JPS60225474A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60225474A
JPS60225474A JP8227384A JP8227384A JPS60225474A JP S60225474 A JPS60225474 A JP S60225474A JP 8227384 A JP8227384 A JP 8227384A JP 8227384 A JP8227384 A JP 8227384A JP S60225474 A JPS60225474 A JP S60225474A
Authority
JP
Japan
Prior art keywords
layer
oxide film
melting point
high melting
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8227384A
Other languages
Japanese (ja)
Inventor
Shuichi Matsuda
修一 松田
Tatsuro Okamoto
岡本 龍郎
Hideo Kotani
小谷 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8227384A priority Critical patent/JPS60225474A/en
Publication of JPS60225474A publication Critical patent/JPS60225474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4941Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a barrier layer between the silicon and the metal or metal silicide upper layer, e.g. Silicide/TiN/Polysilicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To enable the increase in density of elements and the attainment of high-speed action by a method wherein a gate electrode is constructed in three layers of a polycrystalline Si layer, a high melting point metallic layer, and a metal silicide layer made of high melting point metal. CONSTITUTION:After a field oxide film 2 is formed on a P type Si substrate 1, a gate oxide film 3 is formed on the surface of the substrate 1 surrounded by the field oxide film 2 by thermosetting treatment. A buried contact hole 5 is bored in part of the gate oxide film 3, and a polycrystalline Si layer doped with arsenic is deposited over the whole surface, which is then patterned; accordingly, a pattern of a polycrystalline Si layer 7 is formed on the gate oxide film 3 as part of the gate electrode and the wiring. An N type impurity, e.g. arsenic is implanted to the substrate 1 and then heat-treated. After the Si layer 7 and the Si surface of a diffused region 4 are conered with a high melting point metallic layer (e.g. Ti and Pt) 8, a thin film of polycrystalline silicon is formed over the whole surface and heat-treated. Thereby, a metal silicide layer 9 of high melting point metal is formed only at the part of contact with the surface of high melting point metal by utilizing silicification.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、MO8型半導体装置のゲート電極構造を改
良した半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device having an improved gate electrode structure of an MO8 type semiconductor device.

〔従来技術〕[Prior art]

従来のこの稚の装置を第1図によって説明する。 This conventional device will be explained with reference to FIG.

この図において、1はpfiシリコン基板、2はフィー
ルド酸化膜、3はゲート酸化膜で、埋込みコンタクト用
の孔5を形成している。4はn中型不純物の拡散領域で
あり、6はゲート電極となる多結晶シリコン層のパター
ンである。
In this figure, 1 is a PFI silicon substrate, 2 is a field oxide film, and 3 is a gate oxide film, forming a hole 5 for a buried contact. 4 is a diffusion region of n medium impurity, and 6 is a pattern of a polycrystalline silicon layer which becomes a gate electrode.

次忙製造方法について説明する。まず、2厘シリコン基
板1にフィールド酸化膜2′1に形成後、熱酸化処理を
施してフィールド酸化膜2で囲まれた島状のp型シリコ
ン基板1表面にゲート酸化膜3を形成する。次K、ゲー
ト酸化膜3の一部に埋込みコンタクト用の孔5を開孔し
、全面に砒素をドープした多結晶シリコン層を堆積し、
これtバターニングしてゲート酸化1jIa上にゲート
電極および配線用として多結晶シリコン層6のパターン
を形成する。まL、多結晶シリコン層S)、′!rJパ
ターンおよびフィールド酸化膜2vk:マスクとしてn
屋不純物、例えば砒素tゲート酸化膜3′4を通してp
Hシリコン基板1にイオン注入した後、熱処理を施丁。
The next production method will be explained. First, a field oxide film 2'1 is formed on a two-layer silicon substrate 1, and then thermal oxidation treatment is performed to form a gate oxide film 3 on the surface of the island-shaped p-type silicon substrate 1 surrounded by the field oxide film 2. Next, a hole 5 for a buried contact is formed in a part of the gate oxide film 3, and a polycrystalline silicon layer doped with arsenic is deposited on the entire surface.
This is patterned to form a pattern of polycrystalline silicon layer 6 for gate electrodes and wiring on gate oxide 1jIa. MaL, polycrystalline silicon layer S),'! rJ pattern and field oxide film 2vk: n as a mask
impurities such as arsenic through the gate oxide film 3'4.
After ion implantation into the H silicon substrate 1, heat treatment is performed.

その時、多結晶シリコン層6のパターンに対してセルフ
拳アラインでソース、ドレイン領域としてのn中盤不純
物の拡散領域4が形成さnる。
At this time, an n middle impurity diffusion region 4 as a source and drain region is formed in self-alignment with respect to the pattern of the polycrystalline silicon layer 6.

これkより、MOSデバイスが形成される。From this k, a MOS device is formed.

このようK、従来のゲート電極材料には多結晶シリコン
が使われているが、多結晶シリコン配線はリン、ホルン
等の不純物tドープしてもその抵抗値が高く、これKよ
るRC遅蔦(R:多結晶シリコン配線の抵抗、C:多結
晶シリコン配線が持つ電気容量)&言、他の遅延要素に
比べて大きくなるなどの欠点があった。
As described above, polycrystalline silicon is used as a conventional gate electrode material, but polycrystalline silicon wiring has a high resistance even when doped with impurities such as phosphorus and horn. (R: resistance of polycrystalline silicon wiring; C: electric capacity of polycrystalline silicon wiring);

〔発明の概要〕[Summary of the invention]

この発明は、上記のような従来のものの欠点を除去する
ためになさnたもので、半導体基板上に形成されたゲー
ト酸化膜に形成さnるゲート電極を、従来より膜厚の薄
い多結晶シリコン層、高融点金属層、さらkその上に金
属原子を含む金属シリサイド層を順次形成して3層構造
とすることkより、素子の高密度化とともに高速動作を
達成し得る半導体装置な提供することを目的としている
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and the gate electrode formed on the gate oxide film formed on the semiconductor substrate is made of a polycrystalline film with a thinner film thickness than the conventional one. By sequentially forming a silicon layer, a high-melting point metal layer, and a metal silicide layer containing metal atoms thereon to form a three-layer structure, a semiconductor device is provided that can achieve high-speed operation as well as high-density elements. It is intended to.

以下、この発明の一実施例を図面について説明する。An embodiment of the present invention will be described below with reference to the drawings.

〔発明の実施例〕 第2図はこの発明の一実施例を示す半導体装置の要部断
面図であり、1〜5は第1図と同じものt示し、7は前
記ゲート酸化膜3上に形成された多結晶シリクン層、8
は前記多結晶シリコン層7上に形成されりPt やTI
 などの高融点金属層、9は高融点金属からなる金属シ
リサイド層である。
[Embodiment of the Invention] FIG. 2 is a sectional view of a main part of a semiconductor device showing an embodiment of the present invention, in which 1 to 5 are the same as in FIG. formed polycrystalline silicon layer, 8
is formed on the polycrystalline silicon layer 7 and is made of Pt or TI.
9 is a metal silicide layer made of a high melting point metal.

次忙、この発明のゲート電極構造の製造方法忙ついて説
明する。従来のように−p屋シリコン基板1にフィール
ド酸化膜2を形成後、熱酸化処理を施しフィールド酸化
膜2で囲まれたp型シリコン基板1の表面にゲート酸化
113を形成し、次に、ゲート酸化膜3の一部に埋込み
コンタクト用の孔St−開孔し、全面に砒素をドープし
た多結晶シリコン層を従来より薄い厚さく約T)<、、
堆積し、こtt′lk:バターニングしてゲート酸化膜
3上にゲート電極および配線用の一部として多結晶シリ
コン層7のパターンを形成する。
Next, a method for manufacturing a gate electrode structure according to the present invention will be explained. As in the conventional method, after forming a field oxide film 2 on a p-type silicon substrate 1, a thermal oxidation treatment is performed to form a gate oxide 113 on the surface of the p-type silicon substrate 1 surrounded by the field oxide film 2, and then, A hole St for a buried contact is opened in a part of the gate oxide film 3, and a polycrystalline silicon layer doped with arsenic is formed on the entire surface to a thickness thinner than that of the conventional one.
The polycrystalline silicon layer 7 is deposited and patterned to form a pattern of a polycrystalline silicon layer 7 on the gate oxide film 3 as part of the gate electrode and wiring.

また、多結晶シリコン層7のパターンおよびフィールド
酸化膜2tマ゛スクとしてn聾不純物、例えば砒素をゲ
ート酸化膜3′Ik通してp型シリコン基板1にイオン
注入した後、熱処理を施す。その結果、多結晶シリコン
層1のパターンに対してセルフ−7ラインでソース、ド
レイン領域としてのn生型不純物の拡散領域4が形成さ
jる。次k、選択CVD法を用いて多結晶シリコン層7
と拡散領域4の81表面部を高融点金属層(例えばTl
Further, as a pattern for the polycrystalline silicon layer 7 and a field oxide film 2t mask, an n-deaf impurity such as arsenic is ion-implanted into the p-type silicon substrate 1 through the gate oxide film 3'Ik, and then heat treatment is performed. As a result, n-type impurity diffusion regions 4 as source and drain regions are formed along the self-7 line with respect to the pattern of the polycrystalline silicon layer 1. Next, polycrystalline silicon layer 7 is formed using selective CVD method.
and 81 surface portion of the diffusion region 4 is coated with a high melting point metal layer (for example, Tl
.

pt等)8で覆う、この後、薄い多結晶シリコン膜を全
面に形成し熱処理する。
After that, a thin polycrystalline silicon film is formed on the entire surface and heat treated.

この熱処理により、シリサイド化反応を利用して高融点
金属面と接している部分だけに、高融点金属の金属シリ
サイド層9を形成する。ゲート酸化膜3上は未反応の多
結晶シリコンが残り、反応しない部分の多結晶シリコン
をエツチングにより除去丁jば、ソースおよびドレイン
領域とゲートの金属表面部を金属シリサイド層9で被覆
した構造か得らjる。
By this heat treatment, a metal silicide layer 9 of a high melting point metal is formed only in the portion that is in contact with the high melting point metal surface using a silicidation reaction. Unreacted polycrystalline silicon remains on the gate oxide film 3, and the unreacted polycrystalline silicon is removed by etching.Then, the source and drain regions and the metal surface of the gate are covered with a metal silicide layer 9. I can get it.

〔発明の効果〕〔Effect of the invention〕

以上説明しkように、この発明は、ゲート電極を多結晶
シリコン層、高融点金属層、高融点金属からなる金属シ
リサイド層の3層構造したので、低抵抗でしかもこの方
法によjば高融点金s’iit微細加工しなくて丁み、
さらK、AIの7pイ・スパイクの防止忙もなる効果が
ある。
As explained above, in this invention, the gate electrode has a three-layer structure of a polycrystalline silicon layer, a high melting point metal layer, and a metal silicide layer made of a high melting point metal. Melting point gold s'iit without fine processing,
It also has the effect of keeping K and AI busy preventing 7p spikes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMO8型半導体装置の要部断面図、第2
図はこの発明の一実施例を説明するためのMO8型半導
体装置の要部断面図である。 図中、1はp型シリコン基板、2はフィールド酸化膜、
3はゲート酸化膜、4はn+m不純物の拡散領域、5は
埋込みフンタクト用の孔、1は多結晶シリコン層、8は
高融点金属層、9は金属シリサイド層である。 なお、図中の同一符号は同一または相当部分な示す。 代理人 大著増地 (外2名)
Figure 1 is a sectional view of the main parts of a conventional MO8 type semiconductor device, Figure 2
The figure is a sectional view of a main part of an MO8 type semiconductor device for explaining one embodiment of the present invention. In the figure, 1 is a p-type silicon substrate, 2 is a field oxide film,
3 is a gate oxide film, 4 is an n+m impurity diffusion region, 5 is a hole for a buried hole, 1 is a polycrystalline silicon layer, 8 is a high melting point metal layer, and 9 is a metal silicide layer. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Daisho Masuji (2 others)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上にゲート酸化膜を形成し、このゲート酸化
膜上に多結晶シリコン層を形成し、この多結晶シリコン
層上に高融点金属層と高融点金属からなる金属シリサイ
ド層を順次形成して3層構造のゲート電極としたことを
特徴とする半導体装置。
A gate oxide film is formed on a semiconductor substrate, a polycrystalline silicon layer is formed on this gate oxide film, and a high melting point metal layer and a metal silicide layer made of a high melting point metal are sequentially formed on this polycrystalline silicon layer. A semiconductor device characterized by having a gate electrode having a three-layer structure.
JP8227384A 1984-04-23 1984-04-23 Semiconductor device Pending JPS60225474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8227384A JPS60225474A (en) 1984-04-23 1984-04-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8227384A JPS60225474A (en) 1984-04-23 1984-04-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60225474A true JPS60225474A (en) 1985-11-09

Family

ID=13769875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8227384A Pending JPS60225474A (en) 1984-04-23 1984-04-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60225474A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678140A (en) * 1979-10-25 1981-06-26 Gen Electric Conductive composite structure and method of forming same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678140A (en) * 1979-10-25 1981-06-26 Gen Electric Conductive composite structure and method of forming same

Similar Documents

Publication Publication Date Title
US4151631A (en) Method of manufacturing Si gate MOS integrated circuit
US5654241A (en) Method for manufacturing a semiconductor device having reduced resistance of diffusion layers and gate electrodes
US5801086A (en) Process for formation of contact conductive layer in a semiconductor device
JP3250526B2 (en) Semiconductor device and manufacturing method thereof
JPS60225474A (en) Semiconductor device
JPH0467671A (en) Manufacture of semiconductor device
JPS5856977B2 (en) Manufacturing method of semiconductor device
JPS6197975A (en) Manufacture of semiconductor device
JP2558124B2 (en) Method for manufacturing semiconductor device
JPH0252463A (en) Semiconductor integrated circuit device
US20050161767A1 (en) Semiconductor device and manufacturing method thereof
JPH0127589B2 (en)
JPS61267365A (en) Semiconductor device
JP3147374B2 (en) Semiconductor device
JPS61150376A (en) Semiconductor device
JPS6313352B2 (en)
JPS60138973A (en) Manufacture of insulated gate type field effect transistor
JPH0586853B2 (en)
JPS5856459A (en) Manufacture of semiconductor device
JPH02203565A (en) Semiconductor device and its manufacture
JPS60236257A (en) Semiconductor device
JPS60143657A (en) Cmos semiconductor device and method of producing same
JPH0564469B2 (en)
JPH0482220A (en) Manufacture of semiconductor device
JPS60195972A (en) Manufacture of semiconductor device