JPS6022360A - Manufacture of c-mos integrated circuit device - Google Patents

Manufacture of c-mos integrated circuit device

Info

Publication number
JPS6022360A
JPS6022360A JP58130666A JP13066683A JPS6022360A JP S6022360 A JPS6022360 A JP S6022360A JP 58130666 A JP58130666 A JP 58130666A JP 13066683 A JP13066683 A JP 13066683A JP S6022360 A JPS6022360 A JP S6022360A
Authority
JP
Japan
Prior art keywords
source
oxide film
arsenic
channel
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58130666A
Other languages
Japanese (ja)
Inventor
Toru Yamazaki
亨 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58130666A priority Critical patent/JPS6022360A/en
Publication of JPS6022360A publication Critical patent/JPS6022360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To easily form an extremely shallow source and drain diffusion region by a method wherein the thickness of the insulating film is differentiated between an n-channel transistor Tr and a p-channel Tr when a source and drain region is formed by implanting impurities. CONSTITUTION:After a gate polycrystalline silicon patterning has been performed, the thickness of the oxide films 4 and 5 on the source and drain region of a p-channel TrQ1 and an n-channel TrQ2 are differentiated with each other. As the atomic weight of arsenic is heavier than that of boron, a shallow junction can be formed with an injection energy of 50-100kev by forming a Q2 source and drain diffusion layer 9 by performing an ion implantation of arsenic and a Q1 source and drain diffusion layer 8 by performing an ion implantation of boron. Accordingly, if ions are implanted through the intermediary of an oxide film 5, impurities can be introduced into a shallow substrate. On the other hand, when a diffusion layer 5 is going to be formed, the projection flying distance of arsenic is made larger than that of boron when the same energy is applied, thereby enabling to introduce impurities into the region located in the vicinity of the interface of the oxide film 4 through the intermediary of the oxide film 8.

Description

【発明の詳細な説明】 本発明は半導体装置、特に、相補WMU8集積回路装置
(以下、C−MUS集yt回路装置という9お工びその
製造方法に関するものである0MO8集積回路素子寸法
を小さくする為の技術のひとつとして、イオン注入金用
いてソース、ドレイン領域を形成する方法が知られてい
る0通常、ソース、ドレイン領域をイオン注入で形成す
る場合、打込みエネルギー50〜150kevで500
〜1000Aの酸化膜を介して不純物が基板に導入され
る0酸化膜を介してイオン注入を行う理由は、イオン注
入により基板の結晶!11.全悪化させなめ為と、注入
後のアニールの際に不純物がアウトナイフニージョン(
(Jut dtffuston) シaイ! ’) l
cj ;b為テする。尚、前記目的を達成するには酸化
膜の膜さが少なくとも100A以上必要である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a complementary WMU8 integrated circuit device (hereinafter referred to as a C-MUS integrated circuit device) and a method for manufacturing the same. One known technique is to form source and drain regions using ion-implanted gold.Normally, when forming source and drain regions by ion implantation, the implantation energy is 50 to 150 keV and 500 keV is used.
Impurities are introduced into the substrate through an oxide film of ~1000A.The reason for performing ion implantation through an oxide film is that the ion implantation causes the crystals of the substrate to grow! 11. Impurities are removed from the knife knee during the post-implant annealing.
(Jut dtffuston) Sea! ') l
cj ;b to do. Incidentally, in order to achieve the above object, the thickness of the oxide film must be at least 100A or more.

近年、領域形成深さ全史に浅くするため、打込みエネル
ギーが39key以下の低加速イオン注入が検討されて
いる。しかし、打込みエネルギーが30key以下の低
加速になると、イオンビームを集束させることが難かし
くなりビーム電流?大きくすることができない。従って
、表囲不純物り度が1020〜10”fi−3のソース
、ドレイン領域を形成するためrclo”ff1−2以
上の高ドーズのイオン注入を行うと、注入時間が数分〜
数十分と極端に長くなり、スループットが非常に悪くな
る。−万、15o。
In recent years, low acceleration ion implantation with an implant energy of 39 keys or less has been considered in order to reduce the overall region formation depth. However, when the implantation energy becomes low acceleration of 30 keys or less, it becomes difficult to focus the ion beam and the beam current decreases. Can't make it bigger. Therefore, when performing ion implantation at a high dose of rcro"ff1-2 or higher to form source and drain regions with a surface impurity concentration of 1020 to 10"fi-3, the implantation time is several minutes to
It becomes extremely long, several tens of minutes, and the throughput becomes extremely poor. -10,000, 15o.

〜2000Aの厚い酸化膜を介して浅い拡散層を形成し
ようとすると、ヒ素やリンの不純物では打込みエネルギ
ー’t 300kev以上の高エネルギー心しなければ
ならない。この為注入時にウェハ一温度が上昇しデバイ
ス特注を悪化するほか、高圧、直流電源容量の制限から
ビーム電流も大きくすることができない。
If a shallow diffusion layer is to be formed through a thick oxide film of ~2000 Å, a high implantation energy of 300 keV or more must be used for impurities such as arsenic or phosphorous. For this reason, the temperature of the wafer rises during implantation, which impairs device customization, and the beam current cannot be increased due to limitations on high voltage and DC power supply capacity.

本発明の目的に、イオン注入法ICより極めて浅いソー
ス、ドレイン拡散領域を容易かつ生産比良く形成可能と
するC−M(JS集積回路装置の製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a CM (JS) integrated circuit device, which allows source and drain diffusion regions to be formed much shallower than ion implantation ICs with ease and with a high production ratio.

本発明は、絶縁膜を介して不純物をイオン注入すること
rcL9ソース、ドレイン領域を形成する際に、絶縁膜
の厚さがPチャンネルトランジスタとNチャンネルトラ
ンジスタとで異ならせることを特徴とする。
The present invention is characterized in that when forming the rcL9 source and drain regions by ion-implanting impurities through an insulating film, the thickness of the insulating film is made different between a P-channel transistor and an N-channel transistor.

次に、1圓(19、本発明をより詳細に説明する0 第1図は本発明の一実施例/C工V形成さhた構造を示
す図である。すなわち、ゲート多結晶シリコンパターユ
ング後ソース・ドレイン領域上の酸化膜4,5の厚さが
PチャンネルトランジスタQ+とNチャンネルトランジ
スタQ2で異なる。今、NチャンネルトランジスタQ2
のソース・ドレイン拡散層9をヒ素、Pチャンネルトラ
ンジスタQのソース・ドレイン拡散層8?ボロンのイオ
ン注入でそれぞれ形成するとする。ヒ素(グボロンと比
較して原子量が大きいため、打込みエネルギーが50〜
100kevでも浅い妥合を作ることが可能である。例
えば、打込みエネルギーk 5(lkeyとすると、ヒ
素の酸化膜中の投影飛程(Projected ran
ge)の酸化膜5を形成し、該酸化膜5′f!:介して
イオン注入すわば基板2と酸化膜5界面付近の非常に浅
い基板中に不純物を導入することができる。−万、ボロ
ンイオン注入九エク、PチャンネルトランジスタQlの
ソース・ドレイン拡散層8?形成する場合、同エネルギ
ーにおいて、ボロンの投影飛程はヒ累のそり、xt)も
大きくなる。例えば、打込みエネルギーが50keyの
とき、ボロンの投影飛程は膜8全介してボロンをイオン
注入すわば、前記ヒ素の例と同様基板lと酸化膜4界面
付近に不純物を導入することができる。
Next, the present invention will be explained in more detail. Figure 1 is a diagram showing an embodiment of the present invention/C process V formed structure. That is, the gate polycrystalline silicon pattern The thickness of the oxide films 4 and 5 on the rear source/drain regions is different between the P channel transistor Q+ and the N channel transistor Q2.
The source/drain diffusion layer 9 of the P-channel transistor Q is made of arsenic, and the source/drain diffusion layer 8 of the P-channel transistor Q is made of arsenic. Assume that each is formed by boron ion implantation. Arsenic (due to its larger atomic weight compared to gboron, the implantation energy is 50 ~
It is possible to make a shallow compromise even with 100kev. For example, if the implantation energy is k5 (lkey), then the projected range of arsenic in the oxide film is
ge) oxide film 5 is formed, and the oxide film 5'f! : Through ion implantation, impurities can be introduced into the very shallow substrate near the interface between the substrate 2 and the oxide film 5. -10,000, Boron ion implantation 9 Ex, P channel transistor Ql source/drain diffusion layer 8? When formed, at the same energy, the projected range of boron and the curvature of the beam (xt) also increase. For example, when the implantation energy is 50 keys, the projected range of boron is ion implantation of boron through the entire film 8, so that the impurity can be introduced near the interface between the substrate 1 and the oxide film 4, as in the case of arsenic.

このように、NチャンネルトランジスタQ2とPチャン
ネルトランジスタQlのソース・ドレイン領域の酸化膜
厚が異なる構造により、イオン注入打込みエネルギー1
50key以下の低加速にしなくとも、基板中の極めて
浅い部分にソース・ドレイン拡散層全形成できる。また
低加速にする必要がないため、ビーム電流も多くとわ、
ドーズ量がto15cnt−2以上1c、’jっても注
入時間を数十秒以内の短時間にすることができる。
In this way, due to the structure in which the oxide film thicknesses of the source/drain regions of the N-channel transistor Q2 and the P-channel transistor Ql are different, the ion implantation energy 1
The entire source/drain diffusion layer can be formed in an extremely shallow portion of the substrate without using a low acceleration of 50 keys or less. Also, since there is no need for low acceleration, the beam current is high.
Even if the dose is to15cnt-2 or more 1c,'j, the implantation time can be shortened to within several tens of seconds.

第2図乃至第4図に本発明の一実施例全示し、第2図は
、基板lにPウェル2?−形成してフィールド酸化膜6
を選択的に形成し、さらにゲート多結晶シリコン3?パ
ターニングした後の断面図である。次に、第3図に示す
ように、ソース・ドレイン領域[1(100〜1500
λの酸化膜4を形成し、しかる後ホトレジスト7等ケ用
いてヘチャンネルトランジスタ領域をマスクし、打込み
エネルギー5Qkev、ドーズ10〜IO(1m−’7
Jボロンをイオン注入してP型拡散#8t−形成する0
仄rc第4図に示すように、前記ホトレジスト7を除去
した後、Pチャンネルトランジスタをホトレジスト7′
等を用いてマスクし、Nチャンネルトランジスタのソー
ス・ドレイン領域となる部分−ヒの酸化膜5を厚さ1(
10〜300Aまでエツチングする。エツチング方法に
ウェット又はドライエツチングどちらの方法でも可能で
ある。次に、ヒ素を打込みエネルギー5Qkevドーズ
1O1s−1016crrL−2vil−イオン注入シ
テソース、ドレイン領域9全形成する。次に、ホトレジ
スト7を除去した後、層間膜、コンタクトホール、電極
等を形成する。
An embodiment of the present invention is shown in FIGS. 2 to 4, and FIG. 2 shows a P well 2? - Forming field oxide film 6
selectively formed, and further gate polycrystalline silicon 3? FIG. 3 is a cross-sectional view after patterning. Next, as shown in FIG.
An oxide film 4 of λ is formed, and then the channel transistor region is masked using a photoresist 7 or the like, and the implantation energy is 5Qkev and the dose is 10~IO (1m-'7).
Ion-implant J boron to form P-type diffusion #8t-0
As shown in FIG. 4, after removing the photoresist 7, the P-channel transistor is covered with a photoresist 7'.
The oxide film 5 on the part that will become the source/drain region of the N-channel transistor is coated with a thickness of 1 (
Etch to 10-300A. Either wet etching or dry etching can be used as the etching method. Next, arsenic is implanted with an energy of 5Qkev at a dose of 1O1s-1016crrL-2vil-ion implantation to form the entire source and drain region 9. Next, after removing the photoresist 7, interlayer films, contact holes, electrodes, etc. are formed.

第2の実施例?第5〜第71で説明する。第5図に示す
ように、ゲート多結晶シリコン3會パターニング後、ソ
ース・ドレイン領域上九膜厚100〜300Aなる酸化
膜5全形収し、該酸化膜5上に第2の膜10を500〜
1000 A形成する。第2の膜lOは熱窒化膜、eV
D膜、金属薄膜層等を用いることができる。次に第6図
に示すように、Nチャンネルトランジスタのソース・ド
レイン領域形成予定部をホトレジス1フ等全用いてマス
クし、Pチャンネルトランジスタのソース、ドレイン形
成予定領域にボロンをイオン注入しP型拡散層8を形[
iEする。打込みエネルギーに、投影飛程が酸化膜と基
板との界面VC(るように選べばよい。次に、ホトレジ
スト7を除去した後、第2の膜lOをエツチング除去す
る。エツチングに、ウェット又はドライエツチングどち
らの方法も可能であるが、酸化膜5と第2の膜IOのエ
ツチングレート比ができるだけ大きいほうがエツチング
除去しやすく、エツチングレート比が大きくなる、よう
なエツチング条件又は第2の膜の材質を選ぶことが望ま
しい。次に第7図に示すように、Pチャンネルトランジ
スタをホトレジスト7′でマスクした後、Nチャンネル
トランジスタのソース・ドレイン形成予定領域にヒ素を
導入しn型拡散層9を形成するO 尚、前記2つの実施例でHPチャンネルトランジスタの
ソース・ドレイン拡散NIヲ形成した後、Nチャンネル
トランジスタのソース・ドレインを形成しているが形成
順序を逆にすることも可能である。
Second embodiment? This will be explained in the 5th to 71st sections. As shown in FIG. 5, after patterning the gate polycrystalline silicon three times, the entire oxide film 5 with a thickness of 100 to 300 Å is deposited on the source/drain regions, and a second film 10 is formed on the oxide film 5 with a thickness of 500 Å. ~
1000A is formed. The second film lO is a thermal nitride film, eV
D film, metal thin film layer, etc. can be used. Next, as shown in FIG. 6, the area where the source and drain regions of the N-channel transistor are to be formed is masked using a photoresist layer, etc., and boron ions are implanted into the area where the source and drain of the P-channel transistor are to be formed. Shape the diffusion layer 8 [
iE. The implantation energy should be selected so that the projected range is the interface VC between the oxide film and the substrate.Next, after removing the photoresist 7, the second film IO is removed by etching. Both etching methods are possible, but it is easier to remove by etching if the etching rate ratio between the oxide film 5 and the second film IO is as large as possible, and the etching conditions or the material of the second film are such that the etching rate ratio becomes large. Next, as shown in FIG. 7, after masking the P-channel transistor with a photoresist 7', arsenic is introduced into the region where the source and drain of the N-channel transistor are to be formed to form an n-type diffusion layer 9. Note that in the above two embodiments, after forming the source/drain diffusion NI of the HP channel transistor, the source/drain of the N channel transistor is formed, but it is also possible to reverse the formation order.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に本発明の一実施例により形成された構造を示す
断面図である。第2図乃至第4図に本発明の一実施例を
説明するための断■図である。第5図乃至第7図に他の
実施例を説明するための断面図である。 ■−・・n型半導体基板、2・・・Pウェル、3・・・
ゲート多結晶シリコン、4・・・0100〜15(IO
Aの酸化膜、5・・・100〜300Aの酸化膜、6・
・・フィールド酸化膜、7−・・レジスト等のイオン注
入マスク、8・・・P型拡散層、9・・・n型拡散層、
lO・・・熱望化膜、(、:VD膜、金属薄膜等の第2
の膜 代理人 弁理士 円 原 晋(′二゛ 乃I閃 / Z 方3関
FIG. 1 is a sectional view showing a structure formed according to an embodiment of the present invention. FIGS. 2 to 4 are cross-sectional views for explaining one embodiment of the present invention. FIGS. 5 to 7 are cross-sectional views for explaining other embodiments. ■--N-type semiconductor substrate, 2...P-well, 3...
Gate polycrystalline silicon, 4...0100-15 (IO
A oxide film, 5...100-300A oxide film, 6.
...Field oxide film, 7--Ion implantation mask such as resist, 8...P-type diffusion layer, 9...N-type diffusion layer,
lO... Aspirational film, (,: VD film, second layer of metal thin film, etc.)
Membrane agent Susumu Enhara, patent attorney

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上xPチャンネル型MO8トランジスタとN
チャンネルfiMO8)ランジスタとを形成してなるe
−MO8集積回路装置の製造方法において、それぞれの
MU8トランジスタのソースおよびドレイン領域形成を
不純物のイオン注入により形成する際に、それぞれのM
O8トランジスタで膜厚の相異なる膜を介して相異なる
不純物をイオン注入すること全特徴とするC−MU8集
積回路装置の製造方法。
xP channel type MO8 transistor on semiconductor substrate and N
channel fiMO8) formed by forming a transistor
- In the method for manufacturing an MO8 integrated circuit device, when forming the source and drain regions of each MU8 transistor by ion implantation of impurities, each M
A method for manufacturing a C-MU8 integrated circuit device, characterized in that different impurities are ion-implanted through films of different thicknesses in an O8 transistor.
JP58130666A 1983-07-18 1983-07-18 Manufacture of c-mos integrated circuit device Pending JPS6022360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58130666A JPS6022360A (en) 1983-07-18 1983-07-18 Manufacture of c-mos integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58130666A JPS6022360A (en) 1983-07-18 1983-07-18 Manufacture of c-mos integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6022360A true JPS6022360A (en) 1985-02-04

Family

ID=15039703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58130666A Pending JPS6022360A (en) 1983-07-18 1983-07-18 Manufacture of c-mos integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6022360A (en)

Similar Documents

Publication Publication Date Title
US4445267A (en) MOSFET Structure and process to form micrometer long source/drain spacing
JPS58100441A (en) Manufacture of semiconductor device
JPS6037775A (en) Production of wafer by injection through protective layer
JPS59138379A (en) Manufacture of semiconductor device
JPS59220971A (en) Manufacture of semiconductor device
JPS63219152A (en) Manufacture of mos integrated circuit
JP2617177B2 (en) Integrated circuit isolation structure and method of forming the same
US5319231A (en) Insulated gate semiconductor device having an elevated plateau like portion
JPH04253357A (en) Local burying injection and self-aligned masking for ultrahigh-energy injection use applicable to isolation constitution body
US6171914B1 (en) Synchronized implant process to simplify NLDD/PLDD stage and N+/P+stage into one implant
EP0164737A2 (en) A method of fabricating self-aligned regions in a substrate
JPH0595115A (en) Manufacture of mos transistor
JPS6022360A (en) Manufacture of c-mos integrated circuit device
KR100499755B1 (en) Method of fabricating deep sub-micron cmos source/drain with mdd and selective cvd silicide
JP2003031679A (en) Method for manufacturing semiconductor device
JPS63181378A (en) Manufacture of semiconductor device
US6977207B2 (en) Method for fabricating dual-gate semiconductor device
JP2589065B2 (en) Method for manufacturing semiconductor integrated device
JPS59937A (en) Manufacture of semiconductor device
JPH02106043A (en) Manufacture of semiconductor device
JPS6243341B2 (en)
JPS5844736A (en) Manufacture of semiconductor device
JPS6032990B2 (en) Manufacturing method of semiconductor device
JPH0428246A (en) Semiconductor device and manufacture thereof
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device