時の破断防止のためには有利である。第3段
延伸は、通常縦延伸工程の最終段階として実施さ
れ1段階で、短時間に行うことが好ましい。 上記した縦延伸工程で用いるロール表面は、粘
着しやすいポリエステルを高温で延伸するので、
セラミツクまたは、エラストマー(例えば、6フ
ツ化プロピレンとフツ化ビニリデンを主とする共
重合体、シリコーン樹脂、エチレンプロピレン共
重合系、クロロスルホン化ポリエチレンなど)あ
るいは、四フツ化エチレン・パーフルオロプロピ
ルビニルエーテル共重合体、四フツ化エチレン等
のフツ素樹脂または四フツ化エチレンにポリイミ
ド等を充填させたもの等で、被覆されていること
が好ましい。なお、熱伝達係数が大きく、粘着が
起きにくい材質なら上記の材質以外でも使用し得
る。なお、上記縦延伸工程での加熱は、上記した
ロールからの伝熱以外の方法(例えばラジエーシ
ヨンヒーター、熱風、熱媒中)等を組合わせても
よい。 以上述べた方法で得られる縦延伸フイルムは、
そのままでも使用できるが、通常は、常法によ
り、延伸温度90〜140℃、延伸倍率2.5〜5.0倍で
横方向に延伸し、さらに150〜250℃で熱固定し
て、寸法安定性の優れたフイルムを得る。更に、
再延伸を行なつて縦方向テンサフイルム、横方向
テンサフイルム、縦横方向テンサフイルムを作る
こともできる。例えば、再縦延伸の場合は、横延
伸を80〜140℃、2.5〜4.5倍の倍率で行ない、縦
方向に広幅ロールを用いて90〜170℃で1.1〜3.0
倍延伸後、160〜250℃で熱処理すると良い。 本発明方法に従つて、横延伸前の縦延伸工程を
3段階以上で行い、かつ、横延伸前の縦延伸倍率
を4.0倍以上、好ましくは、4.5倍以上にする。 〔発明の効果〕 本発明方法によれば、厚さむらを増幅させるこ
となく、しかも磁気テープ特にビデオ用ベースフ
イルムとして適した平坦易滑性、接着性に優れた
性質を維持しながら、横延伸前の縦延伸倍率を極
めて高くすることができるので、製造コストを低
減できる。 〔実施例〕 以下実施例によつて本発明を説明するが、フイ
ルムの諸性質の測定方法は、以下の通りである。 (1) 厚さ斑 安立電気社製連続フイルム厚さ測定器により、
二軸延伸フイルムの横方向中央部を縦方向に沿つ
て測定し、次式により算出した。 厚さ斑=フイルム最大厚さ−フイルム最小厚さ
/フイルム平均厚さ×100(%) (2) 動摩擦係数(μd) 固定した硬質クロムメツキ金属ロール(直径6
mm)に、フイルムを巻き付角135°(θ)で接触さ
せ、53g(T2)の荷重を一端にかけて1m/min
の速度でこれを走行させて他端の抵抗力(T1
(g))を測定し、次式により走行中の摩擦係数を
求めた。 μd=1/θln(T1/T2)=0.424ln(T1/53) (3) 中心線平均表面粗さ(Ra) 小坂研究所社製表面粗さ測定器(SE−3FK)
によつて次のように求めた。触針の先端半径は
2μm、荷重は30mgである。フイルム断面曲線から
その中心線の方向に基準長さL(2.5mm)の部分を
抜き取り、この抜き取り部分の中心線をX軸、縦
倍率の方向をY軸として、粗さ曲線y=f(x)
で表わしたとき、次の式で与えられた値をμmで
表わす。但し、カツトオフ値は80μmである。Ra
は縦方向に5点、横方向に5点の計10点の平均値
を求めた。 1/L∫L 0|f(x)|dx (4) 極限粘度(〔η〕) 試料200mgをフエノール/テトラクロロエタン
=50/50の混合溶液20mlに加え、約110℃で1時間
加熱溶解後30℃で測定した。 (5) 複屈折率 カールツアイス社製偏光顕微鏡により、リター
デーシヨンを測定し、次式により複屈折率(Δn)
を求めた。 Δn=R/d 但し R;リターデーシヨン d;フイルム厚さ (6) フイルム温度 バーンズ社製赤外線放射温度計により延伸部の
フイルム温度を測定した。 実施例 1 (ポリエステルの製造法) ジメチルテレフタレート100部、エチレングリ
コール70部、酢酸カルシウム一水塩0.10部及び酢
酸リチウム二水塩0.17部を反応器に仕込み、加熱
昇温すると共にメタノールを留出させてエステル
交換反応を行ない、反応開始後約4時間を要して
230℃に達せしめ、実質的にエステル交換を終了
した。 次にこの反応生成物にトリエチルホスフエート
0.35部を添加し、更に重縮合触媒として三酸化ア
ンチモン0.05部を添加した後、常法に従つて重合
し、ポリエステルを得た。該ポリエステル中には
粒径およそ0.5〜1μ程度の均一で微細なカルシウ
ム、リチウム及びリン元素を含む析出粒子が多数
認められた。該ポリエステルAは〔η〕=0.65で
あつた。 別途このような内部析出粒子を殆んど含まない
ポリエステルB(〔η〕=0.65)を製造し、先のポ
リエステルとA/B=1/1(重量比)の割合で混
合し製膜用原料とした。 (製膜法) ポリエチレンテレフタレート未延伸フイルムを
縦方向延伸装置とテンター(横方向延伸及び熱固
定装置)を用いて二軸延伸フイルムに製膜した。
以下に製膜法の詳細を述べる。 先ず原料ポリエ
ステルを乾燥後、溶融押出し、厚さ160〜200μの
未延伸フイルム(〔η〕=0.62)を得た。次いで、
縦延伸装置にこれを通し、最初の数本のロールで
フイルムを85℃に予熱した後低速ロールと高速ロ
ールとの周速差により、ロール温度130℃で2.3倍
第1段延伸し、Δn1=0.006のフイルムを得た。引
き続き第2段目の低速ロールと高速ロールとの周
速差でロール温度85℃で2.0倍に第2段延伸して
Δn2=0.040のフイルムを得た。更に、同フイルム
を第3段目の延伸ロールでロール温度95℃延伸倍
率1.25倍で第3段延伸してΔn3=0.063のフイルム
を得た。なお、第1段延伸および第3段延伸にお
ける延伸ロールの間では、赤外線ヒーターを併用
して加熱を行つており、赤外線ヒーターの反対面
から赤外放射温度計で第1段延伸部及び第3段延
伸部のフイルム温度を測定したところ、それぞれ
120℃および105℃であつた。かくして得られた縦
延伸フイルムをテンターで140℃で3.8倍に横方向
に延伸し、215℃で熱固定して厚さ15μの二軸延
伸フイルムを得た。 実施例 2 第2段延伸温度を85℃から102℃とし、延伸倍
率を2.5倍とした以外は実施例1と同様にして厚
さ15μの二軸延伸フイルムを得た。 比較例 1 実施例1と同様予熱を行ない、第1段延伸とし
て、延伸ロール温度130℃延伸倍率3.4倍で第1段
延伸を行ない、Δn=0.040のフイルムを得たの
ち、第2段目の延伸ロール間でロール温度95℃で
1.25倍延伸を行ないΔn=0.063の縦延伸フイルム
を得た。横延伸以後は実施例1と同様の処理を行
ない、厚さ15μの二軸延伸フイルムを得た。第1
段目および第2段延伸においてはともに赤外線ヒ
ーター加熱を併用した。 比較例 2 実施例1と同様予熱を行ない第1段目の延伸ロ
ールで赤外線ヒーター加熱を併用し、ロール温度
85℃で3.7倍に1段階で延伸を行ないΔn=0.105の
フイルムを得た。これをテンターで横延伸温度
110℃、横延伸倍率3.9倍で横延伸したのち215℃
で熱固定して厚さ15μの二軸延伸フイルムを得
た。 以上の各フイルムの性質を表1に示す。 表1から明らかなように縦延伸後のΔnを低く
することにより、平坦易滑性が良好で、かつ3段
階延伸を行なうことによつて縦延伸後のΔnが低
いにもかかわらず延伸倍率が極めて高くかつ厚さ
斑の小さい、磁気テープ用に適したフイルムが得
られる。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a biaxially oriented polyester film. More specifically, the present invention relates to a high-speed method for forming a biaxially oriented polyethylene terephthalate film having excellent flatness, smoothness, and adhesiveness. [Prior Art] Polyester biaxially stretched film has excellent mechanical properties, thermal properties, electrical properties, and chemical resistance, and is therefore widely used for various purposes, but is particularly useful as a base film for magnetic tapes. It is a great film. In particular, with the rapid spread of video, there is a demand for high quality and inexpensive video magnetic tapes. In order to meet these demands, the biggest challenge has become how to reduce costs while maintaining the high quality of the base film. Until now, high quality base films for magnetic tapes have been achieved using a variety of methods, but among them, a film that increases the longitudinal stretching temperature and lowers the longitudinal stretching ratio compared to the commonly used one-step stretching method has been used. is known to be extremely excellent in flattening and smoothing the film, adhesion to the magnetic layer, etc. (Unexamined Japanese Patent Publication 1987)
−66936, 57−189822, 58−23323, 58−53419,
58-215722, 58-78729 and 58-160123, etc.). [Problems to be solved by the invention] Although high quality is being realized by the above-mentioned method, the film obtained by the above-mentioned method has a low orientation in the longitudinal direction, and the surface after biaxial stretching and fixing is Since the film has the lowest degree of orientation, it has the disadvantage that the stretching ratio in the longitudinal direction must be lower than that of a normal stretching recipe. However, the productivity when manufacturing polyester film is
Since it strongly depends on the winding speed, that is, the overall stretching ratio in the longitudinal direction, it is
The above method of reducing the film forming speed by 30% sacrifices productivity. Therefore, in order to eliminate the above-mentioned drawbacks, the present inventors have proposed in Japanese Patent Application No. 58-168969 and other documents a method of increasing the stretching ratio while maintaining product quality. However, since this stretching method performs longitudinal stretching in two stages,
The longitudinal stretching ratio before the transverse stretching is approximately 4.0 times, which is approximately the same as the conventionally known normal stretching ratio. Currently, if Δn after longitudinal stretching is to be 0.080 or more, even if the method of the above application is followed,
Stretching ratios of 5 times or more have also been achieved by other stretching methods (Japanese Patent Application Laid-open Nos. 50-75, 50-136365, and 54-8672, etc.). However, as in the previous proposal, if the longitudinal stretching ratio before lateral stretching was at most 4.0 times, it would be impossible to reduce the cost even if it was possible to maintain the current level. Therefore, in order to reduce costs while maintaining high quality,
There is a strong demand to further increase the longitudinal stretching ratio before transverse stretching while keeping the birefringence after longitudinal stretching as low as possible. [Means for solving the problem] In order to respond to such requests, the present inventors have
As a result of intensive study, we decided to increase the number of stretching steps in the longitudinal direction to three or more stages, incorporate so-called super draw stretching in which no orientation occurs during the initial longitudinal stretching, and keep the birefringence index low after longitudinal stretching. As a result, we have discovered a method that allows the magnetic tape to be stretched at a high magnification without worsening uneven thickness while maintaining high quality of the magnetic tape, such as flatness and smoothness and adhesion to the magnetic layer. That is, the gist of the present invention is to first prepare a substantially amorphous film containing polyethylene terephthalate as a main component so that the birefringence (Δn 1 ) is 0.001 to 1 in the longitudinal direction.
0.020 in at least one stage (first stage stretching), and then the birefringence (Δn 2 ) in the longitudinal direction is
Stretched in at least one step so that the birefringence (Δn 3 ) becomes 0.015 to 0.055 (second stage stretching), and then further stretched at least 1 in the longitudinal direction so that the birefringence (Δn 3 ) becomes 0.040 to 0.080.
This is a method for producing a biaxially stretched polyester film, which is characterized by stretching in stages (third stage stretching), longitudinally stretching the film so that the longitudinal stretching ratio before the transverse stretching is 4.0 times or more, and then transversely stretching the film. The polyester used in the present invention is a polyester containing 80% by weight or more of ethylene terephthalate units, and the remaining 20% by weight or less may be a copolyester or other polymer. The polyester contains stabilizers such as phosphoric acid, phosphorous acid and their esters, titanium dioxide,
Additives such as particulate silica and kaolin, lubricants, and the like may be included. In the present invention, an unstretched polyester film is first stretched in the longitudinal direction in at least one step so that Δn 1 is 0.001 to 0.020. The purpose of the longitudinal stretching at this stage is to suppress the crystallization and orientation of the film as much as possible, and to stretch the film at a high magnification. Therefore,
If the stretching ratio is low, it will not contribute to increasing the stretching speed.
The preferred stretching ratio in the first stage is 1.9 times or more.
On the other hand, it is virtually impossible to draw at a high magnification in the first stage and suppress crystallization to reduce Δn 1 to 0.001 or less. On the other hand, if the stretching ratio is increased and Δn 1 is set to 0.020 or more, the stretching ratio in the second and subsequent stages will not be increased, which is not preferable since the overall longitudinal stretching ratio cannot be increased. In order to stretch at a high draw ratio and make Δn 1 in the range of 0.001 to 0.020, so-called super draw stretching must be applied, and it is preferable to stretch at a temperature of 100°C or higher and 150°C or lower. At 100°C or lower, orientation progresses too much, which is undesirable. On the other hand, at 150°C or higher, crystallization progresses too much, which is undesirable. It is preferable to cool the film thus obtained (hereinafter referred to as "B-0 film") to a temperature below the glass transition temperature after stretching, since the thickness can be made uniform. The lower the orientation of the B-0 film, the better the stretchability of the film in the next step, so it is also possible to perform heat treatment to relax the orientation, if necessary. At that time, the heat treatment process to relax the orientation is carried out on the film after the first stage stretching so that the surface is
The film is stretched by 1.03 times or more while being brought into contact with rolls controlled at ~150°C for 3 seconds or less. When including such orientation relaxation treatment,
Film after orientation relaxation (hereinafter referred to as "B-1 film")
That's what it means. ) must be in the range 0.001 to 0.020. In the above-mentioned relaxation step, if the roll surface temperature is less than 100°C, the orientation relaxation effect will not be exhibited, and if it is 150°C or more, the thickness uniformity will deteriorate. In addition,
If orientation relaxation is carried out for a long time, crystallization progresses too much,
There is a possibility that lateral stretchability may be deteriorated. The first above
The preferred range of Δn 1 for the film after stage stretching is 0.001.
to less than 0.012. The thus obtained B-0 or B-1 film with Δn 1 in the range of 0.001 to 0.020 is then preferably subjected to a birefringence (Δn 2 ) is 0.015 to 0.055. If Δn 2 of the film after second-stage stretching is lower than 0.015, it is not preferable to reduce Δn 3 to 0.080 or less in the third-stage stretching because the thickness unevenness in the longitudinal direction will be extremely deteriorated. On the other hand, if Δn 2 is set to 0.055 or more in the second stage stretching, the thickness unevenness after the second stage stretching deteriorates to such an extent that it cannot be corrected in the final stage process, which is not preferable.
However, when Δn 2 after the second stage stretching is in the range of 0.015 to 0.055 according to the method of the present invention, the thickness unevenness after the second stage stretching is not very good, but surprisingly, In the next final stretching step, thickness unevenness can be rapidly corrected. In addition, if the longitudinal stretching is completed and the transverse stretching is performed while keeping Δn 2 in the range of 0.015 to 0.055 without performing the third stage stretching, the thickness unevenness in the film will worsen and the mechanical properties in the longitudinal direction will deteriorate. It is not desirable because it is insufficient. On the other hand, a method is known in which a film having Δn 2 in the range of 0.015 to 0.055 after the second stage stretching is transversely stretched in order to compensate for thickness unevenness and lack of mechanical strength, and then longitudinally stretched again. (Unexamined Japanese Patent Publication No. 58-118220, etc.) However,
This method requires a re-stretching machine for the balance film to perform re-stretching, which naturally has the disadvantage of increasing equipment costs. Note that Δn 2 after the second stage stretching in the method of the present invention is preferably in the range of 0.020 to 0.045, more preferably in the range of 0.025 to 0.045. Thus, in order to obtain a film with excellent flatness and smoothness and thickness unevenness, according to the method of the present invention, Δn 2 before the final stage longitudinal stretching, that is, after the second stage stretching, is set to 0.015 to 0.015.
It is essential to stop at 0.055, perform at least a third stage of longitudinal stretching, and then proceed to the transverse stretching step. If the temperature of the second stage stretching is 80° C. or lower, the film will become thick and thin due to netting stretching, which is not preferable.
On the other hand, at 120° C. or higher, the degree of crystallinity after longitudinal stretching becomes too high, making transverse stretching difficult. Furthermore, since the lower the temperature, the better the stretchability is, the temperature is more preferably 105°C or lower. The number of stages of second-stage stretching is 1 to 3 to produce a second-stage stretched film with Δn 2 of 0.015 to 0.055 from a B-0 or B-1 film with Δn 1 of 0.020 or less. In other words, it is also possible to extend the film to a large number of times with Δn 2 =0.015 to 0.055. However, it is preferable to stretch in one stage. Further, if the stretching ratio in this process is 1.3 or less, the contribution to improving the stretching ratio is small and it is unsuitable for this purpose. On the other hand, in order to stretch at a high stretching ratio of 3.5 times or more, it is necessary to stretch at a high temperature, but as a result, the degree of crystallinity after longitudinal stretching becomes too high, making transverse stretching difficult, which is not preferable. Naturally, it is preferable to apply an orientation relaxation process in this process. The film thus obtained is hereinafter referred to as "B-2". Then, in the third stage of stretching, the film is stretched in the longitudinal direction at a temperature of 85° C. to 120° C. or less, preferably at a stretching ratio of 1.1 to 2.0 times, so that the birefringence index (Δn 3 ) does not exceed 0.080. If the stretching temperature in the final stretching step in the longitudinal direction is lower than 85°C, the thickness unevenness of the biaxially stretched film will not be improved even if Δn 3 is 0.080 or less;
If it is higher, the lateral stretchability will deteriorate. Therefore, in order to improve thickness unevenness, the temperature is preferably 90°C or higher. More preferably, the temperature is 95°C or higher. Furthermore, in the third stage stretching, Δn 3 is 0.050 to 0.080, preferably
It is advantageous to stretch to a degree not exceeding 0.055 to 0.075, more preferably 0.060 to 0.070, for flattening and smoothing and preventing breakage during transverse stretching. The third stage stretching is usually carried out as the final stage of the longitudinal stretching process, and is preferably carried out in one stage in a short period of time. The roll surface used in the longitudinal stretching process described above is made of polyester that tends to stick, and is stretched at high temperatures.
Ceramic or elastomer (for example, copolymer mainly composed of propylene hexafluoride and vinylidene fluoride, silicone resin, ethylene propylene copolymer, chlorosulfonated polyethylene, etc.) or ethylene tetrafluoride/perfluoropropyl vinyl ether copolymer It is preferably coated with a polymer, a fluororesin such as tetrafluoroethylene, or tetrafluoroethylene filled with polyimide or the like. Note that materials other than those mentioned above may be used as long as they have a large heat transfer coefficient and are less prone to adhesion. Note that the heating in the longitudinal stretching step may be performed in combination with a method other than the above-described heat transfer from the rolls (for example, using a radiation heater, hot air, in a heat medium), etc. The longitudinally stretched film obtained by the method described above is
Although it can be used as is, it is usually stretched in the transverse direction at a stretching temperature of 90 to 140°C and a stretching ratio of 2.5 to 5.0 times, and then heat-set at 150 to 250°C to achieve excellent dimensional stability. Get the film. Furthermore,
A longitudinal tensor film, a transverse tensor film, and a longitudinal and transverse tensor film can also be produced by re-stretching. For example, in the case of longitudinal re-stretching, transverse stretching is performed at 80-140°C at a magnification of 2.5-4.5 times, and in the longitudinal direction, a wide roll is used at 90-170°C at a magnification of 1.1-3.0 times.
After double stretching, heat treatment at 160 to 250°C is recommended. According to the method of the present invention, the longitudinal stretching step before the transverse stretching is performed in three or more stages, and the longitudinal stretching ratio before the transverse stretching is 4.0 times or more, preferably 4.5 times or more. [Effects of the Invention] According to the method of the present invention, horizontal stretching can be achieved without amplifying thickness unevenness and while maintaining flatness, smoothness and adhesive properties suitable for magnetic tapes, especially video base films. Since the previous longitudinal stretching ratio can be made extremely high, manufacturing costs can be reduced. [Example] The present invention will be explained below with reference to Examples, and the methods for measuring various properties of the film are as follows. (1) Thickness unevenness Using a continuous film thickness measuring device manufactured by Anritsu Electric Co., Ltd.,
The transverse central portion of the biaxially stretched film was measured along the longitudinal direction, and the measurement was calculated using the following formula. Thickness unevenness = Maximum film thickness - Minimum film thickness / Average film thickness x 100 (%) (2) Coefficient of dynamic friction (μd) Fixed hard chrome-plated metal roll (diameter 6
mm) with a wrapping angle of 135° (θ), and a load of 53 g (T 2 ) was applied to one end at 1 m/min.
The resistance force at the other end (T 1
(g)) was measured, and the coefficient of friction during running was determined using the following formula. μd = 1/θln (T 1 / T 2 ) = 0.424ln (T 1 / 53) (3) Center line average surface roughness (Ra) Surface roughness measuring instrument manufactured by Kosaka Laboratory Co., Ltd. (SE-3FK)
It was calculated as follows. The tip radius of the stylus is
2μm, load is 30mg. A part of standard length L (2.5 mm) is extracted from the film cross-sectional curve in the direction of its center line, and the roughness curve y=f(x )
When expressed as , the value given by the following formula is expressed in μm. However, the cutoff value is 80 μm. Ra
The average value was calculated for a total of 10 points, 5 points in the vertical direction and 5 points in the horizontal direction. 1/L∫ L 0 | f(x) | dx (4) Intrinsic viscosity ([η]) Add 200 mg of the sample to 20 ml of a mixed solution of phenol/tetrachloroethane = 50/50, and heat and dissolve at approximately 110°C for 1 hour. Measured at 30°C. (5) Birefringence Measure the retardation using a Carl Zeiss polarizing microscope, and calculate the birefringence (Δn) using the following formula.
I asked for Δn=R/d where R: Retardation d: Film thickness (6) Film temperature The temperature of the film at the stretched portion was measured using an infrared radiation thermometer manufactured by Burns. Example 1 (Production method of polyester) 100 parts of dimethyl terephthalate, 70 parts of ethylene glycol, 0.10 parts of calcium acetate monohydrate, and 0.17 parts of lithium acetate dihydrate were charged into a reactor, heated to raise the temperature, and distilled off methanol. The transesterification reaction takes about 4 hours after the start of the reaction.
The temperature was reached to 230°C, and the transesterification was substantially completed. This reaction product is then treated with triethyl phosphate.
After adding 0.35 part of antimony trioxide and further adding 0.05 part of antimony trioxide as a polycondensation catalyst, polymerization was carried out according to a conventional method to obtain a polyester. In the polyester, many uniform and fine precipitated particles containing calcium, lithium, and phosphorus elements with a particle size of approximately 0.5 to 1 μm were observed. The polyester A had [η]=0.65. Separately, polyester B ([η] = 0.65) containing almost no such internal precipitated particles is produced and mixed with the above polyester at a ratio of A/B = 1/1 (weight ratio) to form a raw material for film formation. And so. (Film Forming Method) An unstretched polyethylene terephthalate film was formed into a biaxially stretched film using a longitudinal stretching device and a tenter (transverse stretching and heat setting device).
The details of the film forming method are described below. First, the raw material polyester was dried and then melt extruded to obtain an unstretched film ([η]=0.62) with a thickness of 160 to 200 μm. Then,
The film was passed through a longitudinal stretching device, and the first few rolls preheated the film to 85°C, and then the film was stretched in the first stage by a factor of 2.3 at a roll temperature of 130°C due to the peripheral speed difference between the low speed roll and the high speed roll, and Δn 1 =0.006 film was obtained. Subsequently, the film was stretched in a second stage by a factor of 2.0 at a roll temperature of 85° C. using a peripheral speed difference between a low-speed roll and a high-speed roll in the second stage to obtain a film with Δn 2 =0.040. Further, the same film was stretched in a third stage using a third stage stretching roll at a roll temperature of 95°C and a stretching ratio of 1.25 times to obtain a film with Δn 3 =0.063. In addition, between the stretching rolls in the first and third stage stretching, an infrared heater is also used for heating, and an infrared radiation thermometer is used to measure the first and third stretching parts from the opposite side of the infrared heater. When we measured the temperature of the film at the stage stretching section, we found that each
The temperatures were 120°C and 105°C. The longitudinally stretched film thus obtained was stretched in the transverse direction by a factor of 3.8 at 140°C using a tenter, and heat-set at 215°C to obtain a biaxially stretched film with a thickness of 15μ. Example 2 A biaxially stretched film with a thickness of 15 μm was obtained in the same manner as in Example 1, except that the second stage stretching temperature was changed from 85° C. to 102° C. and the stretching ratio was changed to 2.5 times. Comparative Example 1 Preheating was performed in the same manner as in Example 1, and the first stage stretching was performed at a stretching roll temperature of 130°C and a stretching ratio of 3.4 times to obtain a film with Δn = 0.040. Roll temperature 95℃ between stretching rolls
A longitudinally stretched film with Δn=0.063 was obtained by stretching 1.25 times. After the transverse stretching, the same treatment as in Example 1 was carried out to obtain a biaxially stretched film with a thickness of 15 μm. 1st
Infrared heater heating was used in both stage and second stage stretching. Comparative Example 2 Preheating was performed in the same manner as in Example 1, and infrared heater heating was also used on the first drawing roll to maintain the roll temperature.
The film was stretched 3.7 times in one step at 85° C. to obtain a film with Δn=0.105. This is laterally stretched using a tenter at
215℃ after horizontal stretching at 110℃ and lateral stretching ratio of 3.9 times.
A biaxially stretched film with a thickness of 15 μm was obtained by heat setting. Table 1 shows the properties of each of the above films. As is clear from Table 1, by lowering Δn after longitudinal stretching, good flatness and smoothness can be achieved, and by performing three-stage stretching, the stretching ratio can be improved despite the low Δn after longitudinal stretching. A film suitable for magnetic tape can be obtained which has extremely high thickness and small thickness unevenness. 【table】

Claims (1)

【特許請求の範囲】 1 ポリエチレンテレフタレートを主成分とする
実質的に非晶状態のフイルムをまず縦方向に複屈
折率(Δn1)が0.001〜0.020となるように少くと
も1段階で延伸し(第1段延伸)、ついで縦方向
に複屈折率(Δn2)が0.015〜0.055となるように
少くとも1段階で延伸し(第2段延伸)、その後
更に縦方向に複屈折率(Δn3)が0.040〜0.080と
なるように、少くとも1段階で延伸して(第3段
延伸)、横延伸前の縦延伸倍率が4.0倍以上となる
ように縦延伸した後、横延伸することを特徴とす
る二軸延伸ポリエステルフイルムの製造方法。 2 第1段延伸を100℃以上150℃以下で、第2段
延伸を80℃以上120℃以下で第3段延伸を85℃以
上120℃以下で延伸することを特徴とする特許請
求の範囲第1項記載の二軸延伸ポリエステルフイ
ルムの製造方法。 3 第1段延伸倍率が少くとも1.9倍である特許
請求の範囲第1項または第2項記載の二軸延伸ポ
リエステルフイルムの製造方法。
[Claims] 1. A substantially amorphous film containing polyethylene terephthalate as a main component is first stretched in at least one step in the longitudinal direction so that the birefringence (Δn 1 ) becomes 0.001 to 0.020 ( 1st stage stretching), then stretched in at least one step in the machine direction so that the birefringence (Δn 2 ) is 0.015 to 0.055 (2nd stage stretching), and then further stretched in the machine direction so that the birefringence (Δn 3 ) becomes 0.015 to 0.055. ) is 0.040 to 0.080 in at least one stage (third stage stretching), and after longitudinal stretching so that the longitudinal stretching ratio before transverse stretching is 4.0 times or more, transverse stretching is performed. A method for producing a characterized biaxially oriented polyester film. 2 The first stage stretching is performed at a temperature of 100°C or more and 150°C or less, the second stage stretching is performed at a temperature of 80°C or more and 120°C or less, and the third stage stretching is performed at a temperature of 85°C or more and 120°C or less. A method for producing a biaxially stretched polyester film according to item 1. 3. The method for producing a biaxially stretched polyester film according to claim 1 or 2, wherein the first stage stretching ratio is at least 1.9 times.
JP8497384A 1984-04-26 1984-04-26 Manufacture of biaxially oriented polyester film Granted JPS60228123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8497384A JPS60228123A (en) 1984-04-26 1984-04-26 Manufacture of biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8497384A JPS60228123A (en) 1984-04-26 1984-04-26 Manufacture of biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JPS60228123A JPS60228123A (en) 1985-11-13
JPH0371976B2 true JPH0371976B2 (en) 1991-11-15

Family

ID=13845565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8497384A Granted JPS60228123A (en) 1984-04-26 1984-04-26 Manufacture of biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JPS60228123A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867937A (en) * 1987-02-17 1989-09-19 Minnesota Mining And Manufacturing Company Process for producing high modulus film
US5139727A (en) * 1988-11-11 1992-08-18 Daifoil Company, Limited Process for producing biaxially oriented polyester film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548672A (en) * 1977-06-21 1979-01-23 Toray Ind Inc Production of polyester film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548672A (en) * 1977-06-21 1979-01-23 Toray Ind Inc Production of polyester film

Also Published As

Publication number Publication date
JPS60228123A (en) 1985-11-13

Similar Documents

Publication Publication Date Title
US4617164A (en) Process for stretching polyester films
JPS5936851B2 (en) Manufacturing method of polyester film
JP2611421B2 (en) Method for producing polyester film
JPH0348017B2 (en)
JPH0371976B2 (en)
US4610833A (en) Process for preparing biaxially stretched polyester films
JP3316900B2 (en) Polyester film molding method
JPH0427016B2 (en)
JPS60176743A (en) Manufacture of biaxially oriented polyester film
KR0140299B1 (en) Process for preparing biaxially oriented polyester film
KR0157090B1 (en) Biaxial oriented polyester film
JP2611425B2 (en) Method for producing low shrinkage polyester film
JPH0355293B2 (en)
JPH0155986B2 (en)
JP3748165B2 (en) Polyester film and method for producing the same
JPH0773877B2 (en) Method for producing biaxially oriented polyester film
JP2788775B2 (en) Method for producing biaxially stretched polyester film
JPS6360731A (en) Preparation of biaxially oriented polyethylene-2,6-naphthalate film having high strength in longitudinal direction
JP2611413B2 (en) Method for producing high-strength polyester film
JPH0767740B2 (en) Method for producing biaxially stretched polyester film
JP2825728B2 (en) Method for producing biaxially oriented polyester film
JPH0371977B2 (en)
JPH0425855B2 (en)
JPS58124617A (en) Polyester film
JPH0771821B2 (en) Method for producing polyester film