【発明の詳細な説明】[Detailed description of the invention]
本発明は二軸延伸ポリエステルフイルムの製造
方法に関し、更に詳しくはポリエステル未延伸フ
イルムを縦方向に多段延伸する際、先ずΔn(フイ
ルムの複屈折率)が特定の範囲となるよう延伸
し、次いでΔnが特定の値を越えないよう高温延
伸して得られる縦方向延伸フイルムを、横方向に
延伸することによつて、平坦で易滑性のポリエス
テルフイルムを製造する方法に関する。
ポリエステル二軸延伸フイルムは、優れた機械
的性質、熱的性質、電気的性質、耐薬品性を有す
るため、各種用途に多用されているが、とりわけ
磁気テープ用ベースフイルムとしての有用性は他
のポリマーフイルムの追随を許さない。磁気テー
プ用ベースフイルムの品質は磁気テープの品質に
影響するところ大であるので、磁気テープの技術
進歩に伴ないベースフイルムの高品質化への要求
も高度化している。
例えば、ビデオ用磁気テープの出力、各種S/
N比、ドロツプアウト、エンベロープなどの特性
はベースフイルムの平坦性と関連しているし、テ
ープの巻姿、走行性、耐摩耗性はベースフイルム
の滑り性と密接に関連している。従つて磁気テー
プとりわけビデオ用磁気テープには、表面の平坦
性と易滑性を併せ持つポリエステルフイルムを提
供する必要がある。特に記録密度を高めるため磁
性層の厚さを小さくする方法や金属蒸着法を採用
する場合には、ベースフイルムの平坦、易滑化が
より切実な要望となる。
これまでポリエステルフイルムの易滑化は周知
の方法で微小な外部添加粒子または内部析出粒子
を付与し、フイルム表面を粗面化することにより
達成されたが、このような方法では通常行なわれ
ているポリエステルフイルムの製造条件を採る限
り、フイルムの平坦化に限界があつて高級磁気テ
ープ用には不向きである。即ち、従来、フイルム
の平坦性と易滑性は相反する特性であり、両方を
満足するフイルムを得ることは困難であると考え
られていた。
一方、ポリエチレンテレフタレートに代表され
るポリエステルフイルムは、縦方向の延伸を高温
で行なうことにより、通常の延伸温度での製膜に
よつては得られぬ易滑性二軸延伸フイルムが得ら
れることが知られており、この方法によると平坦
性も併せて向上する傾向にある。しかしながら非
晶状態のポリエステル未延伸フイルムを1段階で
高温延伸することは、概してフイルムの縦方向の
厚さむらを増幅し、均一な厚さを有する縦方向延
伸フイルムを得ることが困難であり、結果的に二
軸延伸フイルムの厚さむらにつながる。高温縦延
伸における厚さむらの増幅作用を抑制するための
延伸法として、特開昭48−43772号公報及び特開
昭50−122573号公報に示されたところの縦方向の
多段延伸法が知られている。これらの高温縦延伸
法に従うと、厚さむらの増幅抑制に効果があるの
は、延伸温度がたかだか100℃までであり、より
高温度域での延伸ではやはり厚さむらの増幅は避
けられない。即ち、より高温度域での縦方向延伸
によれば、一層平坦性、易滑性に優れた二軸延伸
フイルムが得られることが期待されるにもかかわ
らず、従来の延伸法では厚さむら増幅のため、縦
方向延伸温度をより高くすることは困難であつ
た。
本発明者らは、特願昭56−176921にて二軸延伸
の縦方向延伸工程において、厚さむらの増幅を極
力抑えて高温で縦方向に延伸し得る方法を提案し
た。この方法によれば、平坦、易滑な二軸延伸ポ
リエステルを得ることは可能であるが、縦方向最
終延伸工程、即ち高温延伸工程において、フイル
ムが高温に加熱された延伸ロールに粘着し、フイ
ルムに欠陥部を形成する傾向にある。このような
欠点を解消すべく鋭意検討の結果、縦方向最終延
伸工程に供するフイルム、すなわち縦方向の延伸
の初期に複屈折率Δnをより高めておけば、非粘
着性が発現することを見出し本発明に到達したも
のである。
本発明の要点は、ポリエステル未延伸フイルム
を多段階で縦方向に延伸するに際し、先ずΔnが
0.025〜0.055となるよう延伸(以下、前段延伸と
称することがある)し、次いで95〜150℃の温度
でΔnが0.080を越えないよう延伸(以下、後段延
伸と称することがある)して得られた縦方向延伸
フイルムを横方向に延伸することを特徴とするポ
リエステルフイルムの製造方法である。ここで複
屈折率Δnは、R/d(R:リターデシヨン、d:フ
イルム厚み)で示される(特開昭54−8672号公報
参照)。
本発明に用いるポリエステルとは、エチレンテ
レフタレート単位を80重量%以上含むポリエステ
ルであつて、残りの20重量%以下は共重合ポリエ
ステルまたは他のポリマーであつてもよい。該ポ
リエステル中には例えばリン酸、亜リン酸及びそ
れらのエステル等の安定剤や二酸化チタン、微粒
子状シリカ、カオリン等の添加剤、滑剤などが含
まれていてもよい。
本発明はポリエステル未延伸フイルムを先ず
Δnが0.025〜0.055となるよう縦方向に1段階また
は多段階で延伸する。Δnが0.025より小さい場
合、平坦で易滑性のポリエステルフイルムを製造
することは可能であるが、ポリエステルフイルム
は配向結晶化が殆んど生じないため、後段の縦方
向延伸工程の高温加熱延伸ロールに粘着を生じる
傾向にある。粘着が起きると均一な縦方向延伸が
出来ないのみならず、粘着部に不定形の突起を生
じ磁気テープベースフイルムとして不適当な表面
欠陥部となる。従来セラミツクやエラストマーが
被覆された延伸ロールを用いて高温延伸する方法
が提案されているが、前者の場合は、配向結晶化
を起こしていないフイルムに対しての非粘着効果
が不充分であり、後者の場合は長期使用時の耐久
性が不充分、熱伝達係数が低い点で問題がある。
Δnが0.025以上であればポリエステルフイルムは
配向結晶化を起こし延伸ロールに対する非粘着性
が発現する。Δnが0.055より大きい場合、後段の
縦方向延伸を終えたフイルムの縦方向厚さむらが
大きくなるし、且つ二軸延伸後のフイルムの平坦
化が不充分となる。
Δnを0.025〜0.055の範囲とする前段の縦延伸工
程における延伸段数は1〜3段が好ましい。前段
の延伸温度は80〜100℃であり、好ましくは85〜
95℃である。延伸温度によつても異なるが、前段
の延伸倍率は1段の場合は2.0〜3.0倍であり、2
〜3段の場合は途中配向緩和のための熱処理工程
を含めれば更に高倍率に延伸してもよい。配向緩
和のための熱処理は、延伸温度以上結晶化開始温
度以下でごく短時間行なえばよい。
かくして縦方向延伸工程の前段で先ずΔnが
0.025〜0.055の縦方向延伸フイルムが得られる。
次いで後段では95〜150℃でΔnが0.080を越えな
いよう縦方向に延伸する。縦方向の後段延伸工程
における延伸温度が95℃より低いと二軸延伸フイ
ルムの平坦化、易滑化が充分でないし、150℃よ
り高いと結晶化の進行が著しく、横延伸性を悪化
させる。更に後段延伸においては、Δnが0.080を
越えないように延伸することが肝要である。この
値は通常の製膜技術、とりわけ磁気テープ用フイ
ルムの製造技術からみればかなり小さな値であ
る。Δnが0.080より大きいと、二軸延伸フイルム
の平坦化が不充分となるし、更に大きい横方向延
伸時フイルムの破断が頻発する。後段の延伸倍率
は1.05〜1.7倍であり、好ましくは1.1〜1.6倍であ
る。後段の延伸は通常縦延伸工程の最終段階とし
て実施され1段階で、短時間に行うことが好まし
い。
このように縦方向に延伸したフイルムを横方向
延伸工程へ送り、80〜160℃で2.5〜4倍に横方向
に延伸した後、180〜230℃で熱固定し、二軸延伸
フイルムとする。
本発明方法によれば、厚さむらを増幅させるこ
となく粘着による表面欠陥のない平坦、易滑なフ
イルムが得られるので、磁気テープ用とりわけ平
坦性が強く要求されるビデオテープ用ベースフイ
ルムとして特に有用である。
以下、実施例によつて説明するが、フイルムの
諸性質の測定方法は次の通りである。
(1) 厚さむら
安立電気社製連続フイルム厚さ測定器によ
り、二軸延伸フイルムの横方向中央部を縦方向
に沿つて測定し、次式により算出した。
厚さむら=フイルム最大厚さ−フイルム最小厚さ/フイ
ルム平均厚さ×100(%)
(2) 摩擦係数(μ)
固定した硬質クロムメツキ金属ロール(直径
6mm)に、フイルムを巻き付角135゜(θ)で接
触させ、53g(T2)の荷重を一端にかけて1m/
minの速度でこれを走行させて他端の抵抗力
(T1(g))を測定し、次止により走行中の摩擦
係数を求めた。
μ=1/θln(T1/T2)=0.424ln(T1/53)
(3) 表面粗度
日本光学社製サーフエイス・フイニツシユ・
マイクロスコープにより多重干渉法(測定波長
0.54μ)でアルミニウム蒸着したフイルム表面
の突起を、1次と2次の干渉縞の数として定量
し、1mm2当りの個数で示した。
N1;1次の干渉縞として観察される突起数
N2;2次の干渉縞として観察される突起数
(4) 極限粘度
試料200mgをフエノール/テトラクロロエタ
ン=50/50の混合溶液20mlに加え、約110℃で
1時間加熱溶解後30℃で測定した。
(5) 複屈折率
カールツアイス社製偏光顕微鏡により、リタ
ーデーシヨンを測定し、次式により複屈折率
(Δn)を求めた。
Δn=R/d
但しR;リターデーシヨン
d;フイルム厚さ
(6) フイルム温度
バーンズ社製赤外線放射温度計により延伸部
のフイルム温度を測定した。
(7) 粘着によるフイルム表面欠陥
アルミニウム蒸着フイルム表面をカールツア
イス製微分干渉顕微鏡で観察。欠陥のあるフイ
ルムは×、ないしフイルムは〇。
実施例 1
(ポリエステルの製造法)
ジメチルテレフタレート100部、エチレングリ
コール70部、酢酸カルシウム−水塩0.10部及び酢
酸リチウム二水塩0.17部を反応器に仕込み、加熱
昇温すると共にメタノールを留出させてエステル
交換反応を行ない、反応開始後約4時間を要して
230℃に達せしめ、実質的にエステル交換を終了
した。
次にこの反応生成物にトリエチルホスフエート
0.35部を添加し、更に重縮合触媒として三酸化ア
ンチモン0.05部を添加した後、常法に従つて重合
し、ポリエステルを得た。該ポリエステル中には
粒径およそ0.5〜1μ程度の均一で微細なカルシウ
ム、リチウム及びリン元素を含む析出粒子が多数
認められた。該ポリエステルは〔η〕=0.65であ
つた。
別途このような内部析出粒子を殆んど含まない
ポリエステル(〔η〕=0.65)を製造し、先のポリ
エステルと1:1の割合で混合し製膜用原料とし
た。
(製膜法)
ポリエチレンテレフタレート未延伸フイルム
は、第1図に示した縦方向延伸装置とテンター
(横方向延伸及び熱固定装置)を用いて二軸延伸
フイルムに製膜した。第1表には実施例1および
実施例2で採用したロール表面温度条件とロール
材質を示した。以下に製膜法の詳細を述べる。先
ず原料ポリエステルを乾燥後、溶融押出し、厚さ
160〜200μの未延伸フイルム(〔η〕=0.62)を得
た。次いで第1図に示した縦方向延伸装置にこれ
を通し、ロール1〜4でフイルムを80℃に予熱し
た後ロール5,5′と6の間でロール周速差によ
り1.9〜2.5倍に第1段延伸し、引き続きロール
9,9′と10の間で1.1〜1.7倍に第2段延伸し
た。なおロール9,9′と10の間では赤外線ヒ
ーター13で加熱しており、赤外線ヒーターの反
対面から赤外放射温度計で第2段延伸部のフイル
ム温度を測定したところ110℃であつた。かくし
て得られた縦方向延伸フイルムを次にテンターで
140℃で3.8倍に横方向に延伸し、215℃で熱固定
して厚さ15μの二軸延伸フイルムを得た。得られ
た二軸延伸フイルム(実験番号1〜5)の性質を
第2表に示した。
The present invention relates to a method for producing a biaxially stretched polyester film, and more specifically, when an unstretched polyester film is stretched in multiple stages in the longitudinal direction, first the film is stretched so that Δn (birefringence of the film) falls within a specific range, and then Δn The present invention relates to a method for producing a flat and easily slippery polyester film by stretching in the transverse direction a longitudinally stretched film obtained by stretching at a high temperature such that the film does not exceed a specific value. Polyester biaxially stretched film has excellent mechanical properties, thermal properties, electrical properties, and chemical resistance, so it is widely used for various purposes, but its usefulness as a base film for magnetic tapes is particularly Unrivaled by polymer films. Since the quality of the base film for magnetic tape has a great influence on the quality of the magnetic tape, the demand for higher quality base films has become more sophisticated as magnetic tape technology advances. For example, video magnetic tape output, various S/
Properties such as N ratio, dropout, and envelope are related to the flatness of the base film, and tape winding form, running properties, and abrasion resistance are closely related to the slipperiness of the base film. Therefore, it is necessary to provide a polyester film that has both surface flatness and slipperiness for magnetic tapes, particularly video magnetic tapes. Particularly when employing a method of reducing the thickness of the magnetic layer or a metal vapor deposition method in order to increase the recording density, it is more urgent to make the base film flat and smooth. Up until now, making polyester film slippery has been achieved by roughening the film surface by adding minute externally added particles or internally precipitated particles using a well-known method. As long as the manufacturing conditions for polyester film are adopted, there is a limit to the flattening of the film, making it unsuitable for use in high-grade magnetic tapes. That is, conventionally, film flatness and slipperiness are contradictory properties, and it has been thought that it is difficult to obtain a film that satisfies both. On the other hand, by stretching a polyester film such as polyethylene terephthalate in the longitudinal direction at a high temperature, it is possible to obtain a slippery biaxially stretched film that cannot be obtained by forming a film at a normal stretching temperature. This method also tends to improve flatness. However, high-temperature stretching of an amorphous polyester unstretched film in one step generally amplifies the thickness unevenness in the longitudinal direction of the film, making it difficult to obtain a longitudinally stretched film having a uniform thickness. This results in uneven thickness of the biaxially stretched film. As a stretching method for suppressing the amplification effect of thickness unevenness in high-temperature longitudinal stretching, a multi-stage stretching method in the longitudinal direction is disclosed in JP-A-48-43772 and JP-A-50-122573. It is being According to these high-temperature longitudinal stretching methods, stretching temperatures of up to 100°C are effective in suppressing amplification of thickness unevenness, and stretching at higher temperatures inevitably amplifies thickness unevenness. . In other words, although longitudinal stretching in a higher temperature range is expected to yield a biaxially stretched film with even better flatness and slipperiness, conventional stretching methods result in uneven thickness. Due to amplification, it was difficult to increase the longitudinal stretching temperature higher. The present inventors proposed in Japanese Patent Application No. 56-176921 a method that can perform longitudinal stretching at high temperatures while suppressing the increase in thickness unevenness as much as possible in the longitudinal stretching step of biaxial stretching. According to this method, it is possible to obtain a flat and smooth biaxially stretched polyester, but in the final stretching step in the longitudinal direction, that is, the high temperature stretching step, the film sticks to the stretching roll heated to a high temperature, and the film tends to form defects on the surface. As a result of intensive studies to eliminate these drawbacks, we discovered that non-adhesive properties can be developed by increasing the birefringence Δn of the film subjected to the final longitudinal stretching process, that is, at the initial stage of longitudinal stretching. This has led to the present invention. The key point of the present invention is that when stretching an unstretched polyester film in the longitudinal direction in multiple stages, first Δn is
0.025 to 0.055 (hereinafter sometimes referred to as first-stage stretching), and then stretched at a temperature of 95 to 150°C so that Δn does not exceed 0.080 (hereinafter sometimes referred to as second-stage stretching). This is a method for producing a polyester film, which comprises stretching the longitudinally stretched film in the transverse direction. Here, the birefringence Δn is expressed as R/d (R: retardation, d: film thickness) (see JP-A-54-8672). The polyester used in the present invention is a polyester containing 80% by weight or more of ethylene terephthalate units, and the remaining 20% by weight or less may be a copolyester or other polymer. The polyester may contain stabilizers such as phosphoric acid, phosphorous acid and their esters, additives such as titanium dioxide, particulate silica and kaolin, and lubricants. In the present invention, an unstretched polyester film is first stretched in the longitudinal direction in one step or in multiple steps so that Δn becomes 0.025 to 0.055. When Δn is smaller than 0.025, it is possible to produce a flat and easily slippery polyester film, but since the polyester film hardly undergoes oriented crystallization, the high temperature heating stretching rolls in the subsequent longitudinal stretching process are tends to cause stickiness. If adhesion occurs, not only will it not be possible to stretch the film uniformly in the longitudinal direction, but also irregular protrusions will be formed in the adhesive area, resulting in surface defects that are unsuitable for use as a magnetic tape base film. Conventionally, a method of high-temperature stretching using a ceramic or elastomer-coated stretching roll has been proposed, but in the former case, the anti-adhesive effect is insufficient for films that have not undergone oriented crystallization; In the latter case, there are problems in that the durability during long-term use is insufficient and the heat transfer coefficient is low.
If Δn is 0.025 or more, the polyester film undergoes oriented crystallization and exhibits non-adhesiveness to stretching rolls. If Δn is larger than 0.055, the film after the subsequent longitudinal stretching will have a large longitudinal thickness unevenness, and the film will not be sufficiently flattened after the biaxial stretching. The number of stretching stages in the first longitudinal stretching step in which Δn is in the range of 0.025 to 0.055 is preferably 1 to 3 stages. The stretching temperature in the first stage is 80 to 100°C, preferably 85 to 100°C.
It is 95℃. Although it varies depending on the stretching temperature, the stretching ratio in the first stage is 2.0 to 3.0 times in the case of one stage, and
In the case of ~3 stages, it may be stretched to a higher magnification if a heat treatment step for orientation relaxation is included midway. The heat treatment for orientation relaxation may be performed for a very short time at a temperature higher than the stretching temperature and lower than the crystallization start temperature. Thus, in the first stage of the longitudinal stretching process, Δn is
A longitudinally stretched film of 0.025-0.055 is obtained.
Then, in the latter stage, the film is stretched in the longitudinal direction at 95 to 150°C so that Δn does not exceed 0.080. If the stretching temperature in the later stretching step in the longitudinal direction is lower than 95°C, the biaxially stretched film will not be sufficiently flattened or smoothed, and if it is higher than 150°C, crystallization will progress significantly, resulting in poor transverse stretchability. Furthermore, in the latter stage stretching, it is important to stretch so that Δn does not exceed 0.080. This value is quite small from the viewpoint of ordinary film forming technology, especially film manufacturing technology for magnetic tapes. If Δn is larger than 0.080, the biaxially stretched film will not be sufficiently flattened, and the film will frequently break during further horizontal stretching. The stretching ratio in the latter stage is 1.05 to 1.7 times, preferably 1.1 to 1.6 times. The latter stage of stretching is usually carried out as the final stage of the longitudinal stretching process, and is preferably carried out in one stage in a short period of time. The film thus stretched in the longitudinal direction is sent to a transverse stretching step, stretched 2.5 to 4 times in the transverse direction at 80 to 160°C, and then heat set at 180 to 230°C to form a biaxially stretched film. According to the method of the present invention, a flat and easy-to-smooth film without surface defects caused by adhesion can be obtained without increasing thickness unevenness, so it can be particularly used as a base film for magnetic tapes, especially for video tapes where flatness is strongly required. Useful. Examples will be described below, and the methods for measuring various properties of the film are as follows. (1) Thickness unevenness A biaxially stretched film was measured at the center in the horizontal direction along the longitudinal direction using a continuous film thickness measuring device manufactured by Anritsu Electric Co., Ltd., and was calculated using the following formula. Thickness unevenness = Maximum film thickness - Minimum film thickness / Average film thickness x 100 (%) (2) Coefficient of friction (μ) The film is wound around a fixed hard chrome-plated metal roll (diameter 6 mm) at a wrapping angle of 135°. (θ) and apply a load of 53g (T 2 ) to one end for 1m/
This was run at a speed of min to measure the resistance force (T 1 (g)) at the other end, and the friction coefficient during running was determined by stopping. μ = 1/θln (T 1 / T 2 ) = 0.424ln (T 1 / 53) (3) Surface roughness Nippon Kogaku Surface Finish.
Multiple interferometry (measurement wavelength
The protrusions on the surface of the film deposited with aluminum (0.54μ) were quantified as the number of first-order and second-order interference fringes, and expressed as the number per 1 mm 2 . N 1 : Number of protrusions observed as first-order interference fringes N 2 : Number of protrusions observed as second-order interference fringes (4) Intrinsic viscosity Add 200 mg of the sample to 20 ml of a mixed solution of phenol/tetrachloroethane = 50/50. After heating and dissolving at about 110°C for 1 hour, measurements were taken at 30°C. (5) Birefringence Retardation was measured using a polarizing microscope manufactured by Carl Zeiss, and the birefringence (Δn) was determined using the following formula. Δn=R/d where R: Retardation d: Film thickness (6) Film temperature The temperature of the film at the stretched portion was measured using an infrared radiation thermometer manufactured by Burns. (7) Film surface defects due to adhesion The surface of an aluminum vapor-deposited film was observed using a Carl Zeiss differential interference microscope. Films with defects are rated ×, and films with defects are 0. Example 1 (Method for producing polyester) 100 parts of dimethyl terephthalate, 70 parts of ethylene glycol, 0.10 parts of calcium acetate hydrate, and 0.17 parts of lithium acetate dihydrate were charged into a reactor, heated to raise the temperature, and distilled off methanol. The transesterification reaction takes about 4 hours after the start of the reaction.
The temperature was reached to 230°C, and the transesterification was substantially completed. This reaction product is then treated with triethyl phosphate.
After adding 0.35 part of antimony trioxide and further adding 0.05 part of antimony trioxide as a polycondensation catalyst, polymerization was carried out according to a conventional method to obtain a polyester. In the polyester, many uniform and fine precipitated particles containing calcium, lithium, and phosphorus elements with a particle size of approximately 0.5 to 1 μm were observed. The polyester had [η]=0.65. Separately, a polyester containing almost no such internally precipitated particles ([η]=0.65) was produced and mixed with the above polyester at a ratio of 1:1 to serve as a raw material for film formation. (Film Forming Method) The polyethylene terephthalate unstretched film was formed into a biaxially stretched film using a longitudinal stretching device and a tenter (transverse stretching and heat setting device) shown in FIG. Table 1 shows the roll surface temperature conditions and roll materials employed in Examples 1 and 2. The details of the film forming method are described below. First, the raw material polyester is dried, then melt extruded and the thickness
An unstretched film ([η]=0.62) of 160 to 200μ was obtained. Next, the film is passed through the longitudinal stretching device shown in FIG. The film was stretched in one stage and then stretched in a second stage between rolls 9, 9' and 10 by a factor of 1.1 to 1.7. Heating was carried out between the rolls 9, 9' and 10 by an infrared heater 13, and the temperature of the film in the second stage stretching section was measured at 110 DEG C. using an infrared radiation thermometer from the opposite side of the infrared heater. The longitudinally stretched film thus obtained is then placed in a tenter.
The film was stretched 3.8 times in the transverse direction at 140°C and heat-set at 215°C to obtain a biaxially stretched film with a thickness of 15μ. The properties of the obtained biaxially stretched films (experiment numbers 1 to 5) are shown in Table 2.
【表】【table】
【表】
実施例 2
実施例1と同様のポリエステル原料を用いて、
第1図の縦方向延伸装置により、厚さ160〜210μ
の未延伸フイルムをロール5,5′と6の間でΔn
が0.040となるよう2.3倍に第1段延伸したのち
100℃に加熱されたロール7,8で熱処理し、ロ
ール9,9′と10の間でΔnが0.060となるよう
1.2〜1.6倍に第2段延伸した。各ロールの表面温
度は第1表の通りである。赤外線ヒーター13の
容量調整により、ロール9,9′と10の間の第
2段延伸部のフイルム温度を93〜152℃に変化さ
せて縦方向延伸フイルムを得た。横延伸及び熱固
定条件は実施例1と同様である。得られた二軸延
伸フイルム(実験番号6〜9)の性質を第3表に
示した。実験番号6〜9の各フイルムとも、粘着
による表面欠陥は観察されなかつた。[Table] Example 2 Using the same polyester raw material as in Example 1,
The thickness is 160 to 210 μ by the longitudinal stretching device shown in Figure 1.
The unstretched film is transferred between rolls 5, 5' and 6 by Δn
After the first stage stretching to 2.3 times so that the is 0.040,
Heat treatment is performed with rolls 7 and 8 heated to 100℃, so that Δn is 0.060 between rolls 9, 9' and 10.
Second stage stretching was performed to 1.2 to 1.6 times. The surface temperature of each roll is shown in Table 1. By adjusting the capacity of the infrared heater 13, the film temperature in the second stage stretching section between the rolls 9, 9' and 10 was varied from 93 to 152 DEG C. to obtain a longitudinally stretched film. The lateral stretching and heat setting conditions were the same as in Example 1. The properties of the obtained biaxially stretched films (experiment numbers 6 to 9) are shown in Table 3. No surface defects due to adhesion were observed in each of the films of Experiment Nos. 6 to 9.
【表】【table】
【図面の簡単な説明】[Brief explanation of drawings]
第1図は実施例で用いた縦延伸装置である。
5,5′および9,9′は延伸ニツプロール、6,
10は延伸ロール、13は赤外線ヒーターを示
す。
FIG. 1 shows the longitudinal stretching apparatus used in the examples.
5, 5' and 9, 9' are stretched nip rolls, 6,
10 is a stretching roll, and 13 is an infrared heater.