JPS6066489A - Distributed feedback and distributed bragg reflector type semiconductor laser - Google Patents

Distributed feedback and distributed bragg reflector type semiconductor laser

Info

Publication number
JPS6066489A
JPS6066489A JP58174623A JP17462383A JPS6066489A JP S6066489 A JPS6066489 A JP S6066489A JP 58174623 A JP58174623 A JP 58174623A JP 17462383 A JP17462383 A JP 17462383A JP S6066489 A JPS6066489 A JP S6066489A
Authority
JP
Japan
Prior art keywords
layer
distributed
guide layer
light guide
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58174623A
Other languages
Japanese (ja)
Inventor
Masafumi Seki
雅文 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58174623A priority Critical patent/JPS6066489A/en
Publication of JPS6066489A publication Critical patent/JPS6066489A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the efficiency of the titled laser and to lessen the size thereof by a method wherein the first Bragg wavelength of the distributed feedback active layer part and the second Bragg wavelength of the distributed Bragg reflector optical guide layer part are substantially equalized. CONSTITUTION:A distributed feedback active layer part 100 has been formed into a structure, wherein current blocking layers 7 and 8 have been partially inserted in a multilayer crystal growth layer consisting of a substrate 1, an optical guide layer 4, an active layer 5, a buried layer 9 and a contact layer 10, while a distributed Bragg reflector optical guide layer part 200 has been formed into a structure, wherein the current blocking layers 7 and 8 have been partially inserted in a multilayer crystal growth layer consisting of the substrate 1, an optical guide layer 2, a clad layer 3, the optical guide layer 4, the active layer 5, a clad layer 6, the buried layer 9 and the contact layer 10. On the whole surface of the upper side (n) of the contact layer 10 has been formed an Si3N4 film, excluding a part of the upper side just above the distributed feedback active layer part 100 and its vicinity. Moreover, a positive electrode 13 has been evaporated on the Si3N4 film all over the surface thereof and a negative electrode 11 has been evaporated on the lower side of the substrate 1 all over the surface thereof.

Description

【発明の詳細な説明】 本発明は、光フアイバ通信等に用いるのに適した高効率
かつ小寸法の単一軸モード半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly efficient and small-sized single-axis mode semiconductor laser suitable for use in optical fiber communications and the like.

半導体レーザは光フアイバ通信用の発光素子として優れ
ているが、一般に複数本の軸モードで発振するという特
徴があシ、長距離大容量光ファイバ通信用に用いるには
問題がおった。この問題点を解決するものが単一軸モー
ド半導体レーザであシ、その内で実用的な構造として考
えられているものは分布帰還型半導体レーザ(DFB−
LD)と分布プ2ッグ反射器型半導体レーザ(DBR−
LD)などである。前者は発光再結合をする活性層に近
接して周期構造を形成するものであシ、作製方法が通常
の半導体レーザとあまシ変らずしかも小′Ct法にでき
るという利点がある。しかし、DFB−1,1)は一般
に2つの出射面を有しているため片面でみ15た光の取
シ出し効率がわるいという欠点がある。
Semiconductor lasers are excellent as light-emitting elements for optical fiber communications, but they generally oscillate in multiple axial modes, which poses a problem when used for long-distance, high-capacity optical fiber communications. The solution to this problem is a single-axis mode semiconductor laser, and the one considered as a practical structure is a distributed feedback semiconductor laser (DFB-
LD) and distributed plug reflector semiconductor laser (DBR-
LD) etc. The former forms a periodic structure in the vicinity of the active layer that undergoes radiative recombination, and has the advantage that the manufacturing method is no different from that of a normal semiconductor laser and can be made using a small Ct method. However, since the DFB-1, 1) generally has two exit surfaces, it has the disadvantage that the light extraction efficiency from one surface is poor.

一方、後者は活性層を含まない光ガイド層に周期構造を
形成して分布ブラッグ反射器とし活性層を含む別の光ガ
イド層と接続せしめるものであシ、その分布ブラッグ反
射器の数や位置や反射率を適宜設定することによシ、片
面でみた光の取シ出し効率を大きくできるという利点が
ある。しかし、DBR−LDは寸法が大きくなってパッ
ケージ等への実装がやや困難になシ、またウェーハ当シ
の作製数が多くできないという欠点がある。
On the other hand, the latter is a method in which a periodic structure is formed in a light guide layer that does not include an active layer to serve as a distributed Bragg reflector and is connected to another light guide layer that includes an active layer, and the number and position of the distributed Bragg reflectors are By appropriately setting the reflectance and reflectance, there is an advantage that the light extraction efficiency when viewed from one side can be increased. However, DBR-LD has disadvantages in that its size is large, making it somewhat difficult to mount it in a package, etc., and it is not possible to manufacture a large number of wafers.

本発明の目的は上記半導体レーザの欠点を解消した、高
効率かつ小寸法の単一軸モード半導体レーザを提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly efficient and small-sized single-axis mode semiconductor laser which eliminates the drawbacks of the semiconductor lasers described above.

本発明によれば、発光再結合をする活性層を含む第1の
光ガイトノ薪と該第1の光ガイド層に近接して配置され
ている第1の周期構造と電流注入用の電極とを有する分
布帰還活性層部と、該分布帰還活性層部に接続され発光
再結合をする活性層を含まない第2の光ガイド層と該第
2の光ガイド層に近接して配置されている第2の周期構
造とからなる分布ブラック反射器光ガイド層部とを含む
多層構造を備え、該分布帰還活性層部の第1のブラッグ
波長と該分布ブラッグ反射器光ガイド層部の第2のブラ
ッグ波長とが実質上等しいことを特徴とする分布帰還分
布ブラッグ反射器半4本レーザが得られる。
According to the present invention, a first light guiding layer including an active layer that performs luminescent recombination, a first periodic structure disposed close to the first light guiding layer, and an electrode for current injection are provided. a second light guide layer that is connected to the distributed feedback active layer and does not include an active layer that performs luminescent recombination; and a second light guide layer that is disposed close to the second light guide layer. a first Bragg wavelength of the distributed feedback active layer and a second Bragg wavelength of the distributed Bragg reflector light guide layer. A distributed feedback distributed Bragg reflector half-quad laser is obtained which is characterized by substantially equal wavelengths.

本発明においては、発光再結合をする活性層を含む第1
の光ガイド層と該第1の光ガイド層に近接して配置され
ている第1の周期構造と電流注入用の電極とからなる分
布帰還活性層部を有しておシ、前記第1の光ガイド層の
等価ノ16折率netと前記第1の周期構造の周期AI
とで次の式λ8=n、l XA@ で定まる第1のブラ
ッグ波長λB1の光(ただし周期構造がm次の場合はそ
のm倍の波長m・λ3.の光ンが前記第1の光ガイド層
内で選択された第2の光ガイド層へ伝搬するが、前記第
2の光ガイド1−の等側屈折率”esと61J記第2の
周期構造の周期A8とで次の式λam −n、、 X 
’にで定まる第2のブラッグ波長λBs(ただし周期構
造がm次の場合はそのm倍の波長m・λ8.)が実買上
41のブラッグ波長λB1と等しいので、第lの7リツ
グ波長の光は第2の光ガイド層内で分布ブラッグ反射を
受ける。この様な分布帰還増幅作用と分布ブラッグ反射
作用の相乗効果によシ、本発明は第1のブラッグ波長λ
nt(即ち第2のブラッグ波長λ□)の光を発振するこ
とができる。しかも分布ブラッグ反射器の反射率は適宜
設定できるので、従来のDFB−LDでは単なる損失と
なっていた一方の端面からの出射光の光量を減少させレ
ーザの効率を著しく高めることができる。また、レーザ
光の発振に必要な帰還は、分布部fi増幅部と分布ブラ
ッグ反射器光ガイド層部の両方で行なうので、従来のD
BR−LDよシは全体の共掘器長を大幅に短かくするこ
とができる。なお、本発明において、第1.第2のブラ
ック波長を実質上等しくする手段として、第1.第2の
周期構造の周期を等しくかつ第1.第2の等側屈折率を
等しくするようにすれば、周期構造の作製を一回ですま
すことができ簡便である。第1.第2の等側屈折率を等
しくする方法は種々あるが、例えば第2の光ガイド層の
j膜厚を第1の光ガイド層の腺厚よシわずかに大きめに
しても良いし、あるいは第1.第2の光ガイド層の膜厚
は大体等しくし第2の光ガイド層の禁止帯幅を第1の光
ガイド層のそれよシもわずかに大きくしても良い。
In the present invention, the first
a distributed feedback active layer portion comprising a light guide layer, a first periodic structure disposed close to the first light guide layer, and an electrode for current injection; The equivalent refractive index net of the light guide layer and the period AI of the first periodic structure
The light with the first Bragg wavelength λB1 determined by the following formula λ8=n, l The light propagates to the second light guide layer selected within the guide layer, and is expressed by the following formula λam using the isolateral refractive index "es" of the second light guide 1- and the period A8 of the second periodic structure described in 61J. -n,,X
Since the second Bragg wavelength λBs determined by undergoes distributed Bragg reflection within the second light guide layer. Due to the synergistic effect of the distributed feedback amplification effect and the distributed Bragg reflection effect, the present invention provides the first Bragg wavelength λ.
nt (ie, second Bragg wavelength λ□) can be oscillated. Furthermore, since the reflectance of the distributed Bragg reflector can be set appropriately, the amount of light emitted from one end face, which was a mere loss in the conventional DFB-LD, can be reduced and the efficiency of the laser can be significantly increased. In addition, since the feedback necessary for laser beam oscillation is performed in both the distributed section fi amplification section and the distributed Bragg reflector light guide layer section, the conventional D
BR-LD can significantly shorten the overall tunnel length. In addition, in the present invention, 1. As a means for making the second black wavelengths substantially equal, the first. The period of the second periodic structure is equal and the period of the first periodic structure is equal. If the second isolateral refractive indexes are made equal, the periodic structure can be fabricated only once, which is convenient. 1st. There are various ways to make the second isolateral refractive indexes equal. For example, the thickness of the second light guide layer may be made slightly larger than the thickness of the first light guide layer, or 1. The film thickness of the second light guide layer may be approximately the same, and the forbidden band width of the second light guide layer may be slightly larger than that of the first light guide layer.

次に本発明を図面を用いて説明する。Next, the present invention will be explained using the drawings.

第1図は本発明の一実施例の斜視図である。FIG. 1 is a perspective view of an embodiment of the present invention.

(100)面方位n−InP基板10表面に<011>
方向に周期的238 oXの周期構造30が全面にわた
って形成されている。この周期構造30は波長3250
XのHe−Cdレーザの二分したビームを約43°の角
度で父わらせる三光束干渉露光法と化学エツチングを用
いて作られたものである。周期M造30の形成された基
板1は分布帰還活性層部100の形成さhる第1の領域
と分布ブラッグ反射器光ガイド14部200の形成され
る第2の領域に分けられる。第2の領域の上には、禁止
帯幅波長が1.3/jFFjで厚みが0.35Pm C
) n−InGaA8Pの第2のガイド層2及び厚みが
4μmのn−InPの第2のクラッド層3が成長されて
いる。第1の領域及び第2のクラッド層3の上には、禁
止帯幅波長がL3pmで厚みが0.15μmのn−In
GaAsPの第1のガイド層4及び禁止帯幅波長が1.
55μmで厚みが01pmのノンドープInGaAsP
の活性1−5及び厚みが2ptnのp−InPの第1の
クラッド層6が成長されている。第1のガイド層4、活
性層5、及び第1のクラッド層603層は、第2のガイ
ド層2と第2のクラッド層3の2層の上に乗シ上げるは
実質上つき合せ接続が天現さλている。第1のクラッド
層6までの多層結晶成長層には、2本の溝21.22に
よりメサストライプ20が形成されている。このメサス
トライプ20の直上をのぞいた領域にp−InPの第1
の電流グロック層7、n−InPの第2の電流ブロック
層8が順次成長され、次いヤメザストライプ20及び第
2の電流ブロック層8の上全面にp−InPの埋込み層
9とp”−InPのコンタクト層10が順次成長されて
いる。従って、分布帰還活性層部100は基板1と第1
の元ガイド層4と活性層5と埋込み層9とコンタクト層
lOからなる多層結晶成長層に第1゜第2の゛電流ブロ
ック層7,8を部分的に挿入した構造となっている。ま
た、分布ブラッグ反射器光ガイド層部200は基板lと
第2の光ガイド層2と第2のクラッド層3と第1の光ガ
イド層4と活性層5と第1のり2ラド層6と埋込み層9
とコンタクト層ioからなる多層結晶成長層に第1.第
2の電流ブロック層7.8を部分的に挿入した構造とな
っている。コンタクト層10の上側nは厚さ02μmの
811N4膜が、分布帰還活性層部100の直上付近を
除いた全面に形成されており、さらにその上にはTi/
Ptの正電極が全面にわたシ蒸着されている。また基板
lの下M]11にはAuGeNiの負電極が全面にわた
シ蒸着されている。分布ブラッグ反射器光ガイド層部2
00の側面はイオンミリングによシ斜めに傾いた而40
に形成されている。
(100) plane orientation <011> on the surface of the n-InP substrate 10
A periodic structure 30 of 238 oX is formed over the entire surface. This periodic structure 30 has a wavelength of 3250
It was created using a three-beam interference exposure method in which a bisected beam of an X He-Cd laser is focused at an angle of approximately 43 degrees, and chemical etching. The substrate 1 having the period M structure 30 is divided into a first region where the distributed feedback active layer portion 100 is formed and a second region where the distributed Bragg reflector light guide 14 portion 200 is formed. Above the second region, a bandgap wavelength of 1.3/jFFj and a thickness of 0.35Pm C
) A second guide layer 2 of n-InGaA8P and a second cladding layer 3 of n-InP having a thickness of 4 μm are grown. On the first region and the second cladding layer 3, an n-In film with a bandgap wavelength of L3pm and a thickness of 0.15 μm is formed.
The first guide layer 4 is made of GaAsP and the bandgap wavelength is 1.
Non-doped InGaAsP with a thickness of 55μm and 01pm
A first cladding layer 6 of p-InP with an active layer 1-5 and a thickness of 2 ptn is grown. The first guide layer 4, the active layer 5, and the first cladding layer 603 are placed on the second guide layer 2 and the second cladding layer 3, and are substantially butt-connected. There is a heavenly manifestation. In the multilayer crystal growth layer up to the first cladding layer 6, a mesa stripe 20 is formed by two grooves 21 and 22. A first layer of p-InP is formed in the area just above the mesa stripe 20.
A current blocking layer 7 of n-InP and a second current blocking layer 8 of n-InP are sequentially grown, and then a buried layer 9 of p-InP and a p'' -InP contact layers 10 are grown sequentially. Therefore, the distributed feedback active layer section 100 is formed between the substrate 1 and the first contact layer 10.
It has a structure in which first and second current blocking layers 7 and 8 are partially inserted into a multilayer crystal growth layer consisting of an original guide layer 4, an active layer 5, a buried layer 9, and a contact layer 1O. Further, the distributed Bragg reflector light guide layer section 200 includes a substrate 1, a second light guide layer 2, a second cladding layer 3, a first light guide layer 4, an active layer 5, a first glue 2, and a rad layer 6. Embedded layer 9
and a contact layer io. It has a structure in which a second current blocking layer 7.8 is partially inserted. On the upper side of the contact layer 10, an 811N4 film with a thickness of 02 μm is formed on the entire surface except for the area directly above the distributed feedback active layer portion 100, and on top of that is a Ti/N4 film.
A positive electrode of Pt is vapor-deposited over the entire surface. Further, a negative electrode of AuGeNi is vapor-deposited over the entire surface of the lower part of the substrate 111. Distributed Bragg reflector light guide layer section 2
The side of 00 is tilted diagonally due to ion milling.
is formed.

以上の構造において、分布帰還活性ノ一部1000光導
波路の等価屈折率は約3.26であり、また分布ブラッ
グ反射器光ガイド層部2000′yt、導波路の等価屈
折率は約326であシ等しい値になっている。このため
周期構造30に対するブラッグ波長は分布帰還活性層部
100及び分布プ2ッグ反射器光ガイド層部200とも
等しく約1.55μmである。メサストライプ20の中
の光尋波路に導波される光の内、ブラッグ波長1.55
μmの光は、分布帰還活性層部100で分布帰還と同時
に光増幅作用を受け、分布ブラッグ反射器光ガイド層部
200で分布反射を受けるので注入電流の増加に伴い発
振を開始する。この構造においては通常のDFB−LD
で無駄となっていた片側端面からの光も活性層へ戻さh
るので発振効率がきわめて高いという利点があり、また
通常のDBR−Ll) よりは寸法が小さいという利点
がある。
In the above structure, the equivalent refractive index of the distributed feedback active part 1000 optical waveguide is about 3.26, and the equivalent refractive index of the distributed Bragg reflector light guide layer part 2000'yt and the waveguide is about 326. The values are the same. Therefore, the Bragg wavelength for the periodic structure 30 is about 1.55 μm, which is the same for the distributed feedback active layer portion 100 and the distributed Bragg reflector light guide layer portion 200. Of the light guided to the optical waveguide in the mesa stripe 20, the Bragg wavelength is 1.55.
The μm light receives distributed feedback and optical amplification in the distributed feedback active layer section 100, and receives distributed reflection in the distributed Bragg reflector light guide layer section 200, so that it starts to oscillate as the injected current increases. In this structure, a normal DFB-LD
The light from one end face that was wasted in the process is also returned to the active layer.
Therefore, it has the advantage of extremely high oscillation efficiency, and also has the advantage of being smaller in size than a normal DBR-L1).

本発明の実施形態は、実施例の他に独々変形が可能であ
る。斜めに傾いた而40は7アプリペローモードの発振
を抑圧するためのものであシ、分布ブラッグ反射器光ガ
イド層部2000反射率が大きければ必要としないし、
他の手段を用いても良い。分布帰還活性層部100の出
射面に反射防止膜を施して光の取出し効率を高めてもよ
い。発振波長は155μ〃z以外の波長であっても良く
、結晶組成はInGaAsP混晶以外のものでも良い。
The embodiments of the present invention can be modified independently in addition to the examples. The obliquely inclined beam 40 is for suppressing the 7-application Perot mode oscillation, and is not necessary if the reflectance of the distributed Bragg reflector light guide layer section 2000 is large.
Other means may also be used. An anti-reflection film may be applied to the output surface of the distributed feedback active layer section 100 to improve light extraction efficiency. The oscillation wavelength may be other than 155 μz, and the crystal composition may be other than InGaAsP mixed crystal.

また fガイ111m2,4.活性層5の厚みや組成全適宜変
えてもよい。また周期構造30は1次の回折格子に限ら
ず2次以上の回折格子でもよい。基板l及び成長結晶層
の導電型を実施例の場合とすべて
Also, f-guy 111m2, 4. The thickness and composition of the active layer 5 may be changed as appropriate. Further, the periodic structure 30 is not limited to a first-order diffraction grating, but may be a second-order or higher-order diffraction grating. The conductivity types of the substrate l and the grown crystal layer are all the same as in the example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の横断面図でおる。 図において、l・・・基板、2.4・・・光ガイド層、
3゜6・・・り2ラド層、5・・・活性層、7.8・・
・電流ブロック層、9・・・埋込み層、IO・・コンタ
クト層、11.13・・・電極、12・・・Ss、N4
膜、20・・・メサスト2イグ、21.22・・・存、
30・・周期構造、40・・・傾いた面、100・・・
分布帰還活性層部、200・・・分布ブラッグ反射光ガ
イド層部である。
FIG. 1 is a cross-sectional view of one embodiment of the present invention. In the figure, l...substrate, 2.4... light guide layer,
3゜6...R2 Rad layer, 5...Active layer, 7.8...
-Current block layer, 9...buried layer, IO...contact layer, 11.13...electrode, 12...Ss, N4
Membrane, 20...Mesast 2ig, 21.22...Existence,
30...periodic structure, 40...tilted surface, 100...
Distributed feedback active layer portion, 200 . . . distributed Bragg reflection light guide layer portion.

Claims (1)

【特許請求の範囲】[Claims] / 発光再結合金する活性層を含むfPJlの光ガイド
層と該第1の光ガイド層に近接して配置されている第1
の周期構造と電流注入用の電極とを有する分布帰還活性
層部と、該分布帰還活性層部に接続され発光再結合をす
る活性層を含まない第2の光ガイド層と該第2の光ガイ
ド層に近接して配置されている第2の周期構造とを有す
る分布プラ質上等しくなるように分布帰還活性部及び分
布ブラッグ反射器光ガイド層部の等側屈折率と第1゜第
2の周期構造の周期を定めたことを特徴とする分布帰還
分布ブラッグ反射器半導体レーザ。
/ a light guide layer of fPJl including an active layer that emits and recombines gold; and a first light guide layer disposed in close proximity to the first light guide layer.
a distributed feedback active layer portion having a periodic structure of and a second periodic structure disposed close to the guide layer. A distributed feedback distributed Bragg reflector semiconductor laser characterized in that a period of a periodic structure is determined.
JP58174623A 1983-09-21 1983-09-21 Distributed feedback and distributed bragg reflector type semiconductor laser Pending JPS6066489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58174623A JPS6066489A (en) 1983-09-21 1983-09-21 Distributed feedback and distributed bragg reflector type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58174623A JPS6066489A (en) 1983-09-21 1983-09-21 Distributed feedback and distributed bragg reflector type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6066489A true JPS6066489A (en) 1985-04-16

Family

ID=15981826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58174623A Pending JPS6066489A (en) 1983-09-21 1983-09-21 Distributed feedback and distributed bragg reflector type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6066489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259489A (en) * 1986-05-06 1987-11-11 Hitachi Ltd Semiconductor laser and light amplifier
US4952019A (en) * 1988-10-27 1990-08-28 General Electric Company Grating-coupled surface-emitting superluminescent device
CN105490164A (en) * 2015-12-30 2016-04-13 华中科技大学 Distributed feedback laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259489A (en) * 1986-05-06 1987-11-11 Hitachi Ltd Semiconductor laser and light amplifier
US4952019A (en) * 1988-10-27 1990-08-28 General Electric Company Grating-coupled surface-emitting superluminescent device
CN105490164A (en) * 2015-12-30 2016-04-13 华中科技大学 Distributed feedback laser

Similar Documents

Publication Publication Date Title
JP3714430B2 (en) Distributed feedback semiconductor laser device
US7889776B2 (en) High-power semiconductor laser
JP2768940B2 (en) Single wavelength oscillation semiconductor laser device
JPS59205787A (en) Single axial mode semiconductor laser
US6088378A (en) Ring cavity type surface emitting semiconductor laser and fabrication method thereof
JP5143985B2 (en) Distributed feedback laser diode
US4787086A (en) High-power, fundamental transverse mode laser
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
JPS60124887A (en) Distributed feedback type semiconductor laser
JPS6066489A (en) Distributed feedback and distributed bragg reflector type semiconductor laser
JP2950302B2 (en) Semiconductor laser
JP2002324948A (en) Semiconductor laser and laser module
JPS62173786A (en) Distributed feedback type semiconductor laser
JP3595677B2 (en) Optical isolator, distributed feedback laser and optical integrated device
JPS63150981A (en) Semiconductor laser
JPH0983059A (en) Semiconductor laser
JPS59165481A (en) Distributed feedback type semiconductor laser
JP3119301B2 (en) High power semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
JPS5992588A (en) Mono-axial mode semiconductor laser
JP2894285B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
Mukaihara et al. Integrated GaInAsP laser diodes with monitoring photodiodes through semiconductor/air Bragg reflector (SABAR)
JPS6066490A (en) Uniaxial mode semiconductor laser
JPS59218786A (en) Single axial mode semiconductor laser
JPH01238082A (en) Semiconductor laser