JPS60221573A - Formation of deposited film - Google Patents

Formation of deposited film

Info

Publication number
JPS60221573A
JPS60221573A JP7613484A JP7613484A JPS60221573A JP S60221573 A JPS60221573 A JP S60221573A JP 7613484 A JP7613484 A JP 7613484A JP 7613484 A JP7613484 A JP 7613484A JP S60221573 A JPS60221573 A JP S60221573A
Authority
JP
Japan
Prior art keywords
film
support
light energy
deposition chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7613484A
Other languages
Japanese (ja)
Inventor
Masahiro Haruta
春田 昌宏
Takeshi Eguchi
健 江口
Hiroshi Matsuda
宏 松田
Yukio Nishimura
征生 西村
Yutaka Hirai
裕 平井
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7613484A priority Critical patent/JPS60221573A/en
Priority to US06/722,134 priority patent/US4683145A/en
Publication of JPS60221573A publication Critical patent/JPS60221573A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/487Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a deposited film contg. Si atom at a high film forming speed with low energy level by forming a gaseous atmosphere consisting of a specific Si compd. in a deposition chamber and exciting and decomposing the compd. by light energy. CONSTITUTION:The inside of the deposition chamber 1 in which a substrate 2 is set is evacuated and the substrate 2 is heated by a heater 4. Gaseous raw materials are fed into the chamber 1 from supply sources 9-12 while the flow rates thereof are regulated to form the gaseous atmosphere consisting of the Si compd. expressed by R<1>-(Si.R<2>R<3>)n-R<4>. In the formula, R<1>, R<4> denote halogen- substd. phenyl group, naphthyl group, etc., R<2>, R<3> denote H or CH<3> group, n denotes 3-7. A light energy device 7 is driven in such atmosphere to irradiate the light energy 8 to the gaseous raw materials. The photoexcitation and photodecomposition of the gaseous raw material flowing near the substrate 2 are thus accelerated and the a-Si, etc. which are the formed material are deposited on the substrate 2.

Description

【発明の詳細な説明】 本発明は、励起エネルギーとして光を利用し、特休上に
形成させる堆積膜形成法に関し、更に詳しくは、光また
は光及び所望により熱等の励起エネルギーの付与により
、原料ガスの励起、分解状態を作り、所定の支持体上に
、特に、アモルファスシリコン(以下a−5iと略す)
の堆積膜を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a deposited film on a special holiday using light as excitation energy, and more specifically, by applying excitation energy such as light or light and optionally heat, Create an excited and decomposed state of the raw material gas, and deposit it on a predetermined support, especially amorphous silicon (hereinafter abbreviated as a-5i).
The present invention relates to a method of forming a deposited film of.

従来、a−9iの堆積膜形成方法としては、SiH4、
またはSi2H6を原料として用いたグロー放電堆積法
及び熱エネルギー堆積法が知られている。即ち、これら
の堆積法は、原料ガスとしてのSiH4またはSi2H
6を電気工ネルキーや熱エネルギー(励起エネルギー)
により分解して支持体上にa−3iの堆積膜を形成させ
る方法であり、形成された堆積膜は、光導電膜、半導体
あるいは絶縁性の膜等として種々の目的に利用されてい
る。
Conventionally, methods for forming deposited films of a-9i include SiH4,
Alternatively, a glow discharge deposition method and a thermal energy deposition method using Si2H6 as a raw material are known. That is, these deposition methods use SiH4 or Si2H as a raw material gas.
6 as electrician energy or thermal energy (excitation energy)
This is a method in which a deposited film of a-3i is formed on a support by decomposing the film, and the deposited film thus formed is used for various purposes such as a photoconductive film, a semiconductor film, or an insulating film.

しかしながら、高出力放電ドで堆積膜の形成が行なわれ
るグロー放電堆積法に於いては、均一な放電の分布状態
が常に得られないなど再現性のある安定した条件の制御
が難しく、更1こ膜形成中にれた膜の電気的、光学的特
性の均一性、品質の安定性の確保が難しく、堆積時の膜
表面の乱れ、堆積膜内の欠陥が生じやすい。特に、面積
の大きな、あるいは厚膜の堆積膜を電気的、光学的特性
に於いて均一にこの方法により形成することは非常に困
難であった。
However, in the glow discharge deposition method in which the deposited film is formed using a high-power discharge, it is difficult to control stable conditions with reproducibility, such as not always being able to obtain a uniform discharge distribution state. It is difficult to ensure the uniformity of electrical and optical properties and stability of quality of the film deposited during film formation, and the film surface is easily disturbed during deposition and defects within the deposited film are likely to occur. In particular, it has been extremely difficult to form a large-area or thick deposited film with uniform electrical and optical characteristics using this method.

一方、熱エネルギー堆積法においても、通常400°C
以上の高温が必要となることから使用される支持体材料
が限定され、加えて所望のa−5i中の有用な結合水素
原子が離脱してしまう確率が増加するため、所望の特性
が得難い。
On the other hand, in the thermal energy deposition method, the temperature is usually 400°C.
Since the above-mentioned high temperature is required, the support material to be used is limited, and in addition, the probability that useful bonded hydrogen atoms in the desired a-5i will be detached increases, making it difficult to obtain the desired properties.

そこで、これらの問題点を解決する1つの方法として、
S i H4、Si2H6を原料とするa−S iの光
エネルギー堆積法(光CVO)が最近注目されている。
Therefore, one way to solve these problems is to
A-Si optical energy deposition (photo-CVO) using SiH4 and Si2H6 as raw materials has recently been attracting attention.

この光エネルギー堆積法は、励起エネルギーとしての前
述の方法に於けるグロー放電や熱の代わりに光を用いた
ものであり、a−9iの堆積膜の作製が低エネルギーレ
ベルで実施できるようになった。また、光エネルギーは
原料ガスに均一に照射することが容易であり、前述の堆
積法と比べて低いエネルギー消費で、均一性を保持した
高品質の成膜を行なうことができ、また製造条件の制御
が容易で安定した再現性が得られ、更に支持体を高温に
加熱する必要がなく、支持体に対する選択性が広がって
いる。
This optical energy deposition method uses light as the excitation energy instead of glow discharge or heat in the above-mentioned methods, and allows the production of deposited films of a-9i to be performed at low energy levels. Ta. In addition, it is easy to uniformly irradiate the raw material gas with light energy, and it is possible to form a high-quality film that maintains uniformity with lower energy consumption than the above-mentioned deposition method. It is easy to control, stable reproducibility is obtained, and there is no need to heat the support to a high temperature, and the selectivity for the support is widened.

ところが、このようなSiH4、Si2H6を原料とし
た光エネルギー堆積法では、飛躍的に効率の良い分解を
期待するのには限度があり、従って膜の形成速度の向上
が図れず、量産性に難点があるという問題点が指摘され
ている。
However, with such optical energy deposition methods using SiH4 and Si2H6 as raw materials, there is a limit to how much efficient decomposition can be expected, and therefore the film formation speed cannot be improved, making it difficult to mass-produce. It has been pointed out that there is a problem.

本発明はこのような問題に鑑みなされたものであり、励
起エネルギーとして光を用いて、高品質を維持しつつ高
い成膜速度でシリコン原子を含む堆積膜を低エネルギー
レベルで形成することのできる光エネルギー堆積法を提
供することにある。
The present invention was developed in view of these problems, and it is possible to form a deposited film containing silicon atoms at a low energy level at a high film formation rate while maintaining high quality by using light as excitation energy. An object of the present invention is to provide a light energy deposition method.

本発明の他の目的は、大面積、厚膜の堆積膜の形成にあ
っても、電気的、光学的特性の均一性、品質の安定性を
確保した高品質の堆積膜を形成することのできる方法を
提供することにある。
Another object of the present invention is to form a high-quality deposited film that ensures uniformity of electrical and optical characteristics and stability of quality even in the formation of a large-area, thick deposited film. The goal is to provide a method that can be used.

本発明は、鋭意検討の結果、これらの目的が、光エネル
ギーにより分解される原料ガスとして、シリコン原子と
炭素原子とを含み、少なくともシリコン原子によって構
成されるされる鎖状構造を有する化合物を用いることに
よって達成されることを見い出し完成されたものである
As a result of extensive studies, the present invention has achieved these objectives by using a compound containing silicon atoms and carbon atoms and having a chain structure constituted by at least silicon atoms as a raw material gas that is decomposed by light energy. It has been completed by discovering what can be achieved by doing so.

すなわち、本発明の堆積膜形成法は、支持体が配置され
た堆積室内に、下記一般式; %式% (但し、R1及びR4はそれぞれ独立してハロゲンによ
って置換されていてもよいフェニル基若しくはナフチル
基、炭素数が1〜11のアル午ル基を表わし、R2及び
R3はそれぞれ独立してHまたはCH3基を表わし、n
は3〜7の整数を表す)で示されるシリコン化合物の気
体状雰囲気を形成し、該化合物を、光エネルギーを利用
して、励起し、分解することにより、前記支持体上にシ
リコン原子を含む堆積膜を形成することを特徴とする。
That is, in the deposited film forming method of the present invention, in a deposition chamber in which a support is arranged, the following general formula; represents a naphthyl group, an alkyl group having 1 to 11 carbon atoms, R2 and R3 each independently represent H or a CH3 group, n
represents an integer from 3 to 7), and the compound is excited and decomposed using light energy, thereby containing silicon atoms on the support. It is characterized by forming a deposited film.

本発明の方法に於いて使用される堆積膜形成用の原料は
、シリコン原子と炭素原子とを含有し、少なくともシリ
コン原子から構成される鎖状構造を有する化合物であり
、光エネルギーによって容易に励起、分解しうることに
特徴があり、上記の一般式で示される。
The raw material for forming a deposited film used in the method of the present invention is a compound containing silicon atoms and carbon atoms and having a chain structure composed of at least silicon atoms, and is easily excited by light energy. , is characterized by being decomposable, and is represented by the general formula above.

このような化合物の中でも、上記式に於けるnが3〜7
の整数であることが好ましく、より好ましくは3〜6、
最適には3〜5の整数であることが望ましい。すなわち
、化合物中のシリコン原子の数が3以上であると、隣り
合ったシリコン原子の結合、特に2つのシリコン原子に
挾まれたシリコン原子と該原子に結合した他のシリコン
原子との結合が、比較的低い励起エネルギーによって不
安定となり、ラジカル分解し易い。一方、化合物中の直
接結合するシリコン原子の数が増加するニ従って更に低
い励起エネルギーによってラジカル分解し易くなるが、
接結台するシリコン原子の数が8以上であると、形成さ
れたa−3i膜の品質が低下してしまうので好ましくな
い。
Among such compounds, n in the above formula is 3 to 7.
is preferably an integer of , more preferably 3 to 6,
Optimally, it is desirable to be an integer of 3 to 5. That is, when the number of silicon atoms in the compound is 3 or more, the bond between adjacent silicon atoms, especially the bond between a silicon atom sandwiched between two silicon atoms and another silicon atom bonded to the atom, It becomes unstable due to relatively low excitation energy and is susceptible to radical decomposition. On the other hand, as the number of directly bonded silicon atoms in the compound increases, radical decomposition becomes easier due to lower excitation energy;
If the number of bonding silicon atoms is 8 or more, the quality of the formed a-3i film will deteriorate, which is not preferable.

従って、効率良く励起、分解が行なわれ、しがも良質な
a−9i膜を堆積するには、化合物中のシリコン原子の
数が好ましくは3〜7、より女fましくは3〜6、最適
には3〜5であること力≦望ましい。
Therefore, in order to efficiently excite and decompose and deposit a high-quality a-9i film, the number of silicon atoms in the compound is preferably 3 to 7, more preferably 3 to 6. Optimally, the force is preferably 3 to 5.

また上記式中のR1またはR2がアルキル基である場合
、該アルキル基の炭素原子の数はl −11個のものが
合成も容易であり、また容易−こガス化し、光エネルギ
ーでの分解効率も高いので本発明の方法に使用するに好
適である。
Furthermore, when R1 or R2 in the above formula is an alkyl group, the number of carbon atoms in the alkyl group is l -11, which is easy to synthesize, easily gasifies, and has a high decomposition efficiency with light energy. It is also suitable for use in the method of the present invention.

このような本発明の方法に使用されるシリコン化合物の
代表的なものとしては、以下のようなイし合物が挙げら
れる。
Typical silicon compounds used in the method of the present invention include the following compounds.

届 I G)13−9i)+2−9i)12−9iH2
−C)13A、 2 CI(3(C:t(2)2−(S
iH2)4−(CH2)2CH3A、 3 CH3(C
H2)2−(SiH2)s−(C)I2)2cH3筋4
 CL(CH2)n−(SiH2)s−(CHz)+C
H3届5 (CH3)2CH−CH2−(SiH2)4
Jl:R2−C)l(CI(3h届6 (CH3h(H
−(SiH2−CH(CR3)2届8 O1e−(Si
t(2)べ防C1d6.10 CH3<CH2h (S
iH2)3−5iH2、J、II CH3(C)I2)
2−(SiH2)8Br4、12 (CH3)3Si−
9!H2−3i(CH3)3届13 CH3(C:Hz
h 5i(CH3h−(SiH2)2−9i (CIi
31h−(c1土hC■−13 414(C)13)2C)1−C)1z−3i(CH3
h−9iH2−3i(CH2h−CI(2−C)l(C
)l、) 2 届15 CH3−CH2−3i(CH3)2−Si(C
:R3)2−9i(CH3)2−CH2−CH3 A、1t3 Cj−、@−8i(CH3h 5iI(2
−3i142−8 i (C1−13)2久◇−ctl
o、19 R4−(Si)ICR3)36Br ゛届2
0 (CR3)、CH−CR2−Si(CH3h−(S
ithh本発明の方法に於いては、このようなシリコン
化合物が、少なくとも堆積室内でガス状となるように堆
積室内に導入され、これに光エネルギーが照射されて、
これが励起、分解され、堆積室内に配置された支持体に
シリコン原子を含む堆積膜(a−Sillりが形成され
る。
Notification I G)13-9i)+2-9i)12-9iH2
-C) 13A, 2 CI(3(C:t(2)2-(S
iH2)4-(CH2)2CH3A, 3CH3(C
H2) 2-(SiH2)s-(C)I2)2cH3 muscle 4
CL(CH2)n-(SiH2)s-(CHz)+C
H3 notification 5 (CH3)2CH-CH2-(SiH2)4
Jl:R2-C)l(CI(3h notification 6 (CH3h(H)
-(SiH2-CH(CR3)2 Notification 8 O1e-(Si
t(2) Defense C1d6.10 CH3<CH2h (S
iH2)3-5iH2,J,II CH3(C)I2)
2-(SiH2)8Br4,12(CH3)3Si-
9! H2-3i (CH3)3 notification 13 CH3 (C:Hz
h 5i(CH3h-(SiH2)2-9i (CIi
31h-(c1 Sat hC■-13 414(C)13)2C)1-C)1z-3i(CH3
h-9iH2-3i(CH2h-CI(2-C)l(C
)l, ) 2 Notification 15 CH3-CH2-3i(CH3)2-Si(C
:R3)2-9i(CH3)2-CH2-CH3 A, 1t3 Cj-, @-8i(CH3h 5iI(2
-3i142-8 i (C1-13)2ku◇-ctl
o, 19 R4-(Si)ICR3)36Br゛Notification 2
0 (CR3), CH-CR2-Si(CH3h-(S
ithhIn the method of the present invention, such a silicon compound is introduced into the deposition chamber so as to be in a gaseous state at least within the deposition chamber, and is irradiated with light energy.
This is excited and decomposed, and a deposited film (a-Sil) containing silicon atoms is formed on a support placed in the deposition chamber.

本発明で言う、光エネルギーとは、上記の原料カスに照
射した際に十分な励起エネルギーを与えることのできる
エネルギー線を言い、原料ガスを励起1分解せしめ、分
解生成物を堆積させることができるものであれば、波長
域を問わずどのようなものも使用することができる。こ
のような光エネルギーとしては、例えば、紫外線、赤外
線、可視光線、X線、γ線などを挙げることができ、原
できる。
In the present invention, light energy refers to energy rays that can provide sufficient excitation energy when irradiated to the raw material gas, which can excite and decompose the raw material gas and deposit decomposition products. Any wavelength can be used as long as it has a wavelength range. Examples of such light energy include ultraviolet rays, infrared rays, visible light, X-rays, and gamma rays.

以下、第1図を参照しつつ本発明の方法を詳細に説明す
る。
Hereinafter, the method of the present invention will be explained in detail with reference to FIG.

第1図は支持体上に、a−3iからなる光導電膜、半導
体膜、又は絶縁体膜等の機能膜を形成するための堆積膜
形成装置の概略構成図である。
FIG. 1 is a schematic diagram of a deposited film forming apparatus for forming a functional film such as a photoconductive film, a semiconductor film, or an insulating film made of a-3i on a support.

堆積膜の形成は堆積室1の内部で行なわれる。Formation of the deposited film takes place inside the deposition chamber 1.

堆積室lの内部に置かれる3は支持体2の配置される支
持台である。
Reference numeral 3 placed inside the deposition chamber 1 is a support base on which the support body 2 is placed.

4は支持体加熱用のヒーターであり、道!Q5によって
該ヒーターに給電される。堆積室1内にa−51の原料
ガス、及び必要に応じて使用されるキャリアーガス等の
ガスを導入するためのガス導入管17が堆積室lに連結
されている。このガス導入管17の他端は上記ガス及び
必要に応じて使用されるガス供給源9.10.11.1
2に連結されている。ガス供給源9 、10.11.1
2から堆積室lに向って流出する各々のガスの流量を計
測するため、対応するフローメーター15−1.15−
2,15−3.15−4が対応する分枝したガス導入管
17−1.17−2.17−3.17−4の途中に設け
られる。各々のフローメータの前後にはバルブ14−1
.14−2.14−3.、14−4.16−1゜16−
2.18−3.16−4が設けられ、これらのバルブを
調節することにより、所定の流量のガスを供給しうる。
4 is a heater for heating the support, and the road! The heater is powered by Q5. A gas introduction pipe 17 is connected to the deposition chamber 1 for introducing a-51 raw material gas and gases such as a carrier gas used as necessary into the deposition chamber 1. The other end of this gas introduction pipe 17 is connected to the gas supply source 9.10.11.1 used for the above gas and if necessary.
It is connected to 2. Gas supply source 9, 10.11.1
In order to measure the flow rate of each gas flowing out from 2 toward the deposition chamber 1, a corresponding flow meter 15-1.15-
2,15-3.15-4 are provided in the middle of the corresponding branched gas introduction pipes 17-1.17-2.17-3.17-4. Valve 14-1 is installed before and after each flow meter.
.. 14-2.14-3. , 14-4.16-1゜16-
2.18-3.16-4 are provided, and by adjusting these valves a predetermined flow rate of gas can be supplied.

13−1.13−2.13−3.13−4は圧力メータ
であり、対応するフローメータの高圧側の圧力を計測す
るためのものである。
13-1.13-2.13-3.13-4 is a pressure meter, and is for measuring the pressure on the high pressure side of the corresponding flow meter.

フローメータを通過した各々のガスは混合されて、不図
示の排気装置によって減圧下にある堆積室1内へ導入さ
れる。なお、圧力メータ18は混合ガスの場合にはその
総圧が計測される。
The gases that have passed through the flow meters are mixed and introduced into the deposition chamber 1 under reduced pressure by an exhaust device (not shown). In addition, the pressure meter 18 measures the total pressure in the case of mixed gas.

堆積室1内を減圧にしたり、導入されたガスを排気する
ために、ガス排気管20が堆積室lに連結されている。
A gas exhaust pipe 20 is connected to the deposition chamber 1 in order to reduce the pressure inside the deposition chamber 1 and to exhaust the introduced gas.

ガス排気管の他端は不図示の排気装置に連結される。7
は光エネルギー発生装置である。
The other end of the gas exhaust pipe is connected to an exhaust device (not shown). 7
is a light energy generator.

堆積室lが石英ガラス等の透明材料から出来ていない場
合には、光エネルギー8を照射させるための窓を設けれ
ば良い。
If the deposition chamber l is not made of a transparent material such as quartz glass, a window for irradiating the light energy 8 may be provided.

本発明に於いて、ガスの供給[9、10,11,12の
個数は適宜、増減されうるものである。
In the present invention, the number of gas supplies [9, 10, 11, 12] can be increased or decreased as appropriate.

つまり、単一の原料ガスを使用する場合にはガス供給源
は1つで足りる。しかしながら、2種以上の原料ガスを
混合して使用する場合、あるいは単一の原料ガスに触媒
ガスあるいはキャリアーガス等を混合する場合には2つ
以上必要である。
That is, when using a single raw material gas, one gas supply source is sufficient. However, when using a mixture of two or more raw material gases, or when mixing a catalyst gas, carrier gas, etc. with a single raw material gas, two or more are required.

なお、原料の中には常温で気体にならず、液体のままの
ものもあるので、液体原料を用いる場合には、不図示の
気化装置が設置される。気化装置には加熱沸騰を利用す
るもの、液体原料中にキャリアーガスを通過させるもの
等がある。気化によって得られた原料ガスはフロメータ
を通って堆積室l内に導入される。
Note that some raw materials do not turn into gas at room temperature and remain liquid, so when using liquid raw materials, a vaporizer (not shown) is installed. There are two types of vaporizers: those that utilize heating and boiling, and those that pass a carrier gas through a liquid raw material. The raw material gas obtained by vaporization is introduced into the deposition chamber 1 through a flow meter.

このような第1図に示した装置を使用して本発明の方法
により以下のようにしてa−3iからなる堆積膜を形成
することができる。
Using the apparatus shown in FIG. 1 and the method of the present invention, a deposited film consisting of a-3i can be formed in the following manner.

まず、堆積室1内の支持台3上に支持体2をセットする
First, the support body 2 is set on the support stand 3 in the deposition chamber 1.

支持体2としては、形成された堆積膜の用途等に応じて
種々のものが使用される。該支持体を形成できる材料と
しては、導電性支持体には、例えばNiCl、ステンレ
ス、A1、Cr、Mo、 Au、Nb、 Ta、V 、
 Ti、 Pt、Pd等の金属またはこれらの合金、半
導電性支持体には、Sl、Ge等の半導体、また電気絶
縁性支持体には、ポリエステル、ポリエチレン、ポリカ
ーボネート、セルロース、アセテート、ポリプロピレン
、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン
、ポリアミド等の合成樹脂、カラス、セラミックス、紙
等を挙げることができる。支持体2の形状及び大きさは
、その使用する用途に応じて、適宜決定される。
Various types of supports 2 can be used depending on the purpose of the deposited film formed. Examples of materials that can form the support include NiCl, stainless steel, Al, Cr, Mo, Au, Nb, Ta, V,
Metals such as Ti, Pt, and Pd or alloys thereof; semiconductive supports include semiconductors such as Sl and Ge; electrically insulating supports include polyester, polyethylene, polycarbonate, cellulose, acetate, polypropylene, and polyester. Examples include synthetic resins such as vinyl chloride, polyvinylidene chloride, polystyrene, and polyamide, glass, ceramics, and paper. The shape and size of the support 2 are determined as appropriate depending on the intended use.

特に、本発明の方法に於いては、支持体の温度を50〜
150°C程度と比較的低い温度とすることができるの
で、上記の支持体を形成する材料の中でも、従来のグロ
ー放電堆積法や熱エネルギー堆積法には適用できなかっ
た耐熱性の低い材料からなる支持体をも使用することが
可能となった。
In particular, in the method of the present invention, the temperature of the support is set at 50 to
Since the temperature can be relatively low at around 150°C, it is possible to use materials with low heat resistance that cannot be applied to the conventional glow discharge deposition method or thermal energy deposition method among the materials that form the support. It is now possible to use other supports.

このように支持体2を堆積室1内の支持台3上に置いた
後に、ガス排気管20を通して不図示の排気装置により
堆積室内の空気を排気し減圧にする。減圧下の堆積室内
の気圧は5X 10′5Torr以下、好適には10″
6Torr以下が望ましい。
After the support 2 is placed on the support stand 3 in the deposition chamber 1 in this manner, the air in the deposition chamber is exhausted through the gas exhaust pipe 20 by an exhaust device (not shown) to reduce the pressure. The atmospheric pressure in the deposition chamber under reduced pressure is less than 5X 10'5 Torr, preferably 10''
It is desirable that the pressure is 6 Torr or less.

堆積室1内が減圧されたところで、ヒーター4に通電し
、支持体3を所定の温度に加熱する。このときの支持体
の温度は、好ましくは50〜1500C1より好ましく
は50〜100℃とされる。
Once the pressure inside the deposition chamber 1 has been reduced, the heater 4 is energized to heat the support 3 to a predetermined temperature. The temperature of the support at this time is preferably 50 to 1500C1, more preferably 50 to 100C.

このように、本発明の方法に於いては支持体温度が比較
的低温であるので、グロー放電堆積法や熱エネルギー堆
積法に於けるような支持体の高温加熱を必要としないた
めに、このために必要とされるエネルギー消費を節約す
ることができる。
As described above, since the support temperature is relatively low in the method of the present invention, it is not necessary to heat the support to a high temperature as in glow discharge deposition method or thermal energy deposition method. The energy consumption required for this can be saved.

次に、先に挙げたようなa−8i膜形成用の原料化合物
ガスが貯蔵されている供給源9のバルブ14−1、16
−1を各々開き、原料ガスを堆積室l内に送りこむ。な
お、一種以上の原料混合ガスを使用する場合、これらが
互いに反応しないものであれば、これらを所定の混合比
で混合したものを供給源9に充填しておいても良い。
Next, the valves 14-1 and 16 of the supply source 9 in which the raw material compound gas for forming the a-8i film as mentioned above is stored.
-1 is opened, and the raw material gas is sent into the deposition chamber l. In addition, when using one or more raw material mixed gases, the supply source 9 may be filled with a mixture of these gases at a predetermined mixing ratio, as long as they do not react with each other.

このとき対応するフローメータ15−1.15−2で計
測しながら流量調整を行う。通常、原料ガスの流量は1
0〜10003CCM 、好適には20〜5009CC
Mの範囲が望ましい。
At this time, the flow rate is adjusted while being measured by the corresponding flow meter 15-1, 15-2. Normally, the flow rate of the raw material gas is 1
0-10003CCM, preferably 20-5009CCM
A range of M is desirable.

堆積室1内の原料ガスの圧力は10−2〜1’0OTo
rr、好ましくは10−2〜I Torrの範囲に維持
されることが望ましい。
The pressure of the source gas in the deposition chamber 1 is 10-2 to 1'0OTo.
rr, preferably maintained in the range of 10-2 to I Torr.

堆積室l内に、原料ガスが導入されたところで、光エネ
ルギー発生装置7を駆動させ、光エネルギーを、原料ガ
スに照射する。
When the source gas is introduced into the deposition chamber 1, the optical energy generator 7 is driven to irradiate the source gas with optical energy.

光エネルギー発生装置7としては、例えば水銀ランプ、
キセノンランプ、炭酸ガスレーザー、アルゴンイオンレ
ーザ、又はエキシマレーザ等を用いることかできる。
As the light energy generating device 7, for example, a mercury lamp,
A xenon lamp, carbon dioxide laser, argon ion laser, excimer laser, or the like can be used.

光エネルギー発生装置7の駆動により発生する所望の光
エネルギーは堆積室1内に設置された支持体2を照射す
るように不図示の光学系が組みこまれている。
An optical system (not shown) is incorporated so that the desired light energy generated by driving the light energy generating device 7 irradiates the support 2 installed in the deposition chamber 1.

光エネルギーは、堆積室1内に配置された支持体2の近
傍を流れるガスに対して、一様に、または照射部分を選
択的に制御して照射することができる。
The light energy can be applied uniformly to the gas flowing in the vicinity of the support 2 disposed in the deposition chamber 1 or by selectively controlling the irradiated portion.

このようにして、支持体2の表面近傍を流れる原料ガス
には光エネルギーが付与され、光励起・光分解が促され
、生成物質であるa−8iが支持体上に堆積される。本
発明の方法に使用される原料ガスは、先に述べたように
、光エネルギーによって容易に励起、分解するので、5
〜100 A / see程度の高い成膜速度が得られ
る。a−3i以外の分解生成物及び分解しなかった余剰
の原料ガス等はガス排気管20を通して排出され、一方
、新たな原料ガスがガス導入管17を通して連続的に供
給される。
In this way, optical energy is applied to the raw material gas flowing near the surface of the support 2, promoting photoexcitation and photodecomposition, and a-8i, which is a product, is deposited on the support. As mentioned above, the raw material gas used in the method of the present invention is easily excited and decomposed by light energy.
A high deposition rate of ~100 A/see can be obtained. Decomposition products other than a-3i and undecomposed surplus raw material gas are discharged through the gas exhaust pipe 20, while new raw material gas is continuously supplied through the gas introduction pipe 17.

本発明の方法に於いては、励起エネルギーとして、光エ
ネルギーを使用し、この光エネルギーは、該エネルギー
を照射すべき原料ガスの占める所定の空間に対して常に
均一に照射できるように、すなわち励起エネルギーの不
均一な分布を生じることのないように光学系を用いて制
御することが容易であり、また、光エネルギー自身によ
る、形成過程にある堆積膜へのグロー放電堆積法に於い
て認められたような高出力放電による影響はなく、堆積
時の膜表面の乱れ、堆積膜内の欠陥を起こすことなく、
均一性を保ちつつ堆積1模の形成が継続される。特に、
光エネルギーは、広範囲にわたって均一に照射できるの
で、大面積の堆積膜を精度良く、均一に形成することが
可能となった。
In the method of the present invention, light energy is used as excitation energy, and this light energy is applied so that it can always uniformly irradiate a predetermined space occupied by the raw material gas to be irradiated. It is easy to control using an optical system so that uneven distribution of energy does not occur, and it is also recognized in the glow discharge deposition method that the light energy itself is applied to the deposited film in the process of forming. There is no effect from high-power discharge, and there is no disturbance of the film surface during deposition or defects within the deposited film.
The formation of the first pattern of deposits continues while maintaining uniformity. especially,
Since light energy can be irradiated uniformly over a wide range, it has become possible to uniformly form a deposited film over a large area with high precision.

また、光エネルギーの照射部分を選択的に制御すること
によって、支持体上の堆積膜形成部分を限定することも
できる。
Further, by selectively controlling the irradiated portion of the light energy, it is possible to limit the portion on the support where the deposited film is formed.

なお、本発明に於ける光エネルギーによる原料カスの励
起、分解には、光エネルギーによって直接原料ガスが励
起、分解yれる場合のみならず、光エネルギーが原料ガ
ス、または支持体に吸収されて熱エネルギーに変換され
、その熱エネルギーによって原料ガスの励起、分解がも
たらされるような光エネルギーによる派生的効果による
場合をも含むものである。
In addition, the excitation and decomposition of the raw material gas by light energy in the present invention includes not only the case where the raw material gas is directly excited and decomposed by the light energy, but also the case where the light energy is absorbed by the raw material gas or the support and generates heat. This also includes cases where the light energy is converted into energy and the resulting thermal energy causes excitation and decomposition of the source gas, which is a derivative effect of light energy.

このようにしてa−3i膜が支持体2上に形成され、a
−9iの所望の膜厚が得られたところで、光エネルギー
発4:謔M7からの光工ムルキーの昭射を停止し、更に
パルプ14−1.16−1を閉じ、原料ガスの供給を停
止する。a−3i膜の膜厚は、形成されたa−Si膜の
用途等に応じて適宜選択される。
In this way, an a-3i film is formed on the support 2, and a
When the desired film thickness of -9i is obtained, light energy emission 4: Stops the injection of optical mulch from M7, closes pulp 14-1, 16-1, and stops supply of raw material gas. do. The thickness of the a-3i film is appropriately selected depending on the intended use of the formed a-Si film.

次に、不図示の排気装置の駆動により、堆積室内のガス
を排除した後ヒーター4を切り、支持体及び堆積膜が常
温となったところでパルプ21をあけて、堆積室に大気
を徐々に導入し、堆積室内を常圧に戻して、a−3i膜
の形成された支持体を取り出す。
Next, by driving an exhaust device (not shown), the gas in the deposition chamber is expelled, and then the heater 4 is turned off. When the support and the deposited film reach room temperature, the pulp 21 is opened and the atmosphere is gradually introduced into the deposition chamber. Then, the inside of the deposition chamber is returned to normal pressure, and the support on which the a-3i film is formed is taken out.

このようにして本発明の方法により支持体上に形成され
たa−9i膜は、電気的、光学的特性の均一性、品質の
安定性に優れたa−5i膜である。
The a-9i film thus formed on the support by the method of the present invention is an a-5i film with excellent uniformity of electrical and optical properties and stability of quality.

なお、以上説明した本発明の方法の一例に於いては、減
圧下に於いて堆積膜が形成されたが、これに限定される
ことなく、本発明方法は、所望に応じて、常圧下、加圧
下に於いて行なうこともできる。
In the example of the method of the present invention described above, the deposited film was formed under reduced pressure, but the method is not limited to this, and the method of the present invention may be formed under normal pressure, under normal pressure, as desired. It can also be carried out under pressure.

以上のような本発明の方法によれば、励起エネルギーと
して、光エネルギーを使用し、かつ該光エネルギーによ
って容易に励起1分解する原料刀スを用いたことにより
、高い成膜速度による低エネルギーレベルでのa−3i
堆積膜の形成が可能となり、電気的、光学的特性の均一
性、品質の安定性に優れたa−5i堆積膜を形成するこ
とができるようになった。従って、本発明の方法に於い
ては、従来のグロー放電堆積法や熱エネルギー堆積法に
は適用できなかった耐熱性の低い材料からなる支持体を
も使用することができ、また支持体の高温加熱に必要と
されるエネルギー消費を節約することが可能となった。
According to the method of the present invention as described above, by using light energy as excitation energy and using a raw material that is easily excited and decomposed by the light energy, a low energy level can be achieved with a high film formation rate. a-3i at
It has become possible to form a deposited film, and it has become possible to form an a-5i deposited film with excellent uniformity of electrical and optical properties and stability of quality. Therefore, in the method of the present invention, supports made of materials with low heat resistance that cannot be applied to conventional glow discharge deposition methods or thermal energy deposition methods can be used, and the high temperature of the supports can also be used. It has become possible to save energy consumption required for heating.

更に、光エネルギーは、該エネルギーを照射すべき原料
ガスの占める所定の空間に対して常に均一に照射できる
ように制御することが容易であり、厚膜の堆積膜も精度
良く均一に形成でき、特に広範囲にわたって均一に照射
できるので、大面積の堆積膜をも精度良く均一に形成す
ることが可能となった。
Furthermore, the light energy can be easily controlled so that the energy can always be uniformly irradiated onto a predetermined space occupied by the source gas to be irradiated, and thick deposited films can be formed uniformly with high precision. In particular, since uniform irradiation can be performed over a wide range, it has become possible to form a deposited film uniformly and accurately even over a large area.

以下、本発明の方法を実施例に従って更に詳細に説明す
る。
Hereinafter, the method of the present invention will be explained in more detail according to examples.

実施例1 第1図に示した装置を使用し、堆積膜形成用の出発物質
として先に挙げたシリコン化合物届、1を用いて、■型
のa−9i (アモルファス−3i)’Hの形成を以下
のようにして実施した。
Example 1 Formation of a-9i (amorphous-3i)'H using the apparatus shown in FIG. was carried out as follows.

まず、支持体(商品名、コーニング# 7059、透明
導電性フィルム(ポリエステルベース)を堆積室l内の
支持台3にセットし、ガス排気管2oを通して排気装置
(不図示)によって堆積室l内を10”6Torrに減
圧し、ヒーター4に通電して支持体温度を50°Cに保
ち、次にシリコン化合物逅lが充填された原料供給源9
のバルブ14−1.18−1を各々開き、原料ガスを堆
積室l内に導入した。
First, a support (trade name, Corning #7059, transparent conductive film (polyester base)) is set on the support stand 3 in the deposition chamber 1, and the interior of the deposition chamber 1 is pumped through the gas exhaust pipe 2o by an exhaust device (not shown). The pressure was reduced to 10"6 Torr, the heater 4 was energized to maintain the support temperature at 50°C, and then the raw material supply source 9 filled with silicon compound was heated.
The valves 14-1 and 18-1 were opened, and the raw material gas was introduced into the deposition chamber 1.

このとき対応するフローメータ15−1で計測しながら
ガス流量を15O5CGHに調製した。次に、堆積室内
の圧力を0.I Torrに保ち、光強度100 mW
/cm’の低圧水銀灯の光を光エネルギー発生装置7か
ら発生させ支持体に対して垂直に照射して、厚さ400
0Aの1型a−3i膜を、15 A / see c)
成膜速度で支持体2上に堆積ぎせた。なお、光エネルギ
ーは、堆積室1内に配置された支持体2全体の近傍を流
れるガスに対して、一様に照射された。このとき、a−
3i以外の分解生成物及び分解しなかった余剰の原料ガ
ス等はガス排気管20を通して排出され、一方、新たな
原料ガスがガス導入管17を通して連続的に供給された
At this time, the gas flow rate was adjusted to 15O5CGH while measuring with the corresponding flow meter 15-1. Next, the pressure inside the deposition chamber was reduced to 0. Maintained at I Torr, light intensity 100 mW
/cm' of light from a low-pressure mercury lamp is generated from the light energy generator 7 and irradiated perpendicularly to the support to form a mercury lamp with a thickness of 400 mm.
0A type 1 a-3i film, 15A/see c)
The film was deposited on the support 2 at a film formation rate. Note that the light energy was uniformly applied to the gas flowing in the vicinity of the entire support body 2 disposed in the deposition chamber 1. At this time, a-
Decomposition products other than 3i and undecomposed surplus raw material gas were discharged through the gas exhaust pipe 20, while new raw material gas was continuously supplied through the gas introduction pipe 17.

このようにして本発明の方法により形成された、a−3
i膜の評価は、基板上に形成されたa−5i膜のそれぞ
れの上に、更にクシ型のA1のキャップ電極(長さ25
0p、巾5mm)を形成して、光電流(光照射強度AM
I 、約too mW/crry’)と暗電流を測定し
、その光導電率σp及び光導電率σpと暗導電率σdと
の比(σp/σd)をることによって行った。
a-3 thus formed by the method of the present invention.
For evaluation of the i film, a comb-shaped A1 cap electrode (length 25
0p, width 5mm) to form a photocurrent (light irradiation intensity AM
This was carried out by measuring the dark current (I, about too mW/crry') and calculating the photoconductivity σp and the ratio of the photoconductivity σp to the dark conductivity σd (σp/σd).

なお、ギャップ電極は、上記のようにして形成されたa
−3i膜を蒸着槽に入れて、該槽を一度10’Torr
の真空度まで減圧した後、真空度を1O−5Torrに
調整して、蒸着速度20A/secテ、1500A (
7)膜厚で、AIをa−9i膜上に蒸着し、これを所定
の形状を有するパターンマスクを用いて、エツチングし
てパターンマスクを行なって形成した。
Note that the gap electrode is a
- Put the 3i film into a vapor deposition tank, and turn the tank once to 10' Torr.
After reducing the pressure to a vacuum level of
7) AI was deposited on the a-9i film to a certain thickness, and this was etched using a pattern mask having a predetermined shape to form a pattern mask.

得られたσp値、σP/σd比を表1に示す。The obtained σp values and σP/σd ratios are shown in Table 1.

実施例2〜5 堆積膜形成用の出発物質として、先に列挙したシリコン
化合物遂6、述8、煮18、届19(実施例2〜5)の
それぞれを個々に用い、支持体温度を表1に示したよう
に設定する以外は、実施例1と同様にしてI型のa−3
i膜の形成を実施し、得られたa−9i膜を実施例1と
同様にして評価した。評価結果を表1に示す。
Examples 2 to 5 Each of the silicon compounds listed above (Examples 2 to 5) was used individually as a starting material for forming a deposited film, and the support temperature was indicated. A-3 of type I was prepared in the same manner as in Example 1 except that the settings were made as shown in 1.
An i film was formed, and the obtained a-9i film was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

比較例1 Si供給用の原料物質として5i286を用いる以外は
実施例1と同様にしてI′y!!a−3i膜の形成を実
施し、得られたa−3i膜を実施例1と同様にして評価
した。評価結果を表1に示す。
Comparative Example 1 I′y! ! An a-3i film was formed, and the obtained a-3i film was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

以上の実施例1〜5及び比較例1の結果をまとめると、
成膜速度については表1及の評価結果に示されたように
、光強度100 mW/crn’の低圧水銀灯の光を使
用し、支持体温度を50℃とした場合では、比較例1に
於ける成膜速度が8A/secであるのに対して、本発
明の実施例1.2に於ける成膜速度が15 A/ se
cと良好な成膜速度が得られ、かつ本発明の実施例1〜
5のいづれの場合に於いても、光導電率σpが3X10
’〜1.5X10’、またσp/σdは5X]03〜1
.2 XIO’と良好な値をノJ< した。
To summarize the results of Examples 1 to 5 and Comparative Example 1 above,
As for the film formation rate, as shown in the evaluation results in Table 1, when light from a low-pressure mercury lamp with a light intensity of 100 mW/crn' was used and the support temperature was 50°C, Comparative Example 1 The film forming rate in Example 1.2 of the present invention was 15 A/sec, whereas the film forming rate in Example 1.2 of the present invention was 15 A/sec.
c and a good film formation rate were obtained, and Examples 1 to 1 of the present invention
In any case of 5, the photoconductivity σp is 3X10
'~1.5X10', and σp/σd is 5X]03~1
.. A good value of 2XIO' was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法に用いられる堆積膜形成装置の
一例の概略構成図である。 l:堆積室 2.支持体 3:支持台 4:ヒーター 5:導線 6−1.6−2.8−3:ガスの流れ 7:光エネルギー発生装置 8:光エネルギー 9,10,11,12 :ガス供給
源13−1.13−2.13−3.13−4.18:圧
力メーター14−1.14−2.14−3.14−4゜
18−1,1t(−2,16−3,18−4,21+バ
ルブ1.5−1.15−2.15−3.15−4:フロ
ーメーター17.17−1.17−2.17−3.17
−4:ガス導入管20:ガス排気管
FIG. 1 is a schematic diagram of an example of a deposited film forming apparatus used in the method of the present invention. l: Deposition chamber 2. Support 3: Support base 4: Heater 5: Conductor 6-1.6-2.8-3: Gas flow 7: Light energy generator 8: Light energy 9, 10, 11, 12: Gas supply source 13- 1.13-2.13-3.13-4.18: Pressure meter 14-1.14-2.14-3.14-4°18-1,1t (-2,16-3,18-4 , 21 + valve 1.5-1.15-2.15-3.15-4: flow meter 17.17-1.17-2.17-3.17
-4: Gas introduction pipe 20: Gas exhaust pipe

Claims (1)

【特許請求の範囲】[Claims] (1)支持体が配置された堆積室内に、下記一般式: %式% (但し、R1及びR4はそれぞれ独立してハロゲンによ
って置換されていてもよいフェニル基若しくはナフチル
基、炭素数が1〜11のアルキル基を表わし 1172
及びR3はそれぞれ独立してHまたはCH3基を表わし
、nは3〜7の整数を表す)で示されるシリコン化合物
の気体状雰囲気を形成し、該化合物を光エネルギーを利
用して、励起し、分解することにより、前記支持体上に
シリコン原子を含む堆積膜を形成することを特徴とする
堆MK膜の形成方法。
(1) In the deposition chamber in which the support is placed, the following general formula: % formula % (However, R1 and R4 are each independently a phenyl group or naphthyl group which may be substituted with halogen, and have 1 to 1 carbon atoms. Represents an alkyl group of 11 1172
and R3 each independently represent H or a CH3 group, and n represents an integer from 3 to 7), and the compound is excited using light energy, A method for forming a deposited MK film, characterized in that a deposited film containing silicon atoms is formed on the support by decomposition.
JP7613484A 1984-04-16 1984-04-16 Formation of deposited film Pending JPS60221573A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7613484A JPS60221573A (en) 1984-04-16 1984-04-16 Formation of deposited film
US06/722,134 US4683145A (en) 1984-04-16 1985-04-11 Method for forming deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7613484A JPS60221573A (en) 1984-04-16 1984-04-16 Formation of deposited film

Publications (1)

Publication Number Publication Date
JPS60221573A true JPS60221573A (en) 1985-11-06

Family

ID=13596481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7613484A Pending JPS60221573A (en) 1984-04-16 1984-04-16 Formation of deposited film

Country Status (1)

Country Link
JP (1) JPS60221573A (en)

Similar Documents

Publication Publication Date Title
JPS62243768A (en) Formation of deposited film
US4645684A (en) Method for forming deposited film
JPS60242612A (en) Deposition film forming method
JPS60241222A (en) Formation of accumulated film
JPS60221573A (en) Formation of deposited film
JPS60219728A (en) Forming method of deposited film
JPS61236691A (en) Vapor phase synthesis of diamond
JPS60221575A (en) Formation of deposited film
JPS60219734A (en) Formation of deposited film
JPS60219730A (en) Forming method of deposited film
JPS60219732A (en) Forming method of deposited film
JPS60219726A (en) Forming method of deposited film
JPS60219736A (en) Formation of deposited film
JPH06199595A (en) Method for synthesizing diamond
JPS60245128A (en) Forming method of accumulated film
JPS60219737A (en) Formation of deposited film
JPS60245129A (en) Forming method of accumulated film
JPS60242614A (en) Deposition film forming method
JPS61201694A (en) Vapor phase synthesis method for diamond
JPS60242613A (en) Deposition film forming method
JPS60240120A (en) Formation of deposition film
JPS60218827A (en) Formation of deposited film
JPS60219725A (en) Forming method of deposited film
JPS60221576A (en) Formation of deposited film
JPS60219731A (en) Forming method of deposited film