JPS60224289A - External resonator type laser diode - Google Patents

External resonator type laser diode

Info

Publication number
JPS60224289A
JPS60224289A JP7945884A JP7945884A JPS60224289A JP S60224289 A JPS60224289 A JP S60224289A JP 7945884 A JP7945884 A JP 7945884A JP 7945884 A JP7945884 A JP 7945884A JP S60224289 A JPS60224289 A JP S60224289A
Authority
JP
Japan
Prior art keywords
light emitting
light
laser diode
emitting element
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7945884A
Other languages
Japanese (ja)
Inventor
Masataka Shirasaki
白崎 正孝
Hiroki Nakajima
啓幾 中島
Yasuo Furukawa
古川 泰男
Yushi Inagaki
雄史 稲垣
Kunihiko Asama
浅間 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7945884A priority Critical patent/JPS60224289A/en
Publication of JPS60224289A publication Critical patent/JPS60224289A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a laser diode, in which a compound mode is hard to occur, the mode is stabilized and a far view image pattern is of circular shape, by inclining the light input and output end surfaces of a semiconductor light emitting element with respect to its light axis. CONSTITUTION:The light input and output end surfaces of a semiconductor light emitting element 100 are inclined with respect to its light axis. When a current is supplied to such a semiconductor light emitting element 100, light is emitted in the direction of A and A'. The residual light of about 2% is reflected in the direction B but is not reflected in a stripe region 9. The reflected light is inputted to the outer surface of the light emitting element 100. Since a reflection preventing film is formed on the outer surface, the light is transmitted to the outside of the light emitting element 100 and is not inputted into the light emitting elememt 100 again. Therefore a compound mode is not generated by the residual light, which is yielded at the light input and output end surfaces of the light emitting element 100. Thus the mode is stabilized. Since the slant angle is selected so that it is larger than the angle of diffraction, the far view image pattern becomes approximately circular.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は、外部共振器型レーザダイオードに関する。特
に、外部共振器型レーザダイオードの複合モードの発生
を防止しモードを安定にする改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an external cavity type laser diode. In particular, the present invention relates to improvements that prevent the generation of complex modes and stabilize the modes of external cavity laser diodes.

(2)技術の背景 外部共振器型レーザダイオードとは、レーザとして機能
するために必須な共振器が、半導体発光素子の光入出射
端面にではなく、半導体発光素子の外部に設けられてな
るレーザダイオードを言う、この外部共振器型レーザダ
イオードは、第1図にその1例の概念的構成を示すよう
に、半導体発光素子lと、これの光入出射端面11に対
向して光軸12に直交するように配設された1対の光学
系(図においてはレンズ)2と光反射手段(図において
は反射鏡)3との組とをもって構成され、光学系2と光
反射手段3との間に他の光学要素を配設しうるので、種
々な新しい機能を付与することができる。
(2) Background of the technology An external cavity laser diode is a laser diode in which the resonator, which is essential for functioning as a laser, is provided outside the semiconductor light emitting device, rather than on the light input/output end face of the semiconductor light emitting device. This external cavity type laser diode, which is referred to as a diode, has a semiconductor light emitting element l and an optical axis 12 facing the light input/output end face 11 of the semiconductor light emitting element l, as shown in FIG. It is composed of a pair of optical systems (lenses in the figure) 2 and light reflecting means (reflecting mirrors in the figure) 3 arranged orthogonally to each other. Since other optical elements can be placed in between, various new functions can be added.

なお、レーザダイオードは、上記せるとおり、一般に半
導体発光素子が使用されるから、その構造上、近視野像
は必ずしも円形となしやすくはないが、もし、何らかの
手段をもって、遠視野像を円形となしうれば有利である
。光学系との結合効率を高くなしうるからである。
As mentioned above, laser diodes generally use semiconductor light-emitting elements, so due to their structure, it is not always easy to make the near-field pattern circular. However, if you somehow find a way to make the far-field pattern circular. If you do, it will be advantageous. This is because the coupling efficiency with the optical system can be increased.

(3)従来技術と問題点 たC1外部共振器型レーザダイオードにおいては、半導
体発光素子の光入出射端面における光の反射が極力小さ
いことが必要である。さもないと、この光入出射端面に
おける残留反射のた控に複合共振器が構成されることと
なり、光入出射端面における戻り光のため複合モードが
発生し、モードが不安定になるという欠点があるからで
ある。この欠点を極力排除するため、従来技術に係る外
部共振器型レーザダイオードにおいては光入出射端面に
酸化アルミニウム等よりなる反射防止膜を形成すること
が一般であるが、現行技術水準においては透過率は98
%程度が限度であって2%程度の残留反射光は避は難く
、必ずしも許容し得る程度とは認め難い、そこで、残留
反射がより少なく複合モードが発生する程度が低くモー
ドがより安定してL/上る外部共振器型レーザダイオー
ドの開発が望まれていた。また、上記せるように、レー
ザダイオードにおいては、遠視野像が円形であることが
望ましいので、円形の遠視野像を有する外部共振器型レ
ーザダイオードの開発も望まれていた。
(3) In the C1 external cavity laser diode, which has a problem with the prior art, it is necessary that the reflection of light at the light input/output end face of the semiconductor light emitting element be as small as possible. Otherwise, a composite resonator will be constructed due to the residual reflection at the light input/output end face, and a composite mode will be generated due to the return light at the light input/output end face, resulting in the mode becoming unstable. Because there is. In order to eliminate this drawback as much as possible, in conventional external cavity laser diodes, it is common to form an antireflection film made of aluminum oxide or the like on the light input/output end facets. is 98
%, and it is difficult to avoid residual reflected light of about 2%, and it is difficult to admit that it is necessarily an acceptable level.Therefore, it is necessary to reduce the residual reflection, reduce the degree of composite mode generation, and make the mode more stable. It has been desired to develop an external cavity type laser diode with an L/climb. Further, as mentioned above, since it is desirable for a laser diode to have a circular far-field pattern, it has been desired to develop an external cavity type laser diode having a circular far-field pattern.

(4)発明の目的 本発明の目的は、これらの要請にこたえることにあり、
複合モードが発生しに<〈、モードが安定している外部
共振器型レーザダイオードを提供することにある。そし
て、さらに、複合モードが発生しにくく、モードが安定
しておりしかも遠視野像が円形である外部共振器型レー
ザダイオードを提供することにある。
(4) Purpose of the invention The purpose of the present invention is to meet these demands,
An object of the present invention is to provide an external cavity type laser diode in which a complex mode is generated and the mode is stable. A further object of the present invention is to provide an external cavity laser diode in which complex modes are less likely to occur, the mode is stable, and the far-field pattern is circular.

(5)発明の構成 本発明の構成は、半導体発光素子と、該半導体発光素子
の光入出射端面に対向して光軸に直交するように配設さ
れる1対の光学系と光反射手段との組とよりなる外部共
振器型レーザダイオードにおいて、前記半導体発光素子
の光入出射端面がその光軸に対して傾斜していることを
特徴とする外部共振器型レーザダイオードにある。
(5) Structure of the Invention The structure of the present invention includes a semiconductor light emitting device, a pair of optical systems and a light reflecting means disposed facing the light input/output end face of the semiconductor light emitting device and perpendicular to the optical axis. The external cavity type laser diode is characterized in that the light input/output end face of the semiconductor light emitting element is inclined with respect to its optical axis.

本発明は、半導体発光素子の光入出射端面における残留
反射光すなわち戻り光を半導体発光素子の導波層外に射
出するようになせば複合モードとはならないという自然
法則を利用したものである。
The present invention utilizes the natural law that if the residual reflected light, that is, the return light at the light input/output end face of a semiconductor light emitting element is emitted to the outside of the waveguide layer of the semiconductor light emitting element, a composite mode will not occur.

たi、一旦導波層外に射出した光か、半導体発光素子の
内面において反射しうるとその反射光が再び導波層中に
入射して複合モードの原因となりうるので、半導体発光
素子の外周面にGe等の光吸収膜を形成しておくか、半
導体発光素子の材料との屈折率の差が適切である材料を
もって構成された反射防止膜を形成しておくかすれば、
効果は顕著である。半導体発光素子の材料がインジウム
リンである場合二酸化チタニウムの層をその外周面に形
成すると、残留反射率が0.2%程度に改善されたこと
が実験的に確認されている。
Also, once the light emitted outside the waveguide layer is reflected on the inner surface of the semiconductor light emitting element, the reflected light may enter the waveguide layer again and cause a complex mode. If a light absorption film such as Ge is formed on the surface, or an antireflection film made of a material with an appropriate difference in refractive index from the material of the semiconductor light emitting element is formed,
The effect is significant. When the material of the semiconductor light emitting device is indium phosphide, it has been experimentally confirmed that when a layer of titanium dioxide is formed on the outer peripheral surface of the device, the residual reflectance is improved to about 0.2%.

レーザダイオードは半導体層の積層体をもって構成され
るので、導波層は光入出射端面において長方形状となる
ことが一般である。その結果、近視野像は楕円形状(正
確には長方形状)となる。
Since a laser diode is constructed with a stack of semiconductor layers, the waveguide layer generally has a rectangular shape at the light input/output end face. As a result, the near-field image has an elliptical shape (more precisely, a rectangular shape).

そして、楕円の長袖方向の回折角が短軸方向の回折角よ
り小さいことが知られている。そのため、上記の傾斜方
向は、この光回折角が最小となる方向と同一の方向とす
ることが最も有利である。
It is known that the diffraction angle in the long sleeve direction of an ellipse is smaller than the diffraction angle in the short axis direction. Therefore, it is most advantageous for the above-mentioned direction of inclination to be the same direction as the direction in which this optical diffraction angle is minimized.

上記せると同様、半導体発光素子の材料がインジウムリ
ンである場合二酸化チタニウムの層をその外周面に形成
し、しかも傾斜方向を、この光回折角が最小となる方向
と同一の方向に選択すると、残留反射率が0.1%程度
に改善されたことが実験的に確認されている。
Similarly to the above, when the material of the semiconductor light emitting device is indium phosphide, if a layer of titanium dioxide is formed on the outer circumferential surface and the inclination direction is selected to be the same direction as the direction in which the light diffraction angle is the minimum, It has been experimentally confirmed that the residual reflectance was improved to about 0.1%.

さらに、上記せるとおり、遠視野像は円形に近いことが
望ましいので、上記の傾斜方向であり、かつ、傾斜角を
、この傾斜方向における先回折角以上とすれば、所期の
目的を達成するに最も好都合である。
Furthermore, as mentioned above, it is desirable that the far-field pattern be close to a circle, so if the tilt direction is the above-mentioned direction and the tilt angle is greater than or equal to the prior diffraction angle in this tilt direction, the desired purpose can be achieved. most convenient for

(6)発明の実施例 以下、図面を参照しつへ、本発明の実施例に係る外部共
振器型レーザダイオードの主要製造工程を説明して、本
発明の構成と特有の効果とをさらに明らかにする。
(6) Embodiments of the Invention Hereinafter, with reference to the drawings, the main manufacturing process of an external cavity laser diode according to an embodiment of the present invention will be explained to further clarify the structure and unique effects of the present invention. Make it.

第2図(正面図)参照 半導体層の積層体よりなる半導体発光素子を製造する。See Figure 2 (front view) A semiconductor light emitting device made of a stack of semiconductor layers is manufactured.

その主要製造工程の代表的1例を示す。液相エピタキシ
ャル成長法を使用して、例えば、n−InP基板4上に
1017cm−3程度にSnを含み厚さが1.51Lm
程度のn型InP層よりなる下部クラッド層5を形成し
、つCけて、cdを5 X 1016cm−3程度に含
み厚さが0.1終層程度のp −I n G a A 
S P層よりなる活性層6を形成し、さらにつCけて、
Cdを1017c脂−3程度に含み厚さが 1.5用1
程度の上部クラッド層7を形成し、最後に、Znを10
18c+m−”程度に含み厚さがlpm程度のコンタク
ト層8を形成する。
A typical example of the main manufacturing process is shown below. Using a liquid phase epitaxial growth method, for example, a layer containing Sn at about 1017 cm-3 and having a thickness of 1.51 Lm is formed on the n-InP substrate 4.
A lower cladding layer 5 made of an n-type InP layer of about 5 cm is formed, and a p-I n Ga A layer containing cd of about 5 x 1016 cm-3 and having a thickness of about 0.1 final layer is formed.
An active layer 6 made of an S P layer is formed, and C is applied.
Contains Cd to about 1017c fat -3 and has a thickness of 1.5 1
Form an upper cladding layer 7 of approximately
A contact layer 8 having a thickness of about 1pm and a thickness of about 18c+m-'' is formed.

第3図(平面図)、第4図(側面図)参照法に、第3図
(平面図)より明らかなように、コンタクト層8の上面
に、幅が数IL11程度であり光軸方向に伸延するスト
ライプ状領域9を残して、その左右領域に下部クラッド
層5に達する程度の深さに(第4図(側面図)参照)S
nをイオン注入して、コンタクト層8、上部クラッド層
7、活性層6をn型の領域8’ 、7’ 、6°に転換
する。これによって、電圧が第4図において上から下に
向って印加された場合電流はストライプ状領域9のみを
流れることになる。
3 (plan view) and FIG. 4 (side view), as is clear from FIG. Leaving an extending striped region 9, S is applied to the left and right regions thereof to a depth reaching the lower cladding layer 5 (see FIG. 4 (side view)).
The contact layer 8, upper cladding layer 7, and active layer 6 are converted into n-type regions 8', 7', and 6° by ion implantation of n. As a result, when a voltage is applied from top to bottom in FIG. 4, current flows only through the striped region 9.

第5図(正面図)参照 上記によって製造された積層体の上下の面(コンタクト
層8上面と基板4の下面)に電子ビーム堆積法等を使用
してT i / P t / A uの三重層を形成し
て、それぞれ、正負の電極10、lOoを形成する。
Refer to FIG. 5 (front view) A triple layer of Ti/Pt/Au is applied to the upper and lower surfaces (the upper surface of the contact layer 8 and the lower surface of the substrate 4) of the laminate manufactured in the above manner using an electron beam deposition method or the like. The layers are formed to form positive and negative electrodes 10 and lOo, respectively.

第6図(平面図)参照 ストライプ状領域9に対して2O2程度の角度に傾斜さ
せてスライスして半導体発光素子100の外周面に二酸
化チタニウム層を2.000〜3.00OAの厚さにス
パッタ形成して反射防止膜(図示せず)を形成する。
Refer to FIG. 6 (plan view) The striped region 9 is sliced at an angle of about 2O2, and a titanium dioxide layer is sputtered on the outer peripheral surface of the semiconductor light emitting device 100 to a thickness of 2.000 to 3.00OA. to form an antireflection coating (not shown).

第7図(平面図)参照 以上の工程をもって製造した半導体発光素子100に、
電流を供給して発光させると、光は図にA、A’ をも
って示す方向に射出するが、2%程度の残留反射光は図
にBをもって示す方向に反射し、ストライプ状領域9(
導液層)中には反射しない。そして、半導体発光素子1
00の外周面に入射するが、この外周面には反射防止膜
(図示せず)が形成されているので、反射することなく
半導体発光素子100外に透過し、再び半導体発光素子
100内に入射することはない、そのため、半導体発光
素子100の光入出射端面において発生する残留光によ
って複合モードは発生しない。
Refer to FIG. 7 (plan view) In the semiconductor light emitting device 100 manufactured through the above steps,
When a current is supplied to emit light, the light is emitted in the directions indicated by A and A' in the figure, but about 2% of the residual reflected light is reflected in the direction indicated by B in the figure, and is reflected in the striped area 9 (
It does not reflect into the liquid conducting layer). Then, the semiconductor light emitting device 1
However, since an anti-reflection film (not shown) is formed on this outer circumferential surface, the light is transmitted to the outside of the semiconductor light emitting device 100 without being reflected, and then enters the semiconductor light emitting device 100 again. Therefore, no composite mode is generated due to residual light generated at the light input/output end face of the semiconductor light emitting device 100.

第8図(平面図)参照 上記の半導体発光素子10Gの光路A、A’中に光学系
(図においてはレンズ)2と光反射手段(図においては
反射鏡)3との組を配置して外部共振器型レーザダイオ
ードを完成する。
Refer to FIG. 8 (plan view) A set of an optical system (lens in the figure) 2 and a light reflecting means (reflector in the figure) 3 is arranged in the optical paths A and A' of the semiconductor light emitting device 10G. Completes external cavity type laser diode.

か覧る構造の外部共振器型レーザダイオードは戻り光の
影響を受けることがないので、複合モードが発生せず、
モードが安定する。更に、上記の傾斜角は回折角より大
きく選んであるので、遠視野像はお−むね円形となる。
An external cavity laser diode with a visible structure is not affected by returned light, so no compound mode is generated.
mode becomes stable. Furthermore, the above-mentioned inclination angle is chosen to be larger than the diffraction angle, so that the far-field pattern is approximately circular.

(7)発明の詳細 な説明せるとおり、本発明によれば複合モードが発生し
にくく、モードが安定している外部共振器型レーザダイ
オードを提供することができる。そして、さらに、複合
モードが発生しにくく、モードが安定しておりしかも遠
視野像が円形である外部共振器型レーザダイオードを提
供することかでざる。
(7) As described in detail, according to the present invention, it is possible to provide an external cavity laser diode in which complex modes are less likely to occur and the mode is stable. Furthermore, it is an object of the present invention to provide an external cavity laser diode in which complex modes are less likely to occur, the mode is stable, and the far-field pattern is circular.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、外部共振器型レーザダイオードの1例の概念
的構成図である。第2図〜第6図は1本発明の実施例に
係る外部共振器型レーザダイオードを構成する半導体発
光素子の主要製造工程を示す、正面図(光軸に直交する
方向から見た図)、平面図、側面図(光軸方向から見た
図)、正面図、平面図である。第7図は本発明の詳細な
説明する説明図であり半導体発光素子の平面図である。 第8図は本発明の実施例に係る外部共振器型レーザダイ
オードの概念的構成図(平面図)である。 l・・・半導体発光素子、 11・・・光入出射端面、
 12−令鳴光軸、2拳争−光学系、3・・・光反射手
段、 4・・・基板、 5・q・下部クラッド層、 6
・・・活性層、 6° ・・拳n−InGaAsP層、
 7・・・上部クラッド層、 8・・・コンタクト層、
7°、8゛ Φ・*n−InP層、9・・・ストライプ
状領域、100・・・半導体発光素子、 10.10’
 −・・正負電極、 A、A” ・・・発光光の光路、
第1図 第2図 第3図
FIG. 1 is a conceptual diagram of an example of an external cavity type laser diode. 2 to 6 are front views (views seen from a direction perpendicular to the optical axis) showing the main manufacturing steps of a semiconductor light emitting device constituting an external cavity laser diode according to an embodiment of the present invention; They are a plan view, a side view (view from the optical axis direction), a front view, and a plan view. FIG. 7 is an explanatory diagram for explaining the present invention in detail, and is a plan view of a semiconductor light emitting device. FIG. 8 is a conceptual configuration diagram (plan view) of an external cavity type laser diode according to an embodiment of the present invention. l...Semiconductor light emitting element, 11...Light input/output end surface,
12-Reining optical axis, 2-fight-optical system, 3... Light reflecting means, 4... Substrate, 5.q. Lower cladding layer, 6
...Active layer, 6°...Fist n-InGaAsP layer,
7... Upper cladding layer, 8... Contact layer,
7°, 8゛ Φ・*n-InP layer, 9... Striped region, 100... Semiconductor light emitting device, 10.10'
-... Positive and negative electrodes, A, A''... Optical path of emitted light,
Figure 1 Figure 2 Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)半導体発光素子と、該半導体発光素子の光入出射
端面に対向して光軸に直交するように配設される1対の
光学系と光反射手段との組とよりなる外部共振器型レー
ザダイオードにおいて、前記半導体発光素子の光入出射
端面がその光軸に対して傾斜していることを特徴とする
外部共振器型レーザダイオード。
(1) An external resonator consisting of a semiconductor light emitting device, and a pair of optical systems and light reflecting means disposed facing the light input/output end faces of the semiconductor light emitting device and perpendicular to the optical axis. 1. An external cavity type laser diode, characterized in that a light input/output end face of the semiconductor light emitting element is inclined with respect to its optical axis.
(2)前記半導体発光素子の外周面には、光吸収膜が形
成されてなる特許請求の範囲第1項記載の外部共振器型
レーザダイオード。
(2) The external cavity laser diode according to claim 1, wherein a light absorption film is formed on the outer peripheral surface of the semiconductor light emitting element.
(3)前記半導体発光素子の外周面には、反射防止膜が
形成されてなる特許請求の範囲第1項記載の外部共振器
型レーザダイオード。
(3) The external cavity laser diode according to claim 1, wherein an antireflection film is formed on the outer peripheral surface of the semiconductor light emitting element.
(4)前記光軸の傾斜方向は前記光入出射端面における
光回折角が最小である方向と同一である特許請求の範囲
第1項、第2項、または、第3項記載の外部共振器型レ
ーザダイオード。
(4) The external resonator according to claim 1, 2, or 3, wherein the direction of inclination of the optical axis is the same as the direction in which the light diffraction angle at the light input/output end face is minimum. type laser diode.
(5)前記光軸の傾斜角は前記光回折角より大きい特許
請求の範囲第4項記載の外部共振器型レーザダイオード
(5) The external cavity laser diode according to claim 4, wherein the inclination angle of the optical axis is larger than the optical diffraction angle.
JP7945884A 1984-04-20 1984-04-20 External resonator type laser diode Pending JPS60224289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7945884A JPS60224289A (en) 1984-04-20 1984-04-20 External resonator type laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7945884A JPS60224289A (en) 1984-04-20 1984-04-20 External resonator type laser diode

Publications (1)

Publication Number Publication Date
JPS60224289A true JPS60224289A (en) 1985-11-08

Family

ID=13690434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7945884A Pending JPS60224289A (en) 1984-04-20 1984-04-20 External resonator type laser diode

Country Status (1)

Country Link
JP (1) JPS60224289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2643756A1 (en) * 1989-02-28 1990-08-31 Thomson Csf Antireflecting device for optical guide and application to semiconductor lasers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2643756A1 (en) * 1989-02-28 1990-08-31 Thomson Csf Antireflecting device for optical guide and application to semiconductor lasers

Similar Documents

Publication Publication Date Title
JPH077222A (en) Surface radiation laser with large area deflection mirror and preparation thereof
GB2448161A (en) Optoelectronic device combining VCSEL and photodetector
JPH04144183A (en) Surface light emitting type semiconductor laser
JPS60224289A (en) External resonator type laser diode
JPS63199480A (en) Semiconductor laser scanning device
JPS5861692A (en) Semiconductor laser device
JPS60224290A (en) External resonator type laser diode
JPS6373572A (en) Edge-emitting light-emitting diode
JP2975725B2 (en) Surface-emitting type semiconductor laser device
JP2516953B2 (en) Method for manufacturing semiconductor laser device
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JPS6386578A (en) Light emitting diode
JP3302839B2 (en) Optical communication unit
JPS61140190A (en) Semiconductor laser
JPH0562472B2 (en)
JPS5992588A (en) Mono-axial mode semiconductor laser
JPS6142188A (en) Semiconductor laser device
JP2806094B2 (en) Super luminescent diode
JPS6025281A (en) Light emitting and receiving element
JPS63110677A (en) Semiconductor light emitting device
JPS61290788A (en) Semiconductor laser device and manufacture thereof
JPS6066489A (en) Distributed feedback and distributed bragg reflector type semiconductor laser
JPS63114288A (en) Semiconductor light emitting element
JPH01109313A (en) Photoelectronic device
JPS61244082A (en) Semiconductor laser device