JPS60226428A - Light transmission path - Google Patents

Light transmission path

Info

Publication number
JPS60226428A
JPS60226428A JP59081587A JP8158784A JPS60226428A JP S60226428 A JPS60226428 A JP S60226428A JP 59081587 A JP59081587 A JP 59081587A JP 8158784 A JP8158784 A JP 8158784A JP S60226428 A JPS60226428 A JP S60226428A
Authority
JP
Japan
Prior art keywords
refractive index
oxide
high refractive
light transmission
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59081587A
Other languages
Japanese (ja)
Other versions
JPH0525821B2 (en
Inventor
Kazuya Osawa
大沢 和哉
Hiroshi Takahashi
宏 高橋
Masaki Kimura
正樹 木村
Motohiro Nakahara
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP59081587A priority Critical patent/JPS60226428A/en
Publication of JPS60226428A publication Critical patent/JPS60226428A/en
Publication of JPH0525821B2 publication Critical patent/JPH0525821B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/28Doped silica-based glasses containing non-metals other than boron or halide containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/31Doped silica-based glasses containing metals containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:A light transmission path having stable transmission characteristics and high relieability for the long run, obtained by constituting a high refractive index part for light transmission from glass having a composition consisting of zinc oxide, germanium oxide, phosphorus oxide, and silicon oxide in a specific weight ratio. CONSTITUTION:A transparent glass parent material having a composition consisting of 0.001-5wt% zinc oxide, 0-15wt% germanium oxide, 0-5wt% phosphorus oxide, and 80-99.999wt% silicon oxide is prepared by vapor-phase axial deposition method, etc., to give the high refractive index part 2. The low refractive index part 3 consisting of pure quartz glass or fluorine doped quartz, etc. is formed on the outer periphery of the high refractive index part 2, and both the parts are spun, to give the desired light transmission path 1. Since the prepared light transmission path 1 contains zinc oxide in the high refractive index part 2, it slightly produces oxygen defect, and increase in transmission loss is suppressed.

Description

【発明の詳細な説明】 (#業主の利用分野) 本発明は光通信に用いる石英ガラス系光伝送路の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION (#Field of Application for Business Owners) The present invention relates to improvements in silica glass optical transmission lines used in optical communications.

(従 来 技 術) 一般に1通信用の光伝送路(光ファイバ)は高純度の石
英ガラスを主成分としているが、そのコア部には屈折率
調整用(高屈折率用)の成分として酸化ゲルマニウムが
ドープされており、場合により酸化リンや醸化ホウ素が
ドープされた石英ガラスも用いられている。
(Conventional technology) Generally, an optical transmission line (optical fiber) for communication uses high-purity silica glass as its main component, but its core contains oxidized as a component for adjusting the refractive index (for high refractive index). Quartz glass doped with germanium and, in some cases, phosphorus oxide or boron oxide is also used.

しかしこれらガラスの場合、そのガラス中に酸されて光
ファイバの伝送損失増を招起することがすでに指摘され
ている。
However, in the case of these glasses, it has already been pointed out that acidification occurs in the glass, causing an increase in the transmission loss of the optical fiber.

そのため光フアイバ製造時の各種処理条件を改善する試
みがなされているが、これには高度の技術が要求され、
製造難度をともなうのが実状である。
For this reason, attempts have been made to improve various processing conditions during optical fiber manufacturing, but this requires advanced technology.
The reality is that manufacturing is difficult.

(発明の目的) 本発明は上記の問題点に艦み、光伝送路の高屈折率部を
構成するガラス組成を改良することにより、長期的に伝
送特性の安定した信頼性の高い光伝送路を提供しようと
するものである。
(Object of the Invention) The present invention addresses the above-mentioned problems and improves the composition of the glass constituting the high refractive index portion of the optical transmission line, thereby creating a highly reliable optical transmission line with stable transmission characteristics over the long term. This is what we are trying to provide.

(発明の構成) 本発明に係る光伝送路は、光透過用の高屈折率部が耐化
亜鉛0.0G1〜5重量%、酸化ゲルマニウム0〜15
重量%、鹸化リン0〜5重量%、酸化ケイ素80〜81
1.1199ij量%からなるガラスで構成されている
ことを特徴としている。
(Structure of the Invention) In the optical transmission line according to the present invention, the high refractive index portion for light transmission is made of zinc resistant 0.0G1 to 5% by weight and germanium oxide 0 to 15% by weight.
% by weight, saponified phosphorus 0-5% by weight, silicon oxide 80-81
It is characterized by being made of glass consisting of 1.1199ij amount %.

(実 施 例) 以下本発明の実施例につき1図面等を参照して図におい
てlは光伝送路(光ファイバ)、2はその高屈折率部(
コア)、3はその低屈折率部(クラッド)である。
(Example) In the following, with reference to the drawings and the like, l represents an optical transmission line (optical fiber), and 2 represents a high refractive index portion thereof (
3 is its low refractive index portion (cladding).

上記高屈折率部2を構成しているガラスは既述の各組成
を所定の範囲で含有し、低屈折率部3は純石英ガラスか
、もしくはフッ素ドープト石英からなる。
The glass constituting the high refractive index section 2 contains each of the aforementioned compositions within a predetermined range, and the low refractive index section 3 is made of pure silica glass or fluorine-doped quartz.

高屈折率部2が酸化亜鉛を含有している上記光伝送路l
の場合、後述の具体例で明らかなように伝送損失増が抑
制できるのであり、これは酸化亜鉛が添加されているこ
とにより酸素欠陥を生じにくいガラス構造をとるためと
推定できる。
The optical transmission line l in which the high refractive index portion 2 contains zinc oxide
In the case of , the increase in transmission loss can be suppressed, as will be clear from the specific examples described below, and this can be presumed to be due to the addition of zinc oxide, which creates a glass structure in which oxygen defects are less likely to occur.

本来、ガラス中の欠陥は量的に多くなく、高屈折率部2
の酸化亜鉛の量が微量であっても上記効果は得られるが
、0.001重篭%以下の酸化亜鉛量ではその効果が顕
著でなく、シたがって高屈折率部2における酸化亜鉛量
は0.001重量%以上がよい。
Originally, there are not many defects in glass, and the high refractive index part 2
Although the above effect can be obtained even if the amount of zinc oxide in the high refractive index region 2 is very small, the effect is not noticeable when the amount of zinc oxide is less than 0.001% by weight. The content is preferably 0.001% by weight or more.

酸化亜鉛量が5重量%以上になると高屈折率部2のガラ
ス安定性が損なわれるので、これは5重量%以下がよい
If the amount of zinc oxide is 5% by weight or more, the glass stability of the high refractive index portion 2 will be impaired, so it is preferably 5% by weight or less.

高屈折率部2がZ n OS r O2の二成分ガラス
系で構成されることもあり、この場合、低屈折率部3は
前述したフッ素ドープト石英により構成される。
The high refractive index section 2 may be composed of a binary glass system of ZnOSrO2, and in this case, the low refractive index section 3 is composed of the aforementioned fluorine-doped quartz.

屈折率を高める目的で上記二成分ガラス系の高屈折率部
2に酸化ゲルマニウムが添加されていてもよく、この三
成分ガラスにおいても酸化亜鉛の効果は失われない。
Germanium oxide may be added to the high refractive index portion 2 of the two-component glass system for the purpose of increasing the refractive index, and the effect of zinc oxide is not lost even in this three-component glass.

この際の酸化ゲルマニウム量につき、特にその上限を規
定する理由はないが、実用的には同量を15重量%以下
とするのが望ましい。
Although there is no reason to specify an upper limit to the amount of germanium oxide in this case, it is practically desirable that the same amount be 15% by weight or less.

さらに高屈折率部2がZnO−5iO2系、あるいはZ
 n OG e OS r 02系からなるとき、これ
らに酸化リン(P2O3)が添加されてもよい。
Furthermore, the high refractive index portion 2 is made of ZnO-5iO2 system or Z
When consisting of the n OG e OS r 02 system, phosphorous oxide (P2O3) may be added to these.

酸化リンはこれの添加量が前記酸化亜鉛量と同等または
それ以下であるとき、酸化亜鉛添加の効果が失われない
When the amount of phosphorus oxide added is equal to or less than the amount of zinc oxide, the effect of adding zinc oxide is not lost.

高屈折率部2における酸化リンの含有量が多すぎるとき
、ガラスの耐候性が低下するので望ましくなく、当該酸
化リンの含有量は5重量%以下がよい。
If the content of phosphorus oxide in the high refractive index portion 2 is too large, the weather resistance of the glass will deteriorate, which is undesirable, and the content of phosphorus oxide is preferably 5% by weight or less.

つぎに本発明のより具体的な例を説明する。Next, a more specific example of the present invention will be explained.

具体例1 四塩化ケイ素の液体をアルゴンガスによりl<ブリング
して気化した原料ガスと、アルゴンガスにより希釈した
ジメチル亜鉛ガスとを酸水素喪中に導入してこれらを酸
化・加水分解し、この際の反応により生成された酸化物
微粒子をターゲy)(石英棒)の軸方向に堆積させてコ
ア用の多孔質ガラス母材を形成した。
Specific example 1 Raw material gas obtained by bubbling silicon tetrachloride liquid with argon gas and dimethyl zinc gas diluted with argon gas are introduced into an oxyhydrogen atmosphere to oxidize and hydrolyze them. The oxide fine particles produced by the reaction were deposited in the axial direction of the target (quartz rod) to form a porous glass base material for the core.

その後、多孔質ガラス母材を電気炉中において1200
℃の温度にて焼結し、透明なガラス母材とした。
Thereafter, the porous glass base material was placed in an electric furnace for 1200 min.
It was sintered at a temperature of °C to form a transparent glass base material.

上記では母材中の酸化亜鉛の含有量が0〜5重量%範囲
内で変化させることができた。
In the above, the content of zinc oxide in the base material could be varied within the range of 0 to 5% by weight.

つぎに透明ガラス母材の外周には、火炎加水分解法によ
り石英系としたクラッド用の多孔質ガラス層を形成し、
これを六フッ化イオウ濃度1モル%のヘリウムガス雰囲
気中にて焼結することにより当該ガラス層をフッ素含有
の低屈折率ガラスとした。
Next, on the outer periphery of the transparent glass base material, a quartz-based porous glass layer for cladding is formed using a flame hydrolysis method.
By sintering this in a helium gas atmosphere with a sulfur hexafluoride concentration of 1 mol %, the glass layer was made into a fluorine-containing low refractive index glass.

こうして得られた光フアイバ母材を既知の紡糸手段(加
熱延伸)により紡糸して光ファイバを製造した。
The optical fiber preform thus obtained was spun using known spinning means (heat drawing) to produce an optical fiber.

この光ファイバを水素雰囲気中にて100℃、24時間
加熱し、これの水酸基の発生の有無を測定すべき加速試
験を行なったところ、0.8〜1.5pmの波長範囲に
おいては伝送損失の変化がみられなかった。
When this optical fiber was heated in a hydrogen atmosphere at 100°C for 24 hours and an accelerated test was conducted to measure the generation of hydroxyl groups, it was found that the transmission loss was low in the wavelength range of 0.8 to 1.5 pm. No change was observed.

具体例2 コア形成用バーナとクラッド形成用バーナ゛とを用いた
既知のWAD法におい乙コア形成用バーナには四塩化ケ
イ素、四塩化ゲルマニウム、ジメチル亜鉛を供給すると
ともにクラッド形成用バーすには四塩化ケイ素、ジメチ
ル亜鉛を供給して多孔質ガラス母材を作製し、これを透
明ガラス化した後、該透明ガラス母材を具体例1と同様
に紡糸して光ファイバを得た。
Specific Example 2 In a known WAD method using a core forming burner and a cladding burner, silicon tetrachloride, germanium tetrachloride, and dimethyl zinc are supplied to the core forming burner, and the cladding burner is supplied with silicon tetrachloride, germanium tetrachloride, and dimethyl zinc. Silicon tetrachloride and dimethylzinc were supplied to prepare a porous glass preform, which was made into transparent glass, and then the transparent glass preform was spun in the same manner as in Example 1 to obtain an optical fiber.

この光ファイバの場合、コアが酸化ゲルマニウムの分布
によりグレーテッド型の屈折率分布を呈しており、その
コアガラス中には平均濃度として0.5重量%の酸化亜
鉛が含まれたいた。
In the case of this optical fiber, the core exhibited a graded refractive index distribution due to the distribution of germanium oxide, and the core glass contained zinc oxide at an average concentration of 0.5% by weight.

クラッドは低屈折率の高純度石英ガラスからなるもので
あった。
The cladding was made of high purity quartz glass with a low refractive index.

上記光ファイバを具体例1と同様、水素中にて100℃
、24時間加熱したところ、この場合も伝送損失の増加
が認められなかった。
The above optical fiber was heated in hydrogen at 100°C as in Example 1.
When heated for 24 hours, no increase in transmission loss was observed in this case as well.

(発明の効果) 以上説明した通り、本発明に係る光伝送路は単に石英系
であるだけでなく、その光透過用の高屈折率部が0.0
01〜5重量%の酸化亜鉛を含有しているので、長期的
に伝送特性の安定した信頼性の高いものとなる。
(Effects of the Invention) As explained above, the optical transmission line according to the present invention is not only made of quartz, but also has a high refractive index part for light transmission of 0.0
Since it contains 01 to 5% by weight of zinc oxide, it has stable transmission characteristics and high reliability over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る光伝送路の断面図である。 l−拳・光伝送路 2・壷・高屈折率部 3・−−低屈折率部 代理人 弁理士 斎 藤 義 雄 The drawing is a sectional view of an optical transmission line according to the present invention. l-fist/optical transmission line 2. Urn, high refractive index part 3.--Low refractive index part Agent: Patent Attorney Yoshio Sai Fuji

Claims (1)

【特許請求の範囲】[Claims] 光透過用の高屈折率部が鹸化亜鉛0.001〜5重値%
、#I化ゲルマニウム0〜15重量%、酸化リンθ〜5
重量%、a化ケ4 * 80〜!19J911重景%か
らなるガラスで構成されている光伝送路。
The high refractive index part for light transmission is 0.001 to 5% zinc saponide.
, germanium #I 0 to 15% by weight, phosphorus oxide θ to 5
Weight %, a 4 * 80~! An optical transmission line made of glass made of 19J911%.
JP59081587A 1984-04-23 1984-04-23 Light transmission path Granted JPS60226428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081587A JPS60226428A (en) 1984-04-23 1984-04-23 Light transmission path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081587A JPS60226428A (en) 1984-04-23 1984-04-23 Light transmission path

Publications (2)

Publication Number Publication Date
JPS60226428A true JPS60226428A (en) 1985-11-11
JPH0525821B2 JPH0525821B2 (en) 1993-04-14

Family

ID=13750447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081587A Granted JPS60226428A (en) 1984-04-23 1984-04-23 Light transmission path

Country Status (1)

Country Link
JP (1) JPS60226428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324539A (en) * 1991-04-15 1994-06-28 Semiconductor Process Laboratory Method for forming CVD thin glass films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324539A (en) * 1991-04-15 1994-06-28 Semiconductor Process Laboratory Method for forming CVD thin glass films

Also Published As

Publication number Publication date
JPH0525821B2 (en) 1993-04-14

Similar Documents

Publication Publication Date Title
KR970028622A (en) Single-Mode Optical Waveguide Fibers and Manufacturing Method Thereof
ES8601491A1 (en) Optical fiber and method for its production.
KR890001125B1 (en) Optical fifer
JPS59174541A (en) Optical fiber maintaining plane of polarization
GB2029400A (en) An Optical Fibre
EP0171537B1 (en) Method for producing glass preform for optical fiber
KR100345358B1 (en) Quartz glass tube for optical fiber preform and manufacturing method therefor
JPS60226428A (en) Light transmission path
EP0164127A2 (en) Method for producing glass preform for optical fibers
KR20030003018A (en) Method and apparatus for fabricating optical fiber using adjustment of oxygen stoichiometry
JPS6131324A (en) Production of base material for optical fiber
JPH0281004A (en) Optical fiber and its production
JPH0129220Y2 (en)
JPS6051635A (en) Quartz optical fiber
JPS61251539A (en) Optical fiber
JPH02145448A (en) Production of preform of optical fiber
JPS63230533A (en) Production of optical fiber preform
JPS63123829A (en) Production of preform for optical fiber
KR830002121B1 (en) Optical fiber
JP3310159B2 (en) Method for producing transparent glass body for Co-doped optical attenuator
JPH06219765A (en) Production of preform for optical fiber
JP3300224B2 (en) Method for producing quartz-based doped glass
JPS61132531A (en) Production of optical fiber
JP2635563B2 (en) Manufacturing method of glass material for optical transmission body
JPH05352B2 (en)