JPS60224290A - External resonator type laser diode - Google Patents

External resonator type laser diode

Info

Publication number
JPS60224290A
JPS60224290A JP7946184A JP7946184A JPS60224290A JP S60224290 A JPS60224290 A JP S60224290A JP 7946184 A JP7946184 A JP 7946184A JP 7946184 A JP7946184 A JP 7946184A JP S60224290 A JPS60224290 A JP S60224290A
Authority
JP
Japan
Prior art keywords
light
laser diode
waveguide
output end
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7946184A
Other languages
Japanese (ja)
Inventor
Masataka Shirasaki
白崎 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7946184A priority Critical patent/JPS60224290A/en
Publication of JPS60224290A publication Critical patent/JPS60224290A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a laser diode, in which a compound mode is hard to occur and the mode is stable, by expanding the cross sectional area of the waveguide of a light emitting element in the vicinity of light inputting and outputting end surfaces. CONSTITUTION:A pair of optical systems 2 and 2 and light reflecting means 3 and 3 are arranged so as to face the light input and output end surfaces of a semiconductor light emitting element 100 and so as to cross the light axis at a right angle. The cross sectional area of the waveguide of the semiconductor light emitting element 100 in such an external resonator type laser diode is expanded in the vicinity of the light input and output end surfaces. Thus light is spread in the waveguide 9, whose cross sectional area is expanded in its expanded region. The reflected light of the spread light at the light input and output end surfaces is hard to be reflected toward the inside of the waveguide. As a result, the light input and output end surfaces do not constitute a compound resonator. Therefore, a compound mode is hard to occur, and the mode is stabilized.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は、外部共振器型レーザダイオードに関する。特
に、外部共振器型レーザダイオードの複合モードの発生
を防止しモードを安定にする改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an external cavity type laser diode. In particular, the present invention relates to improvements that prevent the generation of complex modes and stabilize the modes of external cavity laser diodes.

(2)技術の背景 外部共振器型レーザダイオードとは、レーザとして機能
するために必須な共振器が、半導体発光素子の光入出射
端面にではなく、半導体発光素子の外部に設けられてな
るレーザダイオードを言う。この外部共振器型レーザダ
イオードは、第1図にその1例の概念的構成を示すよう
に、半導体発光素子lと、これの光入出射端面11に対
向して光軸12に直交するように配設された1対の光学
系(図においてはレンズ)2と光反射手段(図において
は反射鏡)3との組とをもって構成され、光学系2と光
反射手段3との間に他の光学要素を配設しうるので、種
々な新しい機能を付与することができる。
(2) Background of the technology An external cavity laser diode is a laser diode in which the resonator, which is essential for functioning as a laser, is provided outside the semiconductor light emitting device, rather than on the light input/output end face of the semiconductor light emitting device. Say diode. As shown in FIG. 1, which shows an example of the conceptual configuration, this external cavity type laser diode includes a semiconductor light emitting element 1 and a light input/output end face 11 of the semiconductor light emitting element 1, which faces the light input/output end face 11 and is perpendicular to the optical axis 12. It is composed of a pair of optical systems (lenses in the figure) 2 and light reflecting means (reflecting mirrors in the figure) 3, and other optical systems are provided between the optical system 2 and the light reflecting means 3. Since optical elements can be provided, various new functions can be added.

(3)従来技術と問題点 たり、外部共振器型レーザダイオードにおいては、半導
体発光素子の光入出射端面における光の反射か極力小さ
いことが必要である。さもないと、この光入出射端面に
おける残留反射のために複合共振器が構成されることと
なり、光入出射端面における戻り光のため複合モードが
発生し、モードが不安定になるという欠点があるからで
ある。この欠点を極力排除するため、従来技術に係る外
部共振器型レーザダイオードにおいては光入出射端面に
酸化アルミニウム等よりなる反射防止膜を形成すること
が一般であるが、現行技術水準においては透過率は88
%程度が限度であって2%程度の残留反射光は避は難く
、必ずしも許容し得る程度とは認め難い、そこで、残留
反射がより少なく複合モードが発生する程度が低くモー
ドがより安定している外部共振器型レーザダイオードの
開発が望まれていた。
(3) Problems with the Prior Art In an external cavity laser diode, it is necessary to minimize the reflection of light at the light input/output end face of the semiconductor light emitting device. Otherwise, a composite resonator will be formed due to the residual reflection at the light input/output end face, and a composite mode will be generated due to the return light at the light input/output end face, resulting in the disadvantage that the mode will become unstable. It is from. In order to eliminate this drawback as much as possible, in conventional external cavity laser diodes, it is common to form an antireflection film made of aluminum oxide or the like on the light input/output end facets. is 88
%, and it is difficult to avoid residual reflected light of about 2%, and it is difficult to admit that it is necessarily an acceptable level.Therefore, it is necessary to reduce the residual reflection, reduce the degree of composite mode generation, and make the mode more stable. The development of an external cavity type laser diode has been desired.

(4)発明の目的 本発明の目的は、これらの要請にこたえることにあり、
複合モードが発生しにくく、モードが安定している外部
共振器型レーザダイオードを提供することにある。
(4) Purpose of the invention The purpose of the present invention is to meet these demands,
An object of the present invention is to provide an external resonator type laser diode in which complex modes are less likely to occur and the mode is stable.

(5)発明の構成 本発明の構成は、半導体発光素子と、該半導体発光素子
の光入出射端面に対向して光軸に直交するように配設さ
れる1対の光学系と光反射手段との組とよりなる外部共
振器型レーザダイオードにおいて、前記半導体発光素子
の導波路の断面積が前記光入出射端面近傍において拡大
していることを特徴とする外部共振器型レーザダイオー
ドにある。
(5) Structure of the Invention The structure of the present invention includes a semiconductor light emitting device, a pair of optical systems and a light reflecting means disposed facing the light input/output end face of the semiconductor light emitting device and perpendicular to the optical axis. The external cavity laser diode is characterized in that the cross-sectional area of the waveguide of the semiconductor light emitting element is enlarged in the vicinity of the light input/output end face.

光導波路は、その光導波路を構成する材料の屈折率より
いくらか小さい屈折率を有する材料をもって先導波路を
包囲しておき、この屈折率の差を利用して光を光導波路
内に閉じ込めるように構成されていることが一般である
から、光導波路の断面積が拡大されていれば、その拡大
された領域において光はその断面積が拡大された導波路
内に広がる。そして、この広がった光の光入出射端面に
おける反射光は導波路内に向っては反射しにくくなり、
結果的に、この光入出射端面が複合共振器を構成しない
こととなる。そのため、複合モードが発生しに〈〈なり
、モードが安定となる。
An optical waveguide is constructed in such a way that a leading waveguide is surrounded by a material having a refractive index somewhat smaller than the refractive index of the material composing the optical waveguide, and this difference in refractive index is used to confine light within the optical waveguide. Therefore, if the cross-sectional area of the optical waveguide is expanded, light will spread in the expanded area into the waveguide whose cross-sectional area has been expanded. Then, the reflected light at the light input/output end face of this spread light becomes difficult to be reflected into the waveguide.
As a result, this light input/output end face does not constitute a composite resonator. Therefore, a composite mode does not occur and the mode becomes stable.

上記の光導波路の断面積を光入出射端面近傍において拡
大する場合、第2図に13をもって示すように、段差的
に、不連続に拡大することが製造上比較的容易である。
When enlarging the cross-sectional area of the above-mentioned optical waveguide near the light input/output end face, it is relatively easy to increase the cross-sectional area discontinuously in steps, as shown at 13 in FIG. 2, in terms of manufacturing.

しかし、一方、導波路の断面積が光入出射端面近傍にお
いて、第3図に14をもって示子ように連続的にテーパ
状に拡大されていれば、上記の段差部における反射も低
減できるので、機能的にすぐれていることは明らかであ
る。
However, on the other hand, if the cross-sectional area of the waveguide is continuously expanded in a tapered shape near the light input/output end face, as indicated by 14 in FIG. 3, the reflection at the stepped portion can be reduced. It is clear that it is functionally superior.

たり、半導体発光素子は、上記せるとおり、半導体層の
積層体であるから、光導波路が複数の層をもって構成さ
れている場合、この複数の層の断面積を拡大することは
現実的に容易ではない場合もある0例えば、活性層の幅
を極力狭くするため、■溝中に活性層が三日月状(アー
チ状)に形成される場合等である。そこで、活性層の断
面積のみを拡大することが現実的である。しかも、この
ように、活性層の断面積のみを拡大した場合でも、残留
反射率が0.1〜0.2%程度に大幅に改善されること
が実験的に確定されている。
Also, as mentioned above, a semiconductor light emitting device is a stack of semiconductor layers, so when an optical waveguide is composed of multiple layers, it is practically not easy to increase the cross-sectional area of these multiple layers. For example, in order to make the width of the active layer as narrow as possible, the active layer is formed in a crescent shape (arch shape) in the groove. Therefore, it is practical to increase only the cross-sectional area of the active layer. Moreover, it has been experimentally determined that even when only the cross-sectional area of the active layer is expanded in this way, the residual reflectance is significantly improved to about 0.1 to 0.2%.

(6)発明の実施例 以下、図面を参照しつ一1本発明の実施例に係る外部共
振器型レーザダイオードの主要製造工程を説明して、本
発明の構成と特有の効果とをさらに明らかにする。
(6) Embodiments of the Invention Hereinafter, the main manufacturing process of an external cavity laser diode according to an embodiment of the present invention will be explained with reference to the drawings to further clarify the structure and unique effects of the present invention. Make it.

第4図(正面図)参照 半導体層の積層体よりなる半導体発光素子を製造する。See Figure 4 (front view) A semiconductor light emitting device made of a stack of semiconductor layers is manufactured.

その主要製造工程の代表的1例を示す。液相エピタキシ
ャル成長法を使用して、例えば、n−InP基板4上に
10110l7”程度にSnを含み厚さが1.5終■程
度のn型InP層よりなる下部クラッド層5を形成し、
つyけて、Cdを5 X 1018c+++−3程度に
含み厚さが0.1終■程度のp−InGaAsP層より
なる活性層6を形成する。
A typical example of the main manufacturing process is shown below. Using a liquid phase epitaxial growth method, for example, on an n-InP substrate 4, a lower cladding layer 5 made of an n-type InP layer containing about 10110l7'' of Sn and having a thickness of about 1.5 mm is formed,
Then, an active layer 6 made of a p-InGaAsP layer containing Cd in an amount of about 5 x 1018c++-3 and having a thickness of about 0.1 mm is formed.

第5図(平面図)参照 中央部は幅が数ル■程度であり光軸方向に伸延し光入出
射端面近傍において幅がテーパ状に拡大されているパタ
ーンを有するレジストマスク(図示せず)を形成し、こ
れを使用して、図にハツチングをもって示す領域から活
性層6をエツチング除去して、活性層6の平面形状を1
幅が、その中央部においては数#Lmていどであるが光
入出射端面近傍においてはテーパ状に拡大された形状と
する。
Refer to Fig. 5 (plan view). A resist mask (not shown) having a pattern in which the central part has a width of several square meters, extends in the optical axis direction, and has a tapered width expanding near the light input/output end face. is formed, and using this, the active layer 6 is etched away from the hatched area in the figure, and the planar shape of the active layer 6 is changed to 1.
The width is approximately several #Lm at the center, but is tapered and expanded near the light input/output end face.

第6図(正面図)参照 液相エピタキシャル成長法を続行して、Cdを1017
c■−3程度に含み厚さが1.51L■程度の上部クラ
ッド層7を形成し、最後に、Znを1018c層−3程
度に含み厚さがlpm程度のコンタクト層8を形成する
Refer to FIG. 6 (front view).Continuing the liquid phase epitaxial growth method, 1017 Cd was added.
An upper cladding layer 7 having a thickness of about 1.51L■ containing Zn in the 1018c layer -3 is formed, and finally a contact layer 8 having a thickness of about 1pm and containing Zn in the 1018c layer -3.

第7図(平面図)、第8図(側面図)参照法に、第7図
(平面図)より明らかなように、コンタクト層8の上面
に、幅が数p層程度であり光軸方向に伸延するストライ
プ状領域9を残して、その左右領域に上部クラッド層7
の下面近くまで達する程度の深さに(第8図(側面図)
参照)Snをイオン注入して、コンタクト層8と上部ク
ラッド層7の大部分とをn型の領域8°、7′に転換す
る。これによって、電圧が第8図において上から下に向
って印加された場合電流は主としてストライプ状領域9
を流れることになる。
7 (plan view) and FIG. 8 (side view), as is clear from FIG. Leaving a stripe-like region 9 extending to
(Figure 8 (side view))
(See) ion implantation of Sn to convert the contact layer 8 and most of the upper cladding layer 7 into n-type regions 8°, 7'. As a result, when a voltage is applied from top to bottom in FIG.
will flow.

第9図(正面図)参照 上記によって製造された積層体の上下の面(コンタクト
層8上面と基板4の下面)に電子ビーム ゛堆積法等を
使用してT i / P t / A uの三重層を形
成して、それぞれ、正負の電極1O110°を形成する
Refer to FIG. 9 (front view).T i / P t / A u are applied to the upper and lower surfaces (the upper surface of the contact layer 8 and the lower surface of the substrate 4) of the laminate manufactured in the above manner using an electron beam deposition method or the like. Three layers are formed to form positive and negative electrodes 1O110°, respectively.

適当な長さに壁開またはスライスした後、外周面に二酸
化チタニウム層を2.000〜3.00OAの厚さにス
パッタ形成して反射防止II(図示せず)を形成して半
導体発光素子100を製造する。
After cutting or slicing the wall to an appropriate length, a titanium dioxide layer is sputtered to a thickness of 2.000 to 3.00 OA on the outer peripheral surface to form an antireflection II (not shown), thereby forming the semiconductor light emitting device 100. Manufacture.

第1θ図(平面図)参照 以上の工程をもって製造した半導体発光素子100に、
電流を供給して発光させると、光は図にA、A’ をも
って示す方向に射出するが、光導波路中の光のかなりな
割合が光入出射端面近傍において弁子行光となっており
、図にBをもって示す方向に反射し、ストライプ状領域
9(先導波路)中には反射しない。そして、半導体発光
素子100の外周面に入射するが、この外周面には反射
防止Ps(図示せず)が形成されているので、反射する
ことなく半導体発光素子100外に透過し、再び半導体
発光素子100内に入射することはない。そのため、半
導体発光素子100の光入出射端面において発生する残
留光によって複合モードは発生しない。
Refer to FIG. 1θ (plan view) The semiconductor light emitting device 100 manufactured through the above steps,
When a current is supplied to emit light, the light is emitted in the directions indicated by A and A' in the figure, but a considerable proportion of the light in the optical waveguide becomes valve light near the light input/output end face. It is reflected in the direction indicated by B in the figure, and is not reflected into the striped region 9 (leading wavepath). The light then enters the outer peripheral surface of the semiconductor light emitting element 100, but since an anti-reflection Ps (not shown) is formed on this outer peripheral surface, it is transmitted outside the semiconductor light emitting element 100 without being reflected, and the semiconductor light emits light again. It does not enter the element 100. Therefore, a composite mode is not generated due to residual light generated at the light input/output end face of the semiconductor light emitting device 100.

第11図(平面図)参照 上記の半導体発光素子100の光路A、A’中に光学系
(図においてはレンズ)2と光反射手段(図においては
反射鏡)3との組を配置して外部共振器型レーザダイオ
ードを完成する。
Refer to FIG. 11 (plan view) A set of an optical system (lens in the figure) 2 and a light reflecting means (reflector in the figure) 3 is arranged in the optical paths A and A' of the semiconductor light emitting device 100. Completes external cavity type laser diode.

か\る構造の外部共振器型レーザダイオードは戻り光の
影響を受けることが少ないので、複合モードの発生率が
小さく、モードが安定する。
Since an external cavity laser diode with such a structure is less affected by returned light, the incidence of complex modes is small and the mode is stable.

(7)発明の詳細 な説明せるとおり、本発明によれば複合モードが発生し
にくく、モードが安定している外部共振器型レーザダイ
オードを提供することができる。
(7) As described in detail, according to the present invention, it is possible to provide an external cavity laser diode in which complex modes are less likely to occur and the mode is stable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、外部共振器型レーザダイオードの1例の概念
的構成図である。第2図、第3図は本発明の実施例に係
る外部共振器型レーザダイオードの概念的構成図(平面
図)である、第4図〜第9図は5本発明の実施例に係る
外部共振器型レーザダイオードを構成する半導体発光素
子の主要製造工程を示す、正面図(光軸に直交する方向
から見た図)、平面図、正面図、平面図、側面図(光軸
方向から見た図)、正面図である。第10図は本発明の
詳細な説明する説明図であり半導体発光素子の平面図で
ある。第11図は本発明の実施例に係る外部共振器型レ
ーザダイオードの概念的構成図(平面図)である。 1・・・半導体発光素子、 11・・・光入出射端面、
12・・・光軸、 13.14−・・本発明の要旨に係
る導波路、2・・・光学系、3・・・光反射手段、4・
・・基板、5・・・下部クラッド層、6・・・活性層、
7・ ・ ・上部クラッド層、 8・・・コンタクト層
、 7゛、8° ・・・n−InP層、 9・・・スト
ライプ状領域、 1O1lO° ・・拳正負電極、10
0−・・半導体発光素子、 A、A’ −・・発光光の
先箱4図 第5図 す 第6図
FIG. 1 is a conceptual diagram of an example of an external cavity type laser diode. 2 and 3 are conceptual configuration diagrams (plan views) of an external cavity type laser diode according to an embodiment of the present invention, and FIGS. A front view (viewed from the direction perpendicular to the optical axis), a top view, a front view, a top view, and a side view (viewed from the optical axis direction) showing the main manufacturing process of the semiconductor light emitting device that constitutes the cavity laser diode. Fig. 3) is a front view. FIG. 10 is an explanatory diagram for explaining the present invention in detail, and is a plan view of a semiconductor light emitting device. FIG. 11 is a conceptual configuration diagram (plan view) of an external cavity type laser diode according to an embodiment of the present invention. 1... Semiconductor light emitting device, 11... Light input/output end surface,
12... Optical axis, 13.14-... Waveguide according to the gist of the present invention, 2... Optical system, 3... Light reflecting means, 4...
... Substrate, 5... Lower cladding layer, 6... Active layer,
7... Upper cladding layer, 8... Contact layer, 7゛, 8°... n-InP layer, 9... Striped region, 1O11O°... fist positive and negative electrode, 10
0-... Semiconductor light emitting device, A, A' -... Front box of emitted light Figure 4 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)半導体発光素子と、該半導体発光素子の光入出射
端面に対向して光軸に直交するように配設される1対の
光学系と光反射手段との組とよりなる外部共振器型レー
ザダイオードにおいて、前記半導体発光素子の導波路の
断面積が前記光入出射端面近傍において拡大しているこ
とを特徴とする外部共振器型レーザダイオード。
(1) An external resonator consisting of a semiconductor light emitting device, and a pair of optical systems and light reflecting means disposed facing the light input/output end faces of the semiconductor light emitting device and perpendicular to the optical axis. 1. An external cavity type laser diode, characterized in that the cross-sectional area of the waveguide of the semiconductor light emitting element is expanded near the light input/output end face.
(2)前記導波路の断面積は不連続的に拡大している特
許請求の範囲第1項記載の外部共振器型レーザダイオー
ド。
(2) The external cavity laser diode according to claim 1, wherein the cross-sectional area of the waveguide increases discontinuously.
(3)前記導波路の断面積は連続的に拡大している特許
請求の範囲第1項記載の外部共振器型レーザダイオード
(3) The external cavity laser diode according to claim 1, wherein the cross-sectional area of the waveguide is continuously expanded.
(4)前記導波路断面積の拡大は活性層のみの中におい
てなされる特許請求の範囲第1項記載の外部共振器型レ
ーザダイオード。
(4) The external cavity laser diode according to claim 1, wherein the waveguide cross-sectional area is expanded only in the active layer.
JP7946184A 1984-04-20 1984-04-20 External resonator type laser diode Pending JPS60224290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7946184A JPS60224290A (en) 1984-04-20 1984-04-20 External resonator type laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7946184A JPS60224290A (en) 1984-04-20 1984-04-20 External resonator type laser diode

Publications (1)

Publication Number Publication Date
JPS60224290A true JPS60224290A (en) 1985-11-08

Family

ID=13690517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7946184A Pending JPS60224290A (en) 1984-04-20 1984-04-20 External resonator type laser diode

Country Status (1)

Country Link
JP (1) JPS60224290A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500529A1 (en) * 1989-11-13 1992-09-02 Bell Communications Research, Inc. Angled-facet flared-waveguide traveling-wave laser amplifiers
US5272714A (en) * 1991-12-12 1993-12-21 Wisconsin Alumni Research Foundation Distributed phase shift semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500529A1 (en) * 1989-11-13 1992-09-02 Bell Communications Research, Inc. Angled-facet flared-waveguide traveling-wave laser amplifiers
US5272714A (en) * 1991-12-12 1993-12-21 Wisconsin Alumni Research Foundation Distributed phase shift semiconductor laser

Similar Documents

Publication Publication Date Title
US4998258A (en) Semiconductor laser device
JP2768988B2 (en) End face coating method
JPH077222A (en) Surface radiation laser with large area deflection mirror and preparation thereof
KR100827120B1 (en) Vertical cavity surface emitting laser and fabricating method thereof
JPS6079786A (en) Bistable laser
JPS60224290A (en) External resonator type laser diode
JPS63199480A (en) Semiconductor laser scanning device
JPH09129979A (en) Semiconductor laser device
JPS63192280A (en) Manufacture of edge light emitting type semiconductor device
JPH07231138A (en) Surface light-emitting semiconductor laser
JP2516953B2 (en) Method for manufacturing semiconductor laser device
JPS61272987A (en) Semiconductor laser element
JPS60224289A (en) External resonator type laser diode
JPS5992588A (en) Mono-axial mode semiconductor laser
JP2007019390A (en) Semiconductor laser and method for manufacturing semiconductor laser
JPS6142188A (en) Semiconductor laser device
JPS5911690A (en) Semiconductor laser device
JPH09214047A (en) Surface emitting semiconductor laser
JPS61244082A (en) Semiconductor laser device
JP3271202B2 (en) Light emitting device and manufacturing method thereof
JPS62256489A (en) Semiconductor laser device
JPH01166585A (en) Semiconductor laser device
JPS59154088A (en) Semiconductor laser
JPS63142879A (en) Semiconductor laser
JPS63110784A (en) Semiconductor laser