JPS60219730A - Forming method of deposited film - Google Patents

Forming method of deposited film

Info

Publication number
JPS60219730A
JPS60219730A JP7612884A JP7612884A JPS60219730A JP S60219730 A JPS60219730 A JP S60219730A JP 7612884 A JP7612884 A JP 7612884A JP 7612884 A JP7612884 A JP 7612884A JP S60219730 A JPS60219730 A JP S60219730A
Authority
JP
Japan
Prior art keywords
gas
film
support
energy
deposited film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7612884A
Other languages
Japanese (ja)
Inventor
Yukio Nishimura
征生 西村
Takeshi Eguchi
健 江口
Hiroshi Matsuda
宏 松田
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7612884A priority Critical patent/JPS60219730A/en
Priority to US06/722,134 priority patent/US4683145A/en
Publication of JPS60219730A publication Critical patent/JPS60219730A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/487Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To uniformalize characteristics by a method wherein a deposited film is formed, exciting and decomposing by photo energy after forming gaseous atomsphere of cyclic silane compound and halogen compound. CONSTITUTION:A substrate 2 is placed on a supporting stand 3 inside a depositing chamber 1, and after decompressing inside the depositing chamber 1, the substrate 2 is heated by a heater 4. Secondly, valves 14-1, 16-1 of supply source 9 are opened and stock gas is sent into the depositing chamber 1. As the stock gas, cyclic silane compound is used. At the same time, valves 14-5, 16-5 are opened and halogen compound gas is introduced into the depositing chamber 1 from supply source 29. Consequently, a photo energy generator 7 is operated and irradiates the optical energy to the mixed gas, and then urges photo-excitation and photodecomposition. Thus, the amorphous Si which is formed is deposited on the substrate 2. As a result, a wide deposited film with good accuracy and good uniformity can be formed.

Description

【発明の詳細な説明】 本発明は、励起エネルギーとして光を利用し、光導電膜
、半導体あるいは絶縁性の膜を所定の支持体−1−に形
成させる堆積膜形成法に関し、更に詳しくは、尤または
光及び所望により熱等の付与または利用により、原料ガ
スの励起、分解状態を作り、所定の支持体上に、特に、
アモルファスシリコン(以下a−9iと略す)の堆積膜
を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a deposited film forming method that uses light as excitation energy to form a photoconductive film, a semiconductor film, or an insulating film on a predetermined support -1-. In particular, by applying or using light and, if desired, heat, etc., the raw material gas is excited and decomposed, and placed on a predetermined support, in particular,
The present invention relates to a method for forming a deposited film of amorphous silicon (hereinafter abbreviated as a-9i).

従来、a−3iの堆積膜形成方法としては、SiH4、
またはSi2H6を原料として用いたグロー放電堆積法
及び熱エネルギー堆積法が知られている。即ち、これら
の堆積法は、原料ガスとしての5iHa才たハ5i2H
6を電気エネルギーや熱エネルギー(励起エネルギー)
により分解して支持体上にa−5iの堆積膜を形成させ
る方法であり、形成された堆積膜は、光導M膜、半導体
あるいは絶縁性の膜等として種々の目的に利用されてい
る。
Conventionally, methods for forming a-3i deposited films include SiH4,
Alternatively, a glow discharge deposition method and a thermal energy deposition method using Si2H6 as a raw material are known. That is, these deposition methods use 5iHa and 5i2H as source gases.
6 is electrical energy or thermal energy (excitation energy)
This is a method in which a deposited film of a-5i is formed on a support by decomposing the film, and the deposited film thus formed is used for various purposes such as a light guiding M film, a semiconductor or an insulating film, etc.

しかしながら、高出力放電下で堆積膜の形成が行なわれ
るグロー放電堆積法に於いては、均一な放電の分布状態
が常に得られないなど再現性のある安定した条件の制御
が難しく、更に膜形成中に於ける膜への高出力放電の影
響が大きく、形成された膜の電気的、光学的特性の均一
性1品質の安定性の確保が難しく、堆積時の膜表面の乱
れ、堆稙膜内の欠陥か生じやすい、特に、面積の大きな
 あるいは厚膜の堆a膜を電気的、光学的特性に於いて
均一にこの方法により形成することは非’、r?iに困
難であった。
However, in the glow discharge deposition method, in which the deposited film is formed under high-power discharge, it is difficult to control reproducible and stable conditions, such as not always achieving a uniform discharge distribution state, and furthermore, the film formation The influence of high-power discharge on the film inside is large, and it is difficult to ensure the uniformity of the electrical and optical properties of the formed film.1 It is difficult to ensure the stability of the quality, and the film surface may be disturbed during deposition, resulting in a deposited film. In particular, it is difficult to form large-area or thick deposited films with uniform electrical and optical properties using this method. It was difficult for me.

−・力、熱エネルギー堆積法においても1通常400’
C以−1,の高温が必要となることから使用される支持
体材ネ゛lが限定され、加えて所望のa−Si中のイi
用な結合水素原子が離脱してしまう確率が増加するため
、所望の特性が得難い。
-・For force and thermal energy deposition method, 1 usually 400'
Since a high temperature of C or higher is required, the number of support materials to be used is limited, and in addition, the desired i
Since the probability of detachment of a bonded hydrogen atom that is necessary increases, it is difficult to obtain desired characteristics.

そこで、これらの問題点を解決する1つの方法として、
SiH4,5i7H6を原ネ4とするa−3iの光エネ
ルギーIl+植法(光CVD)が最近注目されている。
Therefore, one way to solve these problems is to
The a-3i light energy Il+ planting method (photoCVD) using SiH4,5i7H6 as the raw material 4 has recently been attracting attention.

この光エネルギー堆積法は、励起エネルギーとしての前
述の方法に於けるグロー放電や熱の代わりに光を用いた
ものであり、 a−3iの堆積膜の作製が低エネルギー
レベルで実施できるようになった。また、光エネルギー
は原料ガスに均一に照射することが容易であり、前述の
堆積法と比べて低いエネルギー消費で、均一性を保持し
た高品質の成膜?行なうことができ、また製造条件の制
御が容易で安定した再現性が得られ、更に支持体を高温
に加熱する必要がなく、支持体に対する選択性が広がっ
ている。
This optical energy deposition method uses light as the excitation energy instead of glow discharge or heat in the aforementioned methods, and allows the production of a-3i deposited films at low energy levels. Ta. In addition, it is easy to uniformly irradiate the source gas with light energy, resulting in high-quality film formation that maintains uniformity with lower energy consumption than the deposition methods described above. Furthermore, the production conditions can be easily controlled and stable reproducibility can be obtained.Furthermore, there is no need to heat the support to a high temperature, and the selectivity with respect to the support is widened.

ところが、このようなSiH4、Si2H6を原料とし
た光エネルギー堆積法では、飛躍的に効率の良い分解を
期待するのには限度があり、従って膜の形成速度の向上
が図れず、量産性に難点があるという問題点が指摘され
ている。
However, with such optical energy deposition methods using SiH4 and Si2H6 as raw materials, there is a limit to how much efficient decomposition can be expected, and therefore the film formation speed cannot be improved, making it difficult to mass-produce. It has been pointed out that there is a problem.

本発明はこのような問題に鑑みなされたものであり、励
起エネルギーとして光を用いて、高品質を維持しつつ高
い成膜速度でシリコン原子を含む堆積膜を低エネルギー
レベルで形成することのできる光エネルギー堆積法を提
供することにある。
The present invention was developed in view of these problems, and it is possible to form a deposited film containing silicon atoms at a low energy level at a high film formation rate while maintaining high quality by using light as excitation energy. An object of the present invention is to provide a light energy deposition method.

本発明の他の目的は、大面積、厚膜の堆a膜の形成にあ
っても、電気的、光学的特性の均一性。
Another object of the present invention is to provide uniform electrical and optical characteristics even in the formation of a large-area, thick deposited film.

品質の安定性を確保した高品質の堆積膜を形成すること
のできる方法を提供することにある。
An object of the present invention is to provide a method capable of forming a high-quality deposited film that ensures quality stability.

本発明は、鋭意検討の結果、これらの目的が。The present invention has achieved these objectives as a result of intensive studies.

光エネルギーにより分解されるδ−3i膜形成用の原料
カスとして下記一般式; (但し、上記式中nは3,4または5、RはHまたはS
iH3を表わす)で表わされる環式シラン化合物をハロ
ケン化合物との混合状態で用いることによって達成され
ることを見い出し完成されたものである。
The raw material residue for forming a δ-3i film that is decomposed by light energy has the following general formula;
It was discovered and completed that this can be achieved by using a cyclic silane compound represented by (iH3) in a mixed state with a halokene compound.

すなわち、本発明の堆積膜形成法は、支持体が配tされ
た堆積室内に、下記一般式; (但し、上記式中nは3.4または5、RはHまたはS
iH3を表わす)で表わされる環式シラン化合物及びハ
ロゲン化合物の気体状雰囲気を形成し、これら化合物を
光エネルギーを利用して、励起し、分解することにより
、前記支持体上にシリコン原f−を含む堆積膜を形成す
ることを特徴とする。
That is, in the deposited film forming method of the present invention, in a deposition chamber in which a support is arranged, the following general formula;
By forming a gaseous atmosphere of a cyclic silane compound and a halogen compound represented by (iH3), and using light energy to excite and decompose these compounds, silicon raw f- is deposited on the support. It is characterized by forming a deposited film containing.

本発明の方法に於いて使用されるa−9i堆積膜形成用
の原料は、下記一般式: (但し、上記式中nは3.4または5、BはHまたはC
H3を表わす)で表わされる環式シラン化合物である。
The raw material for forming the a-9i deposited film used in the method of the present invention has the following general formula: (However, in the above formula, n is 3.4 or 5, and B is H or C.
It is a cyclic silane compound represented by H3.

このような環式シラン化合物として以下のようなものを
挙げることができる。
Examples of such cyclic silane compounds include the following.

A I A Z A 3 &4 煮5 しかしながら、このような環式シラン化合、物は、励起
エネルギーとして光エネルギーを用いた場合、効率良い
、励起11分解が得られず、良tlfな成膜速度が得ら
れない。
However, with such cyclic silane compounds, when light energy is used as excitation energy, efficient excitation 11 decomposition cannot be obtained, and a good tlf film formation rate is not achieved. I can't get it.

そこで本発明の方法に於いては、光エネルギーによる上
記の環式シラン化合物の励起、分解をより効率良く促進
させるために、該環式シラン化合物にハロゲン化合物が
混合される。
Therefore, in the method of the present invention, a halogen compound is mixed with the cyclic silane compound in order to more efficiently promote the excitation and decomposition of the cyclic silane compound by light energy.

本発明の方法に於いて上記環式シラン化合物に混合され
るハロゲン化合物は、ハロゲン原子を合力した化合物で
あり、上記環式シラン化合物の光エネルギーによる励起
、分解をより効率良く促進させることのできるものであ
る。このようハロゲン化合物としては、CI2 、 B
r2、 I2.F2等のハロゲンガス等を挙げることが
できる。
The halogen compound mixed with the cyclic silane compound in the method of the present invention is a compound containing combined halogen atoms, and can more efficiently promote excitation and decomposition of the cyclic silane compound by light energy. It is something. Such halogen compounds include CI2, B
r2, I2. Examples include halogen gas such as F2.

本発明に方法に於ける前記a−Si膜形成用原料化合物
に混合されるハロゲン化合物の割合いは、使用されるa
−Si膜形成用原料化合物及びハロゲン化合物の種類等
によって異なるが、0.01 Volt〜°65Vol
L bf t L <は0.I VolL 〜50Vo
lXノ範囲内で使用される。
In the method of the present invention, the proportion of the halogen compound mixed in the raw material compound for forming the a-Si film or the amount of a used
-Varies depending on the type of raw material compound and halogen compound for Si film formation, but 0.01 Volt to °65 Volt
L bf t L < is 0. I VolL ~50Vo
Used within the range of 1X.

なお、前記一般式で示された環式シラン化合物でnが6
以上のものは、ハロゲン化合物との混合状態に於いて、
その分解が容易で低エネルギー励起により所望の堆積膜
が得られることが期待されるが、予想に反し、光導電膜
、半導体膜として品質が劣り、その上、膜の表面での欠
陥及び堆積膜内での乱れが多く不均一な膜となることが
判明した。従って、このような環式シラン化合物を使用
すれば、堆積膜の製造のコントロールが困難である。ま
た、上記式中のnが2の場合も環式シラン化合物として
考慮されるが、この化合物は不安定であるため現状では
単離することが難かしい。
In addition, in the cyclic silane compound represented by the above general formula, n is 6.
The above substances, in a mixed state with a halogen compound,
It is expected that the desired deposited film can be obtained by easy decomposition and low-energy excitation, but contrary to expectations, the quality of the photoconductive film and semiconductor film is poor, and in addition, defects on the surface of the film and the deposited film It was found that there was a lot of turbulence within the film, resulting in an uneven film. Therefore, if such a cyclic silane compound is used, it is difficult to control the production of the deposited film. Further, when n in the above formula is 2, it is also considered as a cyclic silane compound, but this compound is unstable and therefore difficult to isolate at present.

従って、上記式中のnは、3.4または5であることが
好ましい。
Therefore, n in the above formula is preferably 3.4 or 5.

本発明で言う、光エネルギーとは、上記の原料ガスに照
射した際に十分な励起エネルギーをグーえることのでき
るエネルギー線を言い、原料ガスを励起、分解せしめ、
分解生成物を堆積させることができるものであれば、波
長域を問わずどのようなものも使用することができる。
In the present invention, light energy refers to energy rays that can generate sufficient excitation energy when irradiated to the raw material gas, and excite and decompose the raw material gas.
Any material can be used regardless of wavelength range as long as it can deposit decomposition products.

このような光エネルギーとしては、例えば、紫外線、0
I視光線、X線、γ線等を挙げることができ、原料ガス
との適応性等に応じて適宜選択することができる。
Examples of such light energy include ultraviolet rays,
Examples include I-visual rays, X-rays, and γ-rays, and can be appropriately selected depending on compatibility with the raw material gas.

以下、第1図を参照しつつ本発明の方法を詳細に説明す
る。
Hereinafter, the method of the present invention will be explained in detail with reference to FIG.

第1図は支持体ヒに、a−9iからなる光導電膜、半導
体膜、又は絶縁体膜等の機能膜を形成するための堆積膜
形成装置の概略構成図である。
FIG. 1 is a schematic diagram of a deposited film forming apparatus for forming a functional film such as a photoconductive film, a semiconductor film, or an insulating film made of a-9i on a support.

HE植咬の形成は堆積室1の内部で行なわれる。Formation of the HE implant takes place inside the deposition chamber 1.

11[稙室lの内部に置かれる3は支持体の配置される
支持台である。
11 [3 placed inside the tail chamber 1 is a support stand on which a support body is placed.

4は支持体加熱用のヒーターであり、導線5によって該
ヒーター4に給電される。堆積室l内に前記a−Si脱
Si用の原料ガス、及び必要に応じて使用されるキャリ
アーガス等のガスを導入するためのガス導入管17、及
び前記ハロゲン化合物を・9人するためのガス導入管3
0が堆積室lに連結されている。カス導入管17の他端
は前記a−Si膜形成膜形成化原料化合物要に応じて使
用されるキャリアカス等のカスを供給するためのガス供
給源9゜IQ、 11.+2、に連結され、カス導入管
30の他端は、ハロゲン化合物を供給するためのガス供
給源29にI!l!結されている。
Reference numeral 4 denotes a heater for heating the support, and power is supplied to the heater 4 through a conductive wire 5. A gas introduction pipe 17 for introducing the raw material gas for the a-Si removal into the deposition chamber l and gases such as a carrier gas used as necessary; Gas introduction pipe 3
0 is connected to the deposition chamber l. The other end of the waste introduction pipe 17 is a gas supply source 9°IQ for supplying waste such as carrier waste used as necessary for the a-Si film forming film forming raw material compound.11. +2, and the other end of the waste introduction pipe 30 is connected to a gas supply source 29 for supplying a halogen compound. l! tied together.

このよう1こ、a−3i膜形成川用ネl化合物とハロゲ
ン化合物は、別々に堆積室l内に導入されることが好ま
しい。これは、ガス導入管内を混合状態で流した場合、
これらの化合物が混合されたのと同時に反応してしまい
、a−3i膜形成用原料の分解が起き、この分解生成物
がガス導入管内に堆積し、ガス導入管内部を汚染するの
で好ましくない。
It is preferable that the nitride compound and the halogen compound for forming the a-3i film are introduced separately into the deposition chamber 1. This means that when a mixed state flows through the gas introduction pipe,
These compounds react at the same time as they are mixed, decomposition of the raw material for forming the a-3i film occurs, and this decomposition product is deposited in the gas introduction pipe, which is undesirable because it contaminates the inside of the gas introduction pipe.

ガス供給源9.1O111,12,29から堆積室1に
向って流出する各々のガスの流量を計測するため、対応
するフローメーター15−1.15−2.15−3゜!
5−4.15−5が対応する分枝したガス導入管+7−
1゜17−2.17−3.17−4及びガス導入管30
の途中に設けられる。各々のフローメータの前後にはバ
ルブ14−1.14−2.14−3.14−4.14−
5 、18−1. +8−2゜+5−3. +5−4.
18−5が設けられ、これらのパルプを調節することに
より、所定の流量のガスを供給しうる。 +3−1.1
3−2.13−3.13−4.13−5は圧力メータで
あり、対応するフローメータの高圧側の圧力を計測する
ためのものである。
In order to measure the flow rate of each gas flowing out towards the deposition chamber 1 from the gas supply sources 9.1O111, 12, 29, corresponding flow meters 15-1.15-2.15-3°!
5-4. Branched gas introduction pipe corresponding to 15-5 +7-
1゜17-2.17-3.17-4 and gas introduction pipe 30
It is located in the middle of. There are valves 14-1.14-2.14-3.14-4.14- before and after each flow meter.
5, 18-1. +8-2°+5-3. +5-4.
18-5 are provided, and by adjusting these pulps a predetermined flow rate of gas can be supplied. +3-1.1
3-2.13-3.13-4.13-5 is a pressure meter, which is used to measure the pressure on the high pressure side of the corresponding flow meter.

フローメータを通過した各々のガスは、不図示の排気装
置によって減圧ドにある堆積室l内へ導入される。なお
、圧力メータ18はガス導入管17内を混合カスか流れ
る場合にはその総圧が計測される。
Each gas that has passed through the flow meter is introduced into the deposition chamber l under reduced pressure by an exhaust device (not shown). Note that the pressure meter 18 measures the total pressure when the mixed sludge flows inside the gas introduction pipe 17.

11に稙室l内を減圧にしたり、導入されたガスを排気
するために、カス排気管20が堆積室lに連結されてい
る。カス排気管の他端は不図示の排気装j?1に連結さ
れる。
11, a waste exhaust pipe 20 is connected to the deposition chamber 1 in order to reduce the pressure inside the deposition chamber 1 and to exhaust the introduced gas. Is the other end of the waste exhaust pipe an exhaust system (not shown)? 1.

7は光エネルギー発生装置である。7 is a light energy generator.

+11植室lが石英カラス等の透明材料から出来ていな
い場合には、光エネルギー8を照射させるための窓を設
ければ良い。
+11 If the planting chamber l is not made of a transparent material such as quartz glass, a window for irradiating the light energy 8 may be provided.

未発IJ1に於いて、ガスの供給源9jO,ll、12
.29の個数は適宜、増減されるものである。
In unexploded IJ1, gas supply source 9jO, ll, 12
.. The number of 29 may be increased or decreased as appropriate.

つまり、中−の原料ガスを使用する場合には9〜12ま
でのガス供給源は1つで足りる。しかしながら、2挿具
りの原料ガスを混合して使用する場合、巾−・の原料ガ
スを混合する場合には2つ以1−必要である。
That is, when using a medium-sized raw material gas, one gas supply source from 9 to 12 is sufficient. However, when mixing and using two raw material gases, or when mixing raw material gases with a width of -, two or more are required.

なお、a −S i ljQ形成川原用(化合物及びハ
ロゲン化合物の中には常温で気体にならず、液体のまま
のものもあるので、液体として用いる場合には、不図示
の気化装置が設置される。気化装置には加熱沸騰を利用
するもの、液体中にキャリアーガスを通過させるもの等
がある。気化によって得られた原ネ1ガスはフロメータ
を通って堆積室1内に導入される。
Note that for Kawahara's a-SiljQ formation (some compounds and halogen compounds do not turn into gases at room temperature and remain liquids, if they are used as liquids, a vaporizer (not shown) must be installed. There are some vaporizers that utilize heating boiling, and others that allow a carrier gas to pass through the liquid.The raw liquid 1 gas obtained by vaporization is introduced into the deposition chamber 1 through a flow meter.

このような第1図に示した装置を使用して本発明の方法
により以下のようにして8−81からなる堆積膜を形成
することができる。
Using the apparatus shown in FIG. 1 and the method of the present invention, a deposited film consisting of 8-81 can be formed in the following manner.

まず、堆積室l内の支持台3上に支持体2をセットする
First, the support body 2 is set on the support stand 3 in the deposition chamber l.

支持体2としては、形成された堆積膜の用途等に応じて
種々のものが使用される。該支持体を形成でさる材料と
しては、導電性支持体には、例え1fNicI、ステン
レス、^1、Cr、 No、^u、Nb、 Ta、V 
、 Ti、 Pt、 Pd等の金属またはこれらの合金
、゛r゛導電性支持体には、Sl、Ge等の半導体、ま
た′it気絶縁性支持体には、ポリエステル、ポリエチ
レン、ポリカーボネート、セルローズ、アセテート、ポ
リプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、
ポリスチレン、ポリアミド等の合成樹脂、カラス、セラ
ミンクス、紙等を挙げることができる。支持体2の形状
及び大きさは、その使用する用途に応じて、適宜決定さ
れる。
Various types of supports 2 can be used depending on the purpose of the deposited film formed. Examples of materials for forming the support include 1fNicI, stainless steel, Cr, No, ^u, Nb, Ta, and V.
, metals such as Ti, Pt, and Pd, or alloys thereof; conductive supports include semiconductors such as Sl and Ge; and insulating supports include polyester, polyethylene, polycarbonate, cellulose, Acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride,
Examples include synthetic resins such as polystyrene and polyamide, glass, ceramics, and paper. The shape and size of the support 2 are determined as appropriate depending on the intended use.

特に、本発明の方法に於いては、支持体の温度を50〜
150°C程度と比較的低い温度とすることができるの
で、L記の支持体を形成する材料の中でも、従来のグロ
ー放電堆積法や熱エネルギー堆積法には適用できなかっ
た耐熱性の低い材料からなる支持体をも使用することが
可能となった。
In particular, in the method of the present invention, the temperature of the support is set at 50 to
Since the temperature can be relatively low at around 150°C, it is a material with low heat resistance that cannot be applied to the conventional glow discharge deposition method or thermal energy deposition method among the materials for forming the support described in L. It has now become possible to use supports made of

このように支持体2を堆積室1内の支持台3上に置いた
後に、ガス排気管20を通して不図示の排気装置により
堆積室内の空気を排気し減圧にする。減圧下の堆積室内
の気圧は5X 10″5Torr以下、l[/適には1
0” Tart以下が望ましい。
After the support 2 is placed on the support stand 3 in the deposition chamber 1 in this manner, the air in the deposition chamber is exhausted through the gas exhaust pipe 20 by an exhaust device (not shown) to reduce the pressure. The atmospheric pressure in the deposition chamber under reduced pressure is 5×10″5 Torr or less, l[/suitably 1
0” Tart or less is desirable.

堆積室l内が減圧されたところで、ヒーター4に通電し
、支持体3を所定の温度に加熱する。このときの支持体
の温度は、好しくは50〜150°C5とりIlfまし
くは、50〜100℃とされる。
When the pressure inside the deposition chamber 1 is reduced, the heater 4 is energized to heat the support 3 to a predetermined temperature. The temperature of the support at this time is preferably 50 to 150°C, preferably 50 to 100°C.

このように、本発明の方法に於いては支持体温度が比較
的低温であるので、グロー放電堆積法や熱エネルギー堆
積法に於けるような支持体の高温加熱を必要としないた
めに、このために必要とされるエネルギー消費を節約す
ることができる。
As described above, since the support temperature is relatively low in the method of the present invention, it is not necessary to heat the support to a high temperature as in glow discharge deposition method or thermal energy deposition method. The energy consumption required for this can be saved.

次に、先に挙げたようなa−3i膜形成用の91供給用
原料化合物のガスが貯蔵されている供給源9のバルブ1
4−1.16−1を各々開き、原料ガスを堆積室1内に
送りこむ、これと同時に、バルブ+4−5゜16−5を
各々開き、ハロゲン化合物ガスを供給源29から堆積室
l内に導入する。
Next, the valve 1 of the supply source 9 in which the gas of the raw material compound for 91 supply for forming the a-3i film as mentioned above is stored.
4-1.Open 16-1 to feed the raw material gas into the deposition chamber 1. At the same time, open the valves +4-5 and 16-5 to feed the halogen compound gas from the supply source 29 into the deposition chamber 1. Introduce.

このとき対応するフローメータ15−1.15−5で計
測しながら流量調整を行う0通常、原料ガスの流量はl
O〜10005CCM 、好適には20〜5009CC
Mの範囲が望ましい。
At this time, adjust the flow rate while measuring with the corresponding flow meter 15-1.15-5.Normally, the flow rate of the raw material gas is l.
O~10005CCM, preferably 20~5009CC
A range of M is desirable.

堆積室l内のa−SiM形成用原料ガスの圧力は10−
2−100Torr、好ましくは10−2〜1 丁or
rの範囲に維持されることが望ましい。
The pressure of the raw material gas for a-SiM formation in the deposition chamber 1 is 10-
2-100 Torr, preferably 10-2 to 1 Torr
It is desirable to maintain it within the range of r.

堆積室l内に、 a−Si膜形成用原料ガス及びハロゲ
ン化合物ガスが導入されたところで、光エネルギー発生
装置17を駆動させ、光エネルギーを、これらの混合ガ
スに照射する。
Once the raw material gas for forming the a-Si film and the halogen compound gas have been introduced into the deposition chamber 1, the optical energy generator 17 is driven to irradiate the mixed gas with optical energy.

光エネルギー発生袋W7としては、例えば水銀ランプ、
キセノンランプ、炭酸ガスレーザー、アルゴンイオンレ
ーザ、又はエキシマレ−1を用いることができる。
As the light energy generating bag W7, for example, a mercury lamp,
A xenon lamp, carbon dioxide laser, argon ion laser, or excimer-1 can be used.

光エネルギー発生装置7の駆動により発生する所望の光
エネルギーは堆積室l内に設置された支持体2を照射す
るように不図示の光学系が組みこまれている。
An optical system (not shown) is incorporated so that the desired light energy generated by driving the light energy generating device 7 irradiates the support 2 installed in the deposition chamber 1.

光エネルギーは、堆積室l内に配置された支持体2の近
傍を流れるガスに対して、一様に、またはljQ射部分
を選択的に制御して照射することができる。
The light energy can be applied uniformly to the gas flowing in the vicinity of the support 2 arranged in the deposition chamber 1 or by selectively controlling the ljQ radiation portion.

このようにして、支持体2の表面近傍を流れる混合ガス
には光エネルギーが付与され、a−Silfi形成用原
料化合物の光励起・光分解がより効率よく促進され、生
成物質であるa−9iが支持体上に高い成膜速度で堆積
される0本発明の方法に使用される原料ガスは、先に述
べたようなハロゲン化合物の作用により、光エネルギー
によってより容易に励起、分解されるので、5〜100
 A/sec程度の成膜速度が得られる。 a−Si以
外の分解生成物及び分解しなかった余剰の原料ガス等は
ガス排気管20を通して排出され、一方、新たな原料ガ
ス及びハロゲン化合物ガスがガス導入管17.30を通
して連続的に供給される。
In this way, optical energy is imparted to the mixed gas flowing near the surface of the support 2, and the photoexcitation and photodecomposition of the raw material compound for a-Silfi formation is promoted more efficiently, and the produced substance a-9i is The raw material gas used in the method of the present invention, which is deposited on a support at a high film formation rate, is more easily excited and decomposed by light energy due to the action of the halogen compound as described above. 5-100
A film formation rate of about A/sec can be obtained. Decomposition products other than a-Si and surplus raw material gas that has not been decomposed are discharged through the gas exhaust pipe 20, while new raw material gas and halogen compound gas are continuously supplied through the gas introduction pipe 17.30. Ru.

本発明の方法に於いては、励起エネルギーとして、光エ
ネルギーを使用し、この光エネルギーは、該エネルギー
を照射すべきガスの占める所定の空間に対して常に均一
に照射できるように、すなわち励起エネルギーの不均一
な分布を生じることのないように光学系を用いて制御す
ることが容易であり、また、光エネルギー自身による。
In the method of the present invention, light energy is used as excitation energy, and this light energy is used in such a way that it can always uniformly irradiate a predetermined space occupied by the gas to be irradiated, that is, the excitation energy It is easy to control using an optical system so as not to cause uneven distribution of the light energy itself.

形成過程にある堆積膜へのグロー放電堆積法に於いて認
められたような高出力放電による影響はなく、堆積時の
膜表面の乱れ、堆am内の欠陥を起こすことなく、均一
性を保ちつつ堆積膜の形成が継続される。特に、光エネ
ルギーは、広範囲にわたって均一に照射できるので、大
面積の堆積膜を精度良く、均一に形成することが可能と
なった。
There is no effect of high-power discharge on the deposited film during the formation process, as observed in the glow discharge deposition method, and uniformity is maintained without disturbing the film surface during deposition or causing defects within the deposit. The formation of the deposited film continues. In particular, since light energy can be irradiated uniformly over a wide range, it has become possible to uniformly form a deposited film over a large area with high precision.

また、光エネルギーの照射部分を選択的に制御すること
によって、支持体上の堆積膜形成部分を限定することも
できる。
Further, by selectively controlling the irradiated portion of the light energy, it is possible to limit the portion on the support where the deposited film is formed.

なお、本発明に於ける光エネルギーによる原料カスの励
起、分解には、光エネルギーによって直接原料ガスが励
起、分解される場合のみならず、光エネルギーが原料ガ
ス、または支持体に吸収されて熱エネルギーに変換され
、その熱エネルギーによって原料ガスの励起、分解がも
たらされるような光エネルギーによる派生的効果による
場合をも含むものである。
In addition, in the present invention, the excitation and decomposition of the raw material gas by light energy includes not only the case where the raw material gas is directly excited and decomposed by the light energy, but also the case where the light energy is absorbed by the raw material gas or the support and generates heat. This also includes cases where the light energy is converted into energy and the resulting thermal energy causes excitation and decomposition of the source gas, which is a derivative effect of light energy.

このようにしてa−3i膜が支持体2上に形成され、a
−Siの所望の膜厚が得られたところで、光エネルギー
発生袋M7からの光エネルギーの照射を停止し、更にバ
ルブ+4−1.14−5.IB−1,18−5を閉じ、
原料ガスの供給を停止する。 a−Si膜の膜厚は、形
成されたa−3i膜の用途等に応じて適宜選択される。
In this way, an a-3i film is formed on the support 2, and a
- When the desired film thickness of Si is obtained, the irradiation of light energy from the light energy generating bag M7 is stopped, and further the bulb +4-1.14-5. Close IB-1, 18-5,
Stop supply of raw material gas. The thickness of the a-Si film is appropriately selected depending on the intended use of the formed a-3i film.

次に、不図示の排気装置の駆動により、堆積室内のガス
を排除した後ヒーター4を切り、支持体及び堆積膜が常
温となったところでバルブ31をあけて、堆積室に大気
を徐々に導入し、堆積室内を常圧に戻して、a−Si膜
の形成された支持体を取り出す。
Next, by driving an exhaust device (not shown), the gas in the deposition chamber is expelled, the heater 4 is turned off, and when the support and the deposited film reach room temperature, the valve 31 is opened to gradually introduce atmospheric air into the deposition chamber. Then, the inside of the deposition chamber is returned to normal pressure, and the support on which the a-Si film is formed is taken out.

このようにして本発明の方法により支持体上に形成され
たa−9illは、電気的、光学的特性の均一性、品質
の安定性に優れたa−5illllである。
The a-9ill thus formed on the support by the method of the present invention is the a-5illll which has excellent uniformity of electrical and optical properties and stability of quality.

なお、以上説明した本発明の方法の一例に於いては、減
圧下に於いて堆積膜が形成されたが、これに限定される
ことなく、本発明方法は、所望に応じて、常圧下、加圧
下に於いて行なうこともできる。
In the example of the method of the present invention described above, the deposited film was formed under reduced pressure, but the method is not limited to this, and the method of the present invention may be formed under normal pressure, under normal pressure, as desired. It can also be carried out under pressure.

以上のような本発明の方法によれば、励起エネルギーと
して、光エネルギーを使用し、かっa−Si膜形成用の
原料である環式シラン化合物にハロゲン化合物を混合し
たことにより、環式シラン化合物が光エネルギーによっ
て効率良く容易に励起。
According to the method of the present invention as described above, optical energy is used as excitation energy, and a halogen compound is mixed into the cyclic silane compound, which is a raw material for forming the a-Si film, to form a cyclic silane compound. is efficiently and easily excited by light energy.

分解され、高い成膜速度による低エネルギーレベルでの
a−3i堆積膜の形成がrJ(能となり、電気的、光学
的特性の均一性、品質の安定性に優れたa−5i堆積膜
を形成することができるようになった。
The formation of a-3i deposited films at low energy levels due to the high deposition rate becomes rJ (reactive), forming a-5i deposited films with excellent uniformity of electrical and optical properties and stable quality. Now you can.

従って、本発明の方法に於いては、従来のグロー放電堆
積法や熱エネルギー堆積法には適用できなかった耐熱性
の低い材料からなる支持体をも使用することができ、ま
た支持体の高温加熱に必要とされるエネルギー消費を節
約することが可能となった。更に、光エネルギーは、該
エネルギーを照射すべきガスの占める所定の空間に対し
て常に均一・に照射できるように制御することが容易で
あり、厚膜の堆積膜も精度良く均一に形成でき、特に広
範囲にわたって均一に照射できるので、大面積の堆積膜
をも精度良く均一に形成することが可能となった。
Therefore, in the method of the present invention, supports made of materials with low heat resistance that cannot be applied to conventional glow discharge deposition methods or thermal energy deposition methods can be used, and the high temperature of the supports can also be used. It has become possible to save energy consumption required for heating. Furthermore, it is easy to control the light energy so that the energy is always uniformly irradiated to a predetermined space occupied by the gas to be irradiated, and thick deposited films can be formed uniformly with high precision. In particular, since uniform irradiation can be performed over a wide range, it has become possible to form a deposited film uniformly and accurately even over a large area.

以下、本発明の方法を実施例に従って更に詳細に説明す
る。
Hereinafter, the method of the present invention will be explained in more detail according to examples.

実施例1 第1図に示した装置を使用し、a−3i堆積膜形成用の
原料として先に挙げた環式ミラン化合物No。
Example 1 Using the apparatus shown in FIG. 1, the cyclic milan compound No. mentioned above was used as a raw material for forming the a-3i deposited film.

lを用い、更にハロゲン化合物として、I2を用い、■
型のa−5i (アモルファス−5i)膜の形成全以下
のようにして実施した。 まず、支持体(ポリエチレン
テレフタレート)を堆積室l内の支持台3にセットし、
ガス排気管2oを通して排気装置(不図示)によって堆
積室1内を10” Torrに減圧し、ヒータ=4に通
電して支持体温度を50”0に保ち、次に環式シラン化
合物No、lが充填された原料供給@9のバルブ14−
1. Iθ刊及びI2充填された供給源29のバルブ+
4−5.16−5を各々開き、原料ガスを及びハロゲン
化合物ガスを堆積室l内に導入した。
Using I, and further using I2 as a halogen compound, ■
Formation of an a-5i (amorphous-5i) film was carried out as follows. First, a support (polyethylene terephthalate) is set on the support stand 3 in the deposition chamber l,
The pressure inside the deposition chamber 1 was reduced to 10" Torr by an exhaust device (not shown) through the gas exhaust pipe 2o, and the support temperature was maintained at 50"0 by energizing the heater = 4. Next, cyclic silane compounds No. Valve 14- of raw material supply @9 filled with
1. Iθ and I2 filled source 29 valve +
4-5 and 16-5 were each opened, and the raw material gas and the halogen compound gas were introduced into the deposition chamber 1.

このとき対応するフローメータ15−1.15−5で計
測しながら環式シラン化合物No、lのガス流量を15
03CCM ニ、■2ノカス流量ヲ30SCCHニ59
整シタ。
At this time, while measuring with the corresponding flow meter 15-1.15-5, the gas flow rate of cyclic silane compound No.
03CCM d, ■2 Nokasu flow rate wo 30SCCH d59
Adjustment.

次に、堆積室内の圧力を0.I Torrに保ち、光強
度130mW/crn’のキセノン光を光エネルギー発
生装W7から発生させ支持体に対して垂直に照射して、
厚さ5000A ノI型a−9iMを、 50A/se
c+7)成膜速度で支持体2上に堆積させた。なお、光
エネルギーは、堆積室l内に配置された支持体2全体の
近傍を流れるガスに対して、一様に照射された。このと
き、a−3i以外の分解生成物及び分解しなかった余剰
の原料ガス等はガス排気管20を通して排出され、一方
、新たな原料ガス及びハロゲン化合物ガスがガス導入管
17.30を通して連続的に供給された。
Next, the pressure inside the deposition chamber was reduced to 0. While maintaining the temperature at I Torr, xenon light with a light intensity of 130 mW/crn' was generated from the optical energy generator W7 and irradiated perpendicularly to the support.
Thickness 5000A No.I type a-9iM, 50A/se
c+7) Deposited on support 2 at a deposition rate. Note that the light energy was uniformly applied to the gas flowing in the vicinity of the entire support 2 disposed in the deposition chamber 1. At this time, decomposition products other than a-3i and surplus raw material gas that has not been decomposed are discharged through the gas exhaust pipe 20, while new raw material gas and halogen compound gas are continuously supplied through the gas introduction pipe 17.30. was supplied to.

このようにして本発明の方法により形成された、a−5
i膜の評価は、基板上に形成されたa−3i膜のそれぞ
れの上に、更にクシ型のAIのギャップ電極(長さ 2
50pL、III 5 m m )を形成して、光電流
(光照射強度AMI 、約100mW/crn’)と暗
電流を測定し、その光導電率σp及び光導電率σpと暗
導電率σdとの比(σp/σd)をめることによって行
った。
A-5 thus formed by the method of the present invention
Evaluation of the i film was performed by adding a comb-shaped AI gap electrode (length 2
50 pL, III 5 mm), the photocurrent (light irradiation intensity AMI, about 100 mW/crn') and dark current were measured, and the photoconductivity σp and the difference between the photoconductivity σp and the dark conductivity σd were determined. This was done by calculating the ratio (σp/σd).

なお、ギャップ電極は、」二記のようにして形成された
a−Si膜を蒸着槽に入れて、核種を一度lO鴫Tor
rの真空度まで減圧した後、真空度を10’ Torr
に調整して、蒸着速度20 A /secで、1500
Aの膜厚で、A1をa−9i膜上に蒸着し、これを所定
の形状を41するパターンマスクを用いて、エツチング
してパターンマスクを行って形成した。
Note that the gap electrode is made by placing the a-Si film formed as described in 2.
After reducing the pressure to a vacuum level of r, the vacuum level is reduced to 10' Torr.
1500 at a deposition rate of 20 A/sec.
A1 was deposited on the a-9i film to a thickness of A, and then etched into a predetermined shape using a pattern mask.

得られたσρ値、σp/σd比を表1に示す。The obtained σρ values and σp/σd ratios are shown in Table 1.

実施例2及び3 ハロゲン化合物として、Br2 (実施例2)またはC
l2(実施例3)を用いた以外は、実施例1と同様にし
てI型のa−9i膜の形成を実施し、得られたa−9i
膜を実施例1と同様にして評価した。評価結果を表1に
示す。
Examples 2 and 3 As the halogen compound, Br2 (Example 2) or C
A type I a-9i film was formed in the same manner as in Example 1 except that 12 (Example 3) was used, and the obtained a-9i
The membrane was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

実施例4〜12 a−Si堆積膜形成用の原料及びハロゲン化合物として
、先に挙げた環式シラン化合物No、 2. No。
Examples 4 to 12 As the raw material and halogen compound for forming the a-Si deposited film, the cyclic silane compound No. 2 listed above was used. No.

3、崩、4及びI2、Br2、C12のそれぞれを債々
に組合わせて用い、支持体温度及びハロゲンガス流量を
表1及び表2に示した様に設定した以外は実施例1と同
様にして、a−3i膜を堆積した。得られたa−3i膜
を実施例1と同様にして評価した。評価結果を表1及び
表2に示す。
Example 1 was carried out in the same manner as in Example 1, except that 3, 4, I2, Br2, and C12 were used in combination, and the support temperature and halogen gas flow rate were set as shown in Tables 1 and 2. Then, an a-3i film was deposited. The obtained a-3i film was evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 and 2.

比較例1〜4 a−3i堆積膜形成用の原料として先に挙げた環式シラ
ン化合物No、 1. No、 2、階、3、崩、4を
用い、支持体温度を表1と表2に示したように設定した
こと並びにハロゲン化合物を使用しないこと以外は実施
例工と同様にして、a−Sil!を堆積した。得られた
a−Si膜を実施例1と同様にして評価した。評価結果
を表1及び表2に示す。
Comparative Examples 1 to 4 Cyclic silane compound No. 1 listed above as a raw material for forming the a-3i deposited film. A- Sil! was deposited. The obtained a-Si film was evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 and 2.

以上の実施例1−12及び比較例1〜4の結果をまとめ
ると、成膜速度については表1及び表2の評価結果に示
されたように、同種のa−9i堆積膜形成用原料を用い
たそれぞれ対応する実施例と比較例を比べた場合、ハロ
ゲン化合物を混合した場合は、そうしない場合よりも約
2〜8倍程度成膜速度が大きくなった。ハロゲンの種類
による成膜速度の促進の割合は、一般にCI2 、 B
r2、■、の順に大きい。
To summarize the results of Examples 1-12 and Comparative Examples 1-4 above, the film formation rate was as shown in the evaluation results in Tables 1 and 2. When comparing the corresponding Examples and Comparative Examples, when a halogen compound was mixed, the film formation rate was about 2 to 8 times higher than when it was not mixed. The rate of acceleration of film formation rate depending on the type of halogen is generally CI2, B
The order of magnitude is r2, ■, and so on.

また、本実施例に於いて形成されたa−9i膜は。Furthermore, the a-9i film formed in this example is as follows.

いづれも電気的特性に関しても良好なものであった。All had good electrical characteristics as well.

表 1 攻1 σP/σd: 光導電率と暗導電率の比京2 σ
p: 光導電率(Ω・cm)’表 2 村 σp/σd: 光導電率と暗導電率の比哀2 σp
: 光導電率(Ω・cm)’本3r、t、: 室温
Table 1 Attack 1 σP/σd: Ratio of photoconductivity and dark conductivity 2 σ
p: Photoconductivity (Ω・cm)' Table 2 Village σp/σd: Comparison between photoconductivity and dark conductivity 2 σp
: Photoconductivity (Ω・cm)'3r,t: Room temperature

【図面の簡単な説明】[Brief explanation of drawings]

第1図は5本発明の方法に用いられる堆積膜形成装置の
一例の概略構成図である。 1:堆積室 2:支持体 3:支持台 4:ヒーター 5:導線 8−1.6−2.8−3.8−4 :ガスの流れ7;光
エネルギー発生装置 8:光エネルギー 8.10.1+、12,2!] :ガス供給源13−1
.13−2.13−3.13−4.13−5.18:圧
力メーター14−1.14−2.14−3.14−4.
14−5゜1B−1,18−2,1ft−3,16−4
,16−5,21:バルブ15−1.15−2.15−
3.15−4.15−5: フローメーター17.17
−1.17−2.17−3.17−4,307ガス導入
管20:ガス排気管
FIG. 1 is a schematic diagram of an example of a deposited film forming apparatus used in the method of the present invention. 1: Deposition chamber 2: Support 3: Support table 4: Heater 5: Conductor 8-1.6-2.8-3.8-4: Gas flow 7; Light energy generator 8: Light energy 8.10 .1+, 12, 2! ] :Gas supply source 13-1
.. 13-2.13-3.13-4.13-5.18: Pressure meter 14-1.14-2.14-3.14-4.
14-5゜1B-1, 18-2, 1ft-3, 16-4
, 16-5, 21: Valve 15-1.15-2.15-
3.15-4.15-5: Flow meter 17.17
-1.17-2.17-3.17-4,307 Gas inlet pipe 20: Gas exhaust pipe

Claims (1)

【特許請求の範囲】[Claims] (1)支持体が配置された堆積室内に、下記一般式。 (イ11シ、上記式中nは3.4または5.RはHまた
はSiH3を表わす)で表わされる環式シラン化合物及
びハロゲン化合物の気体状雰囲気を形成し、これら化合
物を光エネルギーを利用して、励起し、分解することに
より、前記支持体−1−にシリコン原子を含む堆積膜を
形成することを特徴とする堆積膜の形成方法。
(1) The following general formula is placed in the deposition chamber in which the support is placed. Form a gaseous atmosphere of a cyclic silane compound and a halogen compound represented by (11), in the above formula, n is 3.4 or 5. A method for forming a deposited film, characterized in that a deposited film containing silicon atoms is formed on the support -1- by excitation and decomposition.
JP7612884A 1984-04-16 1984-04-16 Forming method of deposited film Pending JPS60219730A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7612884A JPS60219730A (en) 1984-04-16 1984-04-16 Forming method of deposited film
US06/722,134 US4683145A (en) 1984-04-16 1985-04-11 Method for forming deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7612884A JPS60219730A (en) 1984-04-16 1984-04-16 Forming method of deposited film

Publications (1)

Publication Number Publication Date
JPS60219730A true JPS60219730A (en) 1985-11-02

Family

ID=13596292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7612884A Pending JPS60219730A (en) 1984-04-16 1984-04-16 Forming method of deposited film

Country Status (1)

Country Link
JP (1) JPS60219730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562206B1 (en) * 1997-06-03 2006-05-25 어플라이드 머티어리얼스, 인코포레이티드 Sequencing of the recipe steps for the optimal low-dielectric constant hdp-cvd processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562206B1 (en) * 1997-06-03 2006-05-25 어플라이드 머티어리얼스, 인코포레이티드 Sequencing of the recipe steps for the optimal low-dielectric constant hdp-cvd processing

Similar Documents

Publication Publication Date Title
JPS60242612A (en) Deposition film forming method
JPH0685391B2 (en) Deposited film formation method
JPS60219730A (en) Forming method of deposited film
JPS60241222A (en) Formation of accumulated film
JPS60219728A (en) Forming method of deposited film
JPS60219732A (en) Forming method of deposited film
JPS60221575A (en) Formation of deposited film
JPS60219734A (en) Formation of deposited film
JPS60219736A (en) Formation of deposited film
JPS60221573A (en) Formation of deposited film
JPS60219726A (en) Forming method of deposited film
JPS60219729A (en) Forming method of deposited film
JPS59216625A (en) Photochemical vapor phase growing method
JPS60219737A (en) Formation of deposited film
JPS60219731A (en) Forming method of deposited film
JPH06199595A (en) Method for synthesizing diamond
JPH0670970B2 (en) Deposited film formation method
JPS58119334A (en) Apparatus for vapor deposition by photochemical reaction
JPH059516B2 (en)
JPH0760792B2 (en) Method of forming deposited film
JPS6138268B2 (en)
JPS60219727A (en) Forming method of deposited film
JPS60245129A (en) Forming method of accumulated film
JPS60219733A (en) Forming method of deposited film
JPS60219735A (en) Formation of deposited film