JPS60225364A - Fuel cell system unit with heat exhaust and moisture collection unit - Google Patents

Fuel cell system unit with heat exhaust and moisture collection unit

Info

Publication number
JPS60225364A
JPS60225364A JP59078410A JP7841084A JPS60225364A JP S60225364 A JPS60225364 A JP S60225364A JP 59078410 A JP59078410 A JP 59078410A JP 7841084 A JP7841084 A JP 7841084A JP S60225364 A JPS60225364 A JP S60225364A
Authority
JP
Japan
Prior art keywords
heat
fuel cell
exhaust gas
water
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59078410A
Other languages
Japanese (ja)
Inventor
Yoshiaki Amano
天野 義明
Eiji Yokoyama
英二 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59078410A priority Critical patent/JPS60225364A/en
Publication of JPS60225364A publication Critical patent/JPS60225364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To increase the amount of heat and moisture collection by guiding exhaust gas in a heat exhaust and moisture collection unit, generating water vapor from an evaporation cooling device provided in the said unit, and connecting it to the ejector of a fuel supply system through piping. CONSTITUTION:The exhaust gas from the oxygen electrode 1b of a fuel cell 1 and the combustion section 2b of a reformer 2 is guided to a heat exhaust and moisture collection unit 20 and the route of generated water vapor is connected to an ejector 4 that mixes the fuel with the water vapor through piping 34. Then, the exhaust gas is led from the entrance 29 of the unit 20 and subjected to heat-exchange by a cooling pipe 27. The gas is cooled by an evaporation cooling device 22 and the moisture is changed into condensed water. Water vapor is obtained by sucking the condensed water by a spraying pipe 24 and spraying it from a narrow hole 24a. As a result, the heat output that is taken out by the cooling pipe 27 in form of hot water can be reduced and the heat output that is taken out from the heat exchanger 7 for cooling water of a battery cooling system 1c in form of hot water can be increased. Consequently, thermal efficiency can be improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、排熱・水分回収装置を備えた燃料電池系装置
に係り、特に熱出力の調整が可能で、熱効率が高く、水
分回収機能を高めるのに好適な排熱・水分回収装置を備
えた燃料電池系装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fuel cell system equipped with an exhaust heat/moisture recovery device, and in particular a fuel cell system that is capable of adjusting heat output, has high thermal efficiency, and has a moisture recovery function. The present invention relates to a fuel cell system equipped with an exhaust heat/moisture recovery device suitable for increasing the amount of waste heat.

〔発明の背景〕[Background of the invention]

まず、従来の燃料電池系装置について第1図を参照して
説明する。
First, a conventional fuel cell system will be explained with reference to FIG.

第1図は、従来の燃料電池系装置の系統図で太い実線矢
印は天然ガスおよび反応ガスの径路、一点鎖線矢印は空
気の径路、二点鎖線矢印は排ガスの径路、破線は水蒸気
の経路、細い実線矢印は冷却水の径路をそれぞれ示して
いる。
Fig. 1 is a system diagram of a conventional fuel cell system, in which the thick solid line arrows are natural gas and reaction gas paths, the dashed-dotted arrows are air paths, the two-dot chain arrows are exhaust gas paths, and the broken lines are water vapor paths. Thin solid line arrows each indicate the path of the cooling water.

第1図において、1は燃料電池本体で、水素極la、酸
素極1b、電池冷却装置ICからなっている。
In FIG. 1, 1 is a fuel cell main body, which includes a hydrogen electrode la, an oxygen electrode 1b, and a battery cooling device IC.

2はリフオーマで、反応部2aと燃焼部2bとからなっ
ている。3はシフトコンバータ、4は、燃料の混合手段
として機能するエゼクタであり、これらは燃料電池1に
対する燃料供給系を構成している。
Reference numeral 2 denotes a refoamer, which consists of a reaction section 2a and a combustion section 2b. 3 is a shift converter, and 4 is an ejector that functions as a fuel mixing means, and these constitute a fuel supply system for the fuel cell 1.

12は、空気供給系に設けたブロワである。12 is a blower provided in the air supply system.

5は蒸気発生器、6は直流を交流に変換するインバータ
、7は冷却水用熱交換器、8は排ガス用熱交換器、9は
水タンク、10は冷却ポンプ。
5 is a steam generator, 6 is an inverter that converts direct current to alternating current, 7 is a cooling water heat exchanger, 8 is an exhaust gas heat exchanger, 9 is a water tank, and 10 is a cooling pump.

11は給水ポンプである。11 is a water supply pump.

排ガス用熱交換器8.水タンク9は排ガス、水分回収系
を構成し、前記水タンク9.給水ポンプ11と、電池冷
却装置1c、蒸気発生器5.冷却水用熱交換器7.冷却
ポンプ10とで、電池冷却系を構成している。
Heat exchanger for exhaust gas8. The water tank 9 constitutes an exhaust gas and water recovery system, and the water tank 9. Water supply pump 11, battery cooling device 1c, steam generator 5. Cooling water heat exchanger7. The cooling pump 10 constitutes a battery cooling system.

このような構成の燃料電池系装置の作用を説明する。The operation of the fuel cell system having such a configuration will be explained.

天然ガス等の燃料は、エゼクタ4で水蒸気と混合され、
リフオーマ2の反応部に供給され、ここで水素を多量に
含むガスに改質される。続いてシフトコンバータ3に導
かれ、ガス中の一酸化炭素が木と反応して二酸化炭素と
水素に変換される。
Fuel such as natural gas is mixed with water vapor in the ejector 4,
It is supplied to the reaction section of the reformer 2, where it is reformed into a gas containing a large amount of hydrogen. The gas is then led to the shift converter 3, where the carbon monoxide in the gas reacts with wood and is converted into carbon dioxide and hydrogen.

次いでガス中に余分の水分がある場合は、これを除去し
たのち、燃料電池本体1の水素極1aに導かれ、ここで
約80%の水素が消費され、残り20%の水素を含む水
素極排ガスはリフオーマ2の燃焼部2bに戻され、改質
反応に必要な燃焼熱の一部に用いられる。
Next, if there is excess moisture in the gas, after removing it, it is guided to the hydrogen electrode 1a of the fuel cell main body 1, where about 80% of the hydrogen is consumed, and the hydrogen electrode containing the remaining 20% hydrogen. The exhaust gas is returned to the combustion section 2b of the reformer 2 and is used as part of the combustion heat required for the reforming reaction.

空気は、ブロワ12により昇圧され、燃料電池本体1の
酸素極1bおよびリフオーマ2の燃焼部2bに供給され
る。
The air is pressurized by the blower 12 and is supplied to the oxygen electrode 1b of the fuel cell main body 1 and the combustion section 2b of the reformer 2.

燃料電池本体1の酸素極1bからの排ガスおよびリフオ
ーマ2の燃焼部2bからの排ガスは合流して2点鎖線矢
印に示すように排ガス用熱交換器8に導かれ、循環水等
によって排ガス中の水分が凝縮するまで冷却することに
より、排熱回収および水分回収が行なわれる。回収され
た水分は水タンク9に導かれ再利用される。
The exhaust gas from the oxygen electrode 1b of the fuel cell main body 1 and the exhaust gas from the combustion part 2b of the re-former 2 are combined and guided to the exhaust gas heat exchanger 8 as shown by the double-dashed arrow, where the exhaust gas is heated by circulating water or the like. Exhaust heat recovery and moisture recovery are performed by cooling until moisture condenses. The collected moisture is led to the water tank 9 and reused.

冷却水は、冷却水ポンプlOにより昇圧され、燃料電池
本体1の電池冷却装置dleに供給され、燃料電池本体
lからの発生熱を奪ったのち、蒸気発生器5でフラッシ
ュされる。ここで冷却水の一部は水蒸気となり、破線矢
印に示すように蒸気制御弁13で流量を調節され、エゼ
クタ4に導かれる。残りの冷却水給水ポンプ11からの
細い実線矢印で示す補給水と合流し、再び冷却水ポンプ
lOに導かれる。この電池冷却系で発生した余剰の熱は
、冷却水用熱交換器7により温水等の形で回収される。
The cooling water is pressurized by the cooling water pump lO, is supplied to the cell cooling device dle of the fuel cell main body 1, and is flushed by the steam generator 5 after removing the generated heat from the fuel cell main body 1. Here, a part of the cooling water becomes water vapor, and the flow rate is adjusted by the steam control valve 13 as shown by the broken line arrow, and the water vapor is guided to the ejector 4. It joins with the makeup water shown by the thin solid line arrow from the remaining cooling water supply pump 11, and is led to the cooling water pump IO again. Excess heat generated in the battery cooling system is recovered in the form of hot water or the like by the cooling water heat exchanger 7.

このような従来の燃料電池系装置においては、装置から
の排熱が、排ガス用熱交換器8および冷却水用熱交換器
7により温水などの形で回収され、これが燃料電池系装
置からの熱出力となっている。
In such conventional fuel cell system devices, exhaust heat from the device is recovered in the form of hot water etc. by the exhaust gas heat exchanger 8 and the cooling water heat exchanger 7, and this is used as heat from the fuel cell system. This is the output.

一般に、燃料電池系装置内で、水分の過不足がないよう
に系内の熱、物質のバランスを調整する場合、上記二つ
の熱交換器からの熱出力は、水蒸気をS、燃料の炭素を
Cとすれば、水蒸気Sは燃料の炭素Cとの比、すなわち
水蒸気比S/Cを変えない限り、その出力割合を容易に
変えることはできない。このことは外部の熱負荷側−過
不足無く対応することが困難であることを意味する。
Generally, when adjusting the balance of heat and substances in a fuel cell system so that there is no excess or deficiency of water, the heat output from the two heat exchangers described above is: S for water vapor and S for carbon in the fuel. C, the output ratio of water vapor S cannot be easily changed unless the ratio of water vapor S to carbon C of fuel, ie, the water vapor ratio S/C, is changed. This means that it is difficult to deal with the external heat load without excess or deficiency.

また、一般的に排ガス用熱交換器8からの熱出力の温度
レベル(50〜60℃程度)は、冷却水用熱交換器7の
温度レベル(最大170〜180℃程度)にくらべて低
いため、利用しにくいという欠点があった。
In addition, the temperature level of the heat output from the exhaust gas heat exchanger 8 (about 50 to 60 degrees Celsius) is generally lower than the temperature level of the cooling water heat exchanger 7 (maximum about 170 to 180 degrees Celsius). The disadvantage was that it was difficult to use.

一方、排ガス用熱交換器8は、循環水等によって冷却さ
れるため充分低い温度(50℃程度)まで冷却するのが
容易でないという欠点があった。
On the other hand, the exhaust gas heat exchanger 8 has the disadvantage that it is not easy to cool it to a sufficiently low temperature (about 50° C.) because it is cooled by circulating water or the like.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の間舷点を解決するためになされたもの
で、熱出力の調整が可能で、高温レベルの熱出力を大き
くとることができ、熱効率が高く、水分回収量の多い排
熱・水分回収装置を備えた燃料電池系装置の提供を、そ
の目的としている。
The present invention was made in order to solve the above-mentioned issue of sideways, and it is possible to adjust the heat output, increase the heat output at high temperature level, have high thermal efficiency, and recover waste heat with a large amount of moisture.・The purpose is to provide a fuel cell system equipped with a water recovery device.

〔発明の概要〕[Summary of the invention]

本発明に係る排熱・水分回収装置を備えた燃料電池系装
置の構成は、燃料電池本体と、この燃料電池本体に対す
る燃料供給系、空気供給系、電池冷却系、排ガス、水分
回収系および付属装置とからなる排熱・水分回収装置を
備えた燃料電池系装置において、前記排ガス、水分回収
系に排熱・水分回収装置を設け、当該排熱・水分回収装
置内に、上記の燃料供給系、空気供給系および燃料電池
本体から発生する排ガスを導通させ、前記排熱・水分回
収装置内に設けた蒸発冷却器により水蒸気を発生させる
とともに、この水蒸気の流通配管を上記燃料供給系に配
設されているエゼクタに接続したものである。
The configuration of a fuel cell system equipped with an exhaust heat/moisture recovery device according to the present invention includes a fuel cell main body, a fuel supply system for the fuel cell main body, an air supply system, a battery cooling system, an exhaust gas/moisture recovery system, and accessories. In a fuel cell system equipped with an exhaust heat/moisture recovery device consisting of a device, the exhaust gas/moisture recovery system is provided with an exhaust heat/moisture recovery device, and the above-mentioned fuel supply system is installed in the exhaust heat/moisture recovery device. , conduct the exhaust gas generated from the air supply system and the fuel cell main body, generate water vapor by an evaporative cooler provided in the exhaust heat/moisture recovery device, and arrange a distribution pipe for this water vapor in the fuel supply system. It is connected to the ejector that is installed.

なお付記すると、本発明は、従来の排ガス用熱交換響を
、エゼクタによって作動する排熱・水分回収装置に置き
換えたものである。
It should be noted that in the present invention, the conventional exhaust gas heat exchange system is replaced with an exhaust heat/moisture recovery device operated by an ejector.

その原理は、本排熱・水分回収装置内で、凝縮水の飽和
水をエゼクタで減圧させ、このときの気化熱を周囲の排
ガスから奪うことによって冷却しようとするものである
The principle is to reduce the pressure of saturated condensed water using an ejector in this exhaust heat/moisture recovery device, and to cool it by removing the heat of vaporization from the surrounding exhaust gas.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図および第3図を参照し
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3.

第2図は、本発明の一実施例に係る排熱・水分回収装置
を備えた燃料電池系装置の系統図、第3図は、第2図の
排熱・水分回収装置部の縦断面図である。図中、第1図
と同一符号のものは、従来技術と同等であるので、その
説明を省略する。
FIG. 2 is a system diagram of a fuel cell system equipped with an exhaust heat/moisture recovery device according to an embodiment of the present invention, and FIG. 3 is a longitudinal sectional view of the exhaust heat/moisture recovery device section of FIG. 2. It is. In the figure, the same reference numerals as in FIG. 1 are the same as those in the prior art, so the explanation thereof will be omitted.

また、矢印の種別も第1図と同一である。Further, the types of arrows are also the same as in FIG.

第2図において、20は排熱・水分回収装置33は蒸気
制御弁、34は、排熱・水分回収装置20とエゼクタ4
とを接続する水蒸気配管である。
In FIG. 2, 20 indicates the exhaust heat/moisture recovery device 33 is a steam control valve, and 34 indicates the exhaust heat/moisture recovery device 20 and the ejector 4.
This is the steam piping that connects the

燃料電池本体lの酸素極1bからの排ガスおよびリフオ
ーマ2の燃焼部2bからの排ガスは2点鎖線矢印に示す
ように合流して排熱・水分回収装置20に導かれ、冷却
水および次に説明する装置に内蔵された蒸発冷却器によ
って充分冷却され、排熱回収および水分回収が行なわれ
る。
The exhaust gas from the oxygen electrode 1b of the fuel cell main body 1 and the exhaust gas from the combustion section 2b of the re-former 2 are combined as shown by the two-dot chain arrow and guided to the exhaust heat/moisture recovery device 20, where they are collected as cooling water and as will be explained next. It is sufficiently cooled by an evaporative cooler built into the equipment, and exhaust heat and moisture are recovered.

次に、第3図において、21は排熱・水分回収装W20
のケーシング、22は、ケーシング21内に設置された
蒸発冷却器で、その容器外周に冷却を促進する冷却用フ
ィン23が設けられている。
Next, in Fig. 3, 21 is an exhaust heat/moisture recovery device W20.
The casing 22 is an evaporative cooler installed inside the casing 21, and cooling fins 23 are provided on the outer periphery of the container to promote cooling.

24は、蒸発冷却器22内に設けられたスプレー管で、
スプレー管24は蒸発冷却器22底部に開口して、ケー
シング底部に溜まる凝縮水を吸上げるよ゛うになってい
る。
24 is a spray pipe provided in the evaporative cooler 22;
The spray pipe 24 opens at the bottom of the evaporative cooler 22 to suck up condensed water that collects at the bottom of the casing.

27は、ケーシング21内で排ガスと熱交換すべき冷却
水を流通させる冷却管で、27aは冷却水入口、27b
は冷却水出口を示す。28は冷却’!27の下に配設さ
れたセパレータで、冷却管27から滴下する凝縮水をケ
ーシング21底部へ導くものである。
27 is a cooling pipe through which cooling water to exchange heat with exhaust gas flows within the casing 21, 27a is a cooling water inlet, 27b
indicates the cooling water outlet. 28 is cooling'! A separator disposed below the cooling pipe 27 guides condensed water dripping from the cooling pipe 27 to the bottom of the casing 21.

29は排ガス入口で、燃料供給系、空気供給系に関連す
るリフオーマ2の燃焼部2bからの排ガスおよび燃料電
池本体1の酸素極1bからの排ガスを導通させるもので
ある。30は排ガス出口、31は蒸発冷却器22で発生
する水蒸気を水蒸気配管34を経由してエゼクタ4に導
くための水蒸気出口である。
Reference numeral 29 denotes an exhaust gas inlet through which exhaust gas from the combustion section 2b of the reflomer 2 and exhaust gas from the oxygen electrode 1b of the fuel cell body 1 related to the fuel supply system and the air supply system are conducted. 30 is an exhaust gas outlet, and 31 is a steam outlet for guiding steam generated in the evaporative cooler 22 to the ejector 4 via a steam pipe 34.

次に、このように構成された排熱・水分回収装置を備え
た燃料電池系装置の作用を説明する。
Next, the operation of the fuel cell system equipped with the exhaust heat/moisture recovery device configured as described above will be explained.

排ガスは、排ガス入口29から流入し蒸発冷却器22に
より冷却され、排ガス中の水分が凝縮し凝縮水となって
ケーシング21の底部に溜められる。
The exhaust gas flows in from the exhaust gas inlet 29 and is cooled by the evaporative cooler 22, and the moisture in the exhaust gas condenses to become condensed water, which is stored at the bottom of the casing 21.

蒸発冷却器22の内部の圧力は、配管34で接続してい
るエゼクタ4により排ガス圧力以下に引かれているので
、凝縮水はスプレー管24に吸い上げられ、スプレー管
24に設けられている細孔24aからスプレーされる。
Since the pressure inside the evaporative cooler 22 is lowered to below the exhaust gas pressure by the ejector 4 connected to the pipe 34, the condensed water is sucked up into the spray pipe 24 and flows through the pores provided in the spray pipe 24. It is sprayed from 24a.

スプレーの前の凝縮水の圧力は、はぼ排ガスの圧力であ
り、前記のスプレーの過程で等エンタルピ変化で減圧さ
れ飽和水となる。そして、この状態で周囲から圧死潜熱
を奪い、一部が水蒸気となるのである。
The pressure of the condensed water before spraying is almost the same as the pressure of the exhaust gas, and during the spraying process, the pressure is reduced by isenthalpic change and becomes saturated water. In this state, it absorbs pressure death latent heat from its surroundings, and some of it turns into water vapor.

発生した水蒸気は、水蒸気出口31から水蒸気配管34
に破線のよう番;流れ、流量制御弁33により流量を調
節されてエゼクタ4に吸入される。
The generated water vapor is transferred from the water vapor outlet 31 to the water vapor pipe 34.
The flow is as shown by the broken line, and the flow rate is adjusted by the flow rate control valve 33 and is sucked into the ejector 4.

りお、蒸発冷却器22内部の液面は、液面を検知するた
めのフロート26と、このフロート26に連動する液面
調節弁25によって一定に制御されている。
The liquid level inside the evaporative cooler 22 is controlled to a constant level by a float 26 for detecting the liquid level and a liquid level control valve 25 linked to the float 26.

上記のように、蒸発冷却器22内部で水蒸気が発生する
際、周囲から気化熱を奪うのであるが、これは排ガスを
冷却させることにほかならない。
As mentioned above, when water vapor is generated inside the evaporative cooler 22, heat of vaporization is taken away from the surroundings, which is nothing but cooling the exhaust gas.

排ガスは、蒸発冷却器22で冷却されたのち、さらに残
った熱を取り出すために冷却管27で冷却水と熱交換し
、熱を奪われた排ガス出口30から排出される。
After the exhaust gas is cooled in the evaporative cooler 22, it exchanges heat with cooling water in the cooling pipe 27 to extract the remaining heat, and is discharged from the exhaust gas outlet 30 from which the heat has been removed.

一方、冷却水入口27aから冷却管27に流入した冷却
水は排ガスから吸熱して温水となり、冷極水出口27b
から回収される。
On the other hand, the cooling water flowing into the cooling pipe 27 from the cooling water inlet 27a absorbs heat from the exhaust gas and becomes hot water, and the cold water exit 27b
recovered from.

このような排熱・水分回収装置20を備えた本実施例に
よれば、次の効果がある。
According to this embodiment, which includes such an exhaust heat/moisture recovery device 20, the following effects can be achieved.

1)蒸発冷却器22の働きにより排ガスの温度が下って
から冷却管27で冷却水との熱交換がなされるので、冷
却管27により温水として取り出される熱出力を減少さ
せることができ、その分、電池冷却系の冷却水用熱交換
器7から温水として取出される熱出力を増加させること
ができる。
1) After the temperature of the exhaust gas is lowered by the action of the evaporative cooler 22, heat exchange with the cooling water is performed in the cooling pipe 27, so the heat output taken out as hot water by the cooling pipe 27 can be reduced, and the , it is possible to increase the heat output taken out as hot water from the cooling water heat exchanger 7 of the battery cooling system.

すなわち、高温レベルの熱出力と低温レベルの熱出力の
割合を変化させることができる。
That is, the ratio of heat output at a high temperature level to heat output at a low temperature level can be changed.

先に従来技術で説明したように、冷却水用熱交換器7の
温度レベルは、排ガス用熱交換器に係る冷却管27の温
度レベルより高いので、本実施例によれば、利用しやす
い高温レベルの熱出力が増加することになる。
As explained in the prior art section, the temperature level of the cooling water heat exchanger 7 is higher than the temperature level of the cooling pipe 27 related to the exhaust gas heat exchanger, so according to this embodiment, the temperature level of the cooling water heat exchanger 7 is higher than the temperature level of the cooling pipe 27 related to the exhaust gas heat exchanger. The heat output of the level will increase.

2)エゼクタ4による真空度を上げることにより蒸気冷
却器22における水蒸気発生が促進され、排ガスを冷や
して気化熱を奪うことになるので従来の冷却水による熱
交換だけのものより充分低い温度まで排ガスを冷却する
ことができる。したがって、熱回収量および水分回収量
を大きくすることが可能であり、熱効率を高くすること
ができる。
2) By increasing the degree of vacuum by the ejector 4, the generation of steam in the steam cooler 22 is promoted, which cools the exhaust gas and takes away the heat of vaporization. can be cooled. Therefore, it is possible to increase the amount of heat recovery and the amount of water recovery, and the thermal efficiency can be increased.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、熱出力の調整が可
能で、高温レベルの熱出力を大きくとることができ、熱
効率が高く、水分回収量の多い排熱・水分回収装置を備
えた燃料電池系装置を提供することができる。
As described above, according to the present invention, the heat output can be adjusted, the heat output at a high temperature level can be increased, the heat efficiency is high, and the waste heat/moisture recovery device is equipped with a large amount of moisture recovery. A fuel cell system device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の燃料電池系装置の系統図、第2図は、
本発明の一実施例に係る排熱・水分回収装置を備えた燃
料電池系装置の系統図、第3図は、第2図の排熱・水分
回収装置部の縦断面図である。 1・・・燃料電池本体、la・・・水素極、1b・・・
酸素極、lc・・・電池冷却装置、2・・・リフオーマ
、2a・・・反応部、2b・・・燃焼部、3・・・シフ
トコンバータ、4・・・エゼクタ、7・・・冷却水用熱
交換器、9・・・水タング、10・・・冷却水ポンプ、
II・・・給水ポンプ、12・・・ブロワ、20・・・
排熱・水分回収装置、22・・・蒸発冷却器、23・・
・フィン、24・・・スプレー管。 27・・・冷却管、29・・・排ガス入口、3o・・・
排ガス出口、31・・・水蒸気出口、33・・・蒸気制
御弁、34・・・水蒸気配管。 代理人 弁理士 高橋明夫
Figure 1 is a system diagram of a conventional fuel cell system, and Figure 2 is a system diagram of a conventional fuel cell system.
FIG. 3 is a system diagram of a fuel cell system equipped with an exhaust heat/moisture recovery device according to an embodiment of the present invention, and is a longitudinal sectional view of the exhaust heat/moisture recovery device section of FIG. 2. 1...Fuel cell main body, la...hydrogen electrode, 1b...
Oxygen electrode, lc...Battery cooling device, 2...Reformer, 2a...Reaction section, 2b...Combustion section, 3...Shift converter, 4...Ejector, 7...Cooling water heat exchanger, 9... water tongue, 10... cooling water pump,
II...Water pump, 12...Blower, 20...
Exhaust heat/moisture recovery device, 22... Evaporative cooler, 23...
・Fin, 24...Spray tube. 27...Cooling pipe, 29...Exhaust gas inlet, 3o...
Exhaust gas outlet, 31... Steam outlet, 33... Steam control valve, 34... Steam piping. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】 1、燃料電池本体と、この燃料電池本体に対する燃料供
給系、空気供給系、電池冷却系、排ガス、水分回収系お
よび付属装置とからなる排熱・水分回収装置を備えた燃
料電池系装置において、前記排ガス、水分回収系に排熱
・水分回収装置を設け、当該排熱・水分回収装置内に、
上記の燃料供給系、空気供給系および燃料電池本体から
発生する排ガスを導通させ、前記排熱・水分回収装置内
に設けた蒸発冷却器により水蒸気を発生させるととも番
;、この水蒸気の流通配管を上記燃料供給系に配設され
ているエゼクタに接続したことを特徴とする、排熱・水
分回収装置を備えた燃料電池系装置。 2、特許請求の範囲第1項記載のものにおいて、蒸発冷
却器は、その外周に冷却用のフィンを備え、排ガスを冷
却して凝縮水を生ぜしめるとともに、その蒸発冷却器内
に、前記凝縮水をエゼクタで減圧気化せしめうるスプレ
ー管を備えたものである排熱・水分回収装置を備えた燃
料電池系装置。
[Claims] 1. An exhaust heat/moisture recovery device comprising a fuel cell main body, a fuel supply system for the fuel cell main body, an air supply system, a battery cooling system, an exhaust gas and moisture recovery system, and ancillary devices. In the fuel cell system, an exhaust heat/moisture recovery device is provided in the exhaust gas/moisture recovery system, and the exhaust heat/moisture recovery device includes:
The exhaust gas generated from the above fuel supply system, air supply system, and fuel cell body is conducted, and water vapor is generated by the evaporative cooler installed in the waste heat/moisture recovery device; and this water vapor distribution piping. A fuel cell system device equipped with an exhaust heat/moisture recovery device, characterized in that the device is connected to an ejector disposed in the fuel supply system. 2. In the device described in claim 1, the evaporative cooler is provided with cooling fins on its outer periphery to cool the exhaust gas and produce condensed water, and the A fuel cell system equipped with an exhaust heat/moisture recovery device that is equipped with a spray pipe that can vaporize water under reduced pressure using an ejector.
JP59078410A 1984-04-20 1984-04-20 Fuel cell system unit with heat exhaust and moisture collection unit Pending JPS60225364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078410A JPS60225364A (en) 1984-04-20 1984-04-20 Fuel cell system unit with heat exhaust and moisture collection unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078410A JPS60225364A (en) 1984-04-20 1984-04-20 Fuel cell system unit with heat exhaust and moisture collection unit

Publications (1)

Publication Number Publication Date
JPS60225364A true JPS60225364A (en) 1985-11-09

Family

ID=13661263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078410A Pending JPS60225364A (en) 1984-04-20 1984-04-20 Fuel cell system unit with heat exhaust and moisture collection unit

Country Status (1)

Country Link
JP (1) JPS60225364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310472A (en) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp Fuel cell power generating system
JPS6310473A (en) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp Fuel cell power generating system
KR20060059457A (en) * 2004-11-29 2006-06-02 삼성에스디아이 주식회사 Fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310472A (en) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp Fuel cell power generating system
JPS6310473A (en) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp Fuel cell power generating system
KR20060059457A (en) * 2004-11-29 2006-06-02 삼성에스디아이 주식회사 Fuel cell system

Similar Documents

Publication Publication Date Title
JPH0228232B2 (en)
JPH0821403B2 (en) How to operate a fuel cell power plant
RU2443040C2 (en) Fuel elements system
JPS5828176A (en) Fuel-cell generation system
JPS60225364A (en) Fuel cell system unit with heat exhaust and moisture collection unit
JPH11102720A (en) Fuel cell power generating device
JP2000171179A (en) Thermal storage device and fuel battery generator facility having thermal storage device
JP2006302792A (en) Fuel cell system
JPS6124634B2 (en)
JP2009016077A (en) Fuel cell power generation device
JPS61216704A (en) Degassing apparatus for water recovery in fuel battery system
JP3743254B2 (en) Fuel cell power generator
JP3461909B2 (en) Fuel cell surplus steam condensation type steam separator
JP3359146B2 (en) Fuel cell
JP2800286B2 (en) Water recovery device for fuel cell
JP2002100382A (en) Fuel cell power generator
JP3319315B2 (en) Direct contact heat exchanger system for fuel cells
JP4453226B2 (en) Waste heat utilization method and apparatus for fuel cell power generator
JP2000182646A (en) Fuel cell power-generating facility
JPH05114411A (en) Fuel cell power generation system
JPH0443567A (en) Waste heat recovery device for fuel cell power generating plant
CN106677260A (en) Proton exchange membrane fuel cell air water intake device
JP4440676B2 (en) Fuel cell power generation hot water supply system
JPS5447156A (en) Heat exchanger
JPH06290801A (en) Fuel cell power generating device