JPS60242612A - Deposition film forming method - Google Patents

Deposition film forming method

Info

Publication number
JPS60242612A
JPS60242612A JP59098420A JP9842084A JPS60242612A JP S60242612 A JPS60242612 A JP S60242612A JP 59098420 A JP59098420 A JP 59098420A JP 9842084 A JP9842084 A JP 9842084A JP S60242612 A JPS60242612 A JP S60242612A
Authority
JP
Japan
Prior art keywords
film
gas
deposition film
support
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59098420A
Other languages
Japanese (ja)
Other versions
JPH0712024B2 (en
Inventor
Yukio Nishimura
征生 西村
Hiroshi Matsuda
宏 松田
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Takeshi Eguchi
健 江口
Takashi Katagiri
孝志 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59098420A priority Critical patent/JPH0712024B2/en
Publication of JPS60242612A publication Critical patent/JPS60242612A/en
Publication of JPH0712024B2 publication Critical patent/JPH0712024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable to form a thick deposition film of large area by a method wherein exciting energy is obtained using a specific annular silane compound, and a deposition film containing silicon atoms is formed using low level heat energy. CONSTITUTION:Pertaining to a method wherein the excitation and decompositional condition of row gas are formed by giving heat energy and, especially, an amorphous silicon (a-Si) deposition film is formed on a specific supporting member, an a-Si deposition film can be formed with low energy level and high film- forming speed using the annular silane compound in the mixed condition with a halogenide as the raw gas to be decomposed by heat energy, which is indicated by a general formula (provided that the n in the above-mentioned formula indicates 3, 4 or 5, and R indicates H or SiH3). Also, the a-Si deposition film which is excellent in uniformity of optical characteristics and stability in quality can be formed. Said deposition film is formed inside a deposition chamber 1.

Description

【発明の詳細な説明】 本発明は、励起エネルギーとして熱を利用し、光導電膜
、半導体あるいは絶縁性の膜を所定の支持体上に形成さ
せる堆積膜形成方法関し、更に詳しくは、熱エネルギー
の付与により、原料ガスの励起、分解状態を作ゆ、所定
の支持体上に、%ニ、アモルノアスシリコン(以下a−
8iと略す)の堆積膜を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a deposited film forming method for forming a photoconductive film, a semiconductor film, or an insulating film on a predetermined support using heat as excitation energy. By applying amorphous silicon (hereinafter referred to as a-), amorphous silicon (hereinafter a-
8i).

従来、 a−8iの堆積膜形成方法としては、S i)
I、または5t2H6を原料として用いたグロー放電堆
積法及び熱エネルギー堆積法が知られている。即ち、こ
れらの堆積法は、原料ガスとしてのS iH,または5
i2H,を電気エネルギーや熱エネルギー(励起エネル
ギー)により分解して支持体上にa−8iの堆積膜を形
成させる方法であり、形成された堆積膜は、光導電膜、
半導体あるいは絶縁性の膜等として種々の目的に利用さ
れている。
Conventionally, as a deposited film forming method for a-8i, Si)
A glow discharge deposition method and a thermal energy deposition method using I or 5t2H6 as a raw material are known. That is, these deposition methods use SiH or 5
i2H, is decomposed by electrical energy or thermal energy (excitation energy) to form a deposited film of a-8i on a support, and the deposited film formed is a photoconductive film,
It is used for various purposes as a semiconductor or insulating film.

しかしながら、高出力放電下で堆積膜の形成が行なわれ
るグロー放電堆積法に於いては、均一な放電の分布状態
が常に得られないなど再現性のある安定した条件の制御
が難しく、更に膜形成中忙於ける膜への高出力放電の影
響が大きく、形成された膜の電気的、光学的特性の均一
性、品質の安定性の確保が難しく、堆積時の膜表面の乱
れ、堆積膜内の欠陥が生じやすい。特に、厚膜の堆積膜
を電気的、光学的特性に於いて均一にこの方法忙より形
成することは非常に困難であった。
However, in the glow discharge deposition method, in which the deposited film is formed under high-power discharge, it is difficult to control reproducible and stable conditions, such as not always achieving a uniform discharge distribution state, and furthermore, the film formation High-power discharge has a large effect on the film during production, making it difficult to ensure the uniformity of electrical and optical properties and quality stability of the formed film, resulting in disturbances on the film surface during deposition and damage to the inside of the deposited film. Prone to defects. In particular, it has been extremely difficult to form a thick deposited film with uniform electrical and optical properties using this method.

一方、熱エネルギー堆積法においても、通常400℃以
上の高温が必要となることから使用される支持体材料が
限定され、加えて所望のa−8i中の有用な結合水素原
子が離脱してしまう確率が増加するため、所望の特性が
得難い。
On the other hand, the thermal energy deposition method also requires a high temperature of 400°C or higher, which limits the support materials that can be used, and in addition, useful bonded hydrogen atoms in the desired a-8i are separated. Since the probability increases, it is difficult to obtain desired characteristics.

そこで、これらの問題点を解決する1つの方法として、
 5tn4.5i2u、以外のシリコン化合物を原料と
するa−9iの低熱量の熱エネルギー堆積法(熱CVD
)が注目される。
Therefore, one way to solve these problems is to
A-9i low heat thermal energy deposition method (thermal CVD) using silicon compounds other than 5tn4.5i2u as raw material
) is attracting attention.

この低熱量の熱エネルギー堆積法は、励起エネルギーと
しての前述の方法に於けるグロー放電や高温加熱の代わ
りに低温加熱を用いるものであり、a−8iの堆積膜の
作製を低エネルギーレベルで実施できるようにするもの
である。また、低温なほど原料ガスを均一に加温するこ
とが容易であり、前述の堆積法と比べて低いエネルギー
消費で、均一性を保持した高品質の成膜を行なうことが
でき、また製造条件の制御が容易で安定した再現性が得
られ、更に支持体を高温に加熱する必要がなく、支持体
に対する選択性も広がる利点もある。
This low-calorie thermal energy deposition method uses low-temperature heating instead of glow discharge or high-temperature heating in the above-mentioned methods as excitation energy, and allows the production of a-8i deposited films at low energy levels. It is something that makes it possible. In addition, the lower the temperature, the easier it is to uniformly heat the raw material gas, making it possible to form a high-quality film that maintains uniformity with lower energy consumption than the above-mentioned deposition method. It is easy to control and stable reproducibility can be obtained, and there is also the advantage that there is no need to heat the support to a high temperature and that selectivity to the support is widened.

本発明は上記した点に鑑みなされたものであシ、励起エ
ネルギーとして、低レベルの熱エネルギーを用いて高品
質を維持しつつ高い成膜速度でシリコン原子を含む堆積
膜を低エネルギーレベルで形成することのできる熱エネ
ルギー堆積法を提供すること忙ある。
The present invention has been made in view of the above points, and uses low-level thermal energy as excitation energy to form a deposited film containing silicon atoms at a high deposition rate while maintaining high quality at a low energy level. We are currently working on providing thermal energy deposition methods that can be used.

本発明の他の目的は、大面積、厚膜の堆積膜の形成にあ
っても、電気的、光学的特性の均一性、品質の安定性を
確保した高品質の堆積膜を形成することのできる方法を
提供することにある。
Another object of the present invention is to form a high-quality deposited film that ensures uniformity of electrical and optical characteristics and stability of quality even in the formation of a large-area, thick deposited film. The goal is to provide a method that can be used.

本発明は、鋭意検討の結果、これらの目的が、熱エネル
ギーにより分解される原料ガスとして、下記一般式; (但し、上記式中nは3.4または5、RはHまたはS
 iH3を表わす)で表わされる環式シラン化合物をハ
ロゲン化合物との混合状態で用いることによって達成さ
れることを見い出し完成さすなわち、本発明の堆積膜形
邸は、支持体が配置された堆積室内に、下記一般式;(
但し、上記式中nは3,4または5.RはHまたfl 
81H3を表わす)で表わされる環式シラン化合物及び
ハロゲン化合物の気体状雰囲気を形成し、これら化合物
を熱エネルギーを利用して。
As a result of extensive studies, the present invention has achieved these objectives by using the following general formula as a raw material gas decomposed by thermal energy: (However, in the above formula, n is 3.4 or 5, R is H or
The present inventors have discovered that this can be achieved by using a cyclic silane compound represented by (iH3) in a mixed state with a halogen compound. , the following general formula; (
However, in the above formula, n is 3, 4 or 5. R is H or fl
A gaseous atmosphere of a cyclic silane compound (representing 81H3) and a halogen compound is formed, and these compounds are heated using thermal energy.

励起し、分解することにより、前記支持体上にシリコン
原子を含む堆積膜を形成することを特徴とする。
A deposited film containing silicon atoms is formed on the support by excitation and decomposition.

本発明の方法に於いて使用されるa−8i堆積膜形成用
の原料は、下記一般式; (但し、上記式中nは3.4tたは5、RはHまたはS
 iH3を表わす)で表わされる環式シラン化合物であ
る。
The raw material for forming the a-8i deposited film used in the method of the present invention has the following general formula: (However, in the above formula, n is 3.4t or 5, R is H or S
It is a cyclic silane compound represented by iH3).

このような環式シラン化合物として以下のようなものを
挙げることができる。
Examples of such cyclic silane compounds include the following.

/f61 屑2 ’ A3 /VL4 45 しかしながら、このような環式シラン化合物は、励起エ
ネルギーとして熱エネルギーを用いた場合、効率良い、
励起、分解が得られず、良好な成膜速度が得られない。
/f61 Scrap 2' A3 /VL4 45 However, such cyclic silane compounds are efficient when thermal energy is used as excitation energy.
Excitation and decomposition cannot be obtained, and a good film formation rate cannot be obtained.

千とで本発明の方法に於いては、熱エネルギ−による上
記の環式シラン化合物の励起1分解をより効率良く促進
させるために、該環式シラン化合物にハロゲン化合物が
混合される。
In the method of the present invention, a halogen compound is mixed with the cyclic silane compound in order to more efficiently promote the excitation decomposition of the cyclic silane compound by thermal energy.

本発明の方法に於いて上記環式シラン化合物に混合され
るハロゲン化合物は、ハロゲン原子良く促進させること
のできるものである。このようなハロゲン化合物として
は、C’2 * Br2 eI、 、 F、等のハロゲ
ンガス等を挙げることができる。
The halogen compound mixed with the cyclic silane compound in the method of the present invention is one that can promote halogen atoms well. Examples of such halogen compounds include halogen gases such as C'2*Br2 eI, , F, and the like.

本発明に方法に於ける前記a−8i膜形成用原料化合物
に混合されるハロゲン化合物の割合いは、使用されるa
−8i膜膜形成用原料台物及びハロゲン化合物の檻類等
和よって異なるが、0.01V01X〜65VOIN、
好ましくは0.IVo1%〜5QVo1%の範囲内で使
用される。
In the method of the present invention, the proportion of the halogen compound mixed in the raw material compound for forming the a-8i film or the amount of a used
0.01V01X to 65VOIN, although it varies depending on the raw materials for forming the 8i film and the cage of the halogen compound.
Preferably 0. It is used within the range of IVo1% to 5QVo1%.

なお、前記一般式で示された環式シラン化合物でnが6
以上のものは、ハロゲン化合物との混合状態に於いて、
その分解が容易で低エネルギー励起により所望の堆積膜
が得られることが期待されるが、予想に反し、光導電膜
、半導体膜として品質が劣り、その上、膜の表面での欠
陥及び堆積膜内での乱れが多く不均一な膜となることが
判明した。従って、このような環式シラン化合物を使用
すれば、堆積膜の製造のコントロールが困離である。ま
た、上記式中のnが2の場合も環式シラン化合物として
考慮されるが、この化合物は不安定であるため現状では
単離することが難かしい。
In addition, in the cyclic silane compound represented by the above general formula, n is 6.
The above substances, in a mixed state with a halogen compound,
It is expected that the desired deposited film can be obtained by easy decomposition and low-energy excitation, but contrary to expectations, the quality of the photoconductive film and semiconductor film is poor, and in addition, defects on the surface of the film and the deposited film It was found that there was a lot of turbulence within the film, resulting in an uneven film. Therefore, if such a cyclic silane compound is used, it is difficult to control the production of the deposited film. Further, when n in the above formula is 2, it is also considered as a cyclic silane compound, but this compound is unstable and therefore difficult to isolate at present.

従って、上記式中のnは、3.44た#−i5であるこ
とが好ましい。
Therefore, n in the above formula is preferably 3.44 #-i5.

次に、前記堆積室内に導入された前記シリコン化合物ガ
スに対する熱エネルギの付与はジュール熱発生要素、高
周波加熱手段等を用いて行われる。
Next, thermal energy is applied to the silicon compound gas introduced into the deposition chamber using a Joule heat generating element, high frequency heating means, or the like.

ジュール熱発生要素としては電熱線、電熱板等のヒータ
を、また高周波加熱手段としては誘導加熱、誘電加熱等
を挙げることができる。ジュール熱発生要素による実施
態様につい″″″″税明ばヒータを支持体の裏面に接触
ないし近接させて支持体表面を伝導加熱し、表面近傍の
原料ガスを熱励起、熱分解せしめ、分解生成物を支持体
表面に堆積させる。
Examples of the Joule heat generating element include heaters such as heating wires and heating plates, and examples of the high frequency heating means include induction heating and dielectric heating. Regarding the embodiment using the Joule heat generating element, the heater is brought into contact with or close to the back surface of the support to conduction heat the support surface, thermally excite the raw material gas near the surface, thermally decompose it, and generate decomposition products. Deposit the material onto the surface of the support.

他に、ヒータを支持体の表面近傍に置くことも可能であ
る。
Alternatively, it is also possible to place the heater close to the surface of the support.

以下、第1図を参照しつつ本発明の方法を詳細に説明す
る。
Hereinafter, the method of the present invention will be explained in detail with reference to FIG.

第1図は支持体上に、a−8iからなる光導電膜、半導
体膜、又は絶縁体膜等の機能膜を形成するだめの堆積膜
形成装置の概略構成図である。
FIG. 1 is a schematic diagram of a deposited film forming apparatus for forming a functional film such as a photoconductive film, a semiconductor film, or an insulating film made of a-8i on a support.

堆積膜の形成は堆積室1の内部で行なわれる。Formation of the deposited film takes place inside the deposition chamber 1.

堆積室1の内部に置かれる3は支持体の配置される支持
台である。
Reference numeral 3 placed inside the deposition chamber 1 is a support base on which a support is placed.

4は支持体加熱用のヒーターであシ、導線5によって該
ヒーター4に給電される。堆積室1内にa−8tの原料
ガス、及び必要に応じて使用されるキャリアガス等のガ
スを導入するだめのガス導入管内が堆積室1に連結され
ている。
Reference numeral 4 denotes a heater for heating the support, and power is supplied to the heater 4 through a conductor 5. A gas introduction pipe for introducing a-8t raw material gas and gases such as carrier gas used as needed into the deposition chamber 1 is connected to the deposition chamber 1 .

このガス導入管17の他端は上記原料ガス及び必要に応
じて使用されるキャリアガス等のガスを供給するだめの
ガス供給源9+10+11t12に連結されている。ガ
ス供給源9s10゜11t12から堆積膜1に向って流
出する各々のガスの流喰を計測するため、対応するフロ
ーメーター15−1.15−2.15−3.15−4 
が対応する分枝したガス導入管17−1.17−2.1
7−3.17−4の途中に設けられる。各々のフローメ
ーターの前後にはバルブ14−1.14−2.14−3
.14−4.16−1.16−2.16−3.16−4
が設けられ、これらのバルブを調節することによ)、所
定の流量のガスを供給しうる。1:3−1゜13−2.
13−3.13−4は圧力メータであシ、対応するフロ
ーメータの高圧側の圧力を計測するためのものである。
The other end of this gas introduction pipe 17 is connected to a gas supply source 9+10+11t12 for supplying the raw material gas and gases such as carrier gas used as necessary. In order to measure the flow of each gas flowing out toward the deposited film 1 from the gas supply source 9s10°11t12, a corresponding flow meter 15-1.15-2.15-3.15-4 is used.
Branched gas introduction pipe 17-1.17-2.1 corresponding to
It is provided in the middle of 7-3.17-4. Valve 14-1.14-2.14-3 before and after each flow meter
.. 14-4.16-1.16-2.16-3.16-4
are provided and by adjusting these valves) a predetermined flow rate of gas can be supplied. 1:3-1゜13-2.
13-3 and 13-4 are pressure meters, which are used to measure the pressure on the high pressure side of the corresponding flow meter.

フローメータを通過した各々のガスは混合されて、不図
示の排気装置によって減圧下にある堆積室1内へ導入さ
れる。なお、圧力メータ18は混合ガスの場合にはその
総圧が計測される。
The gases that have passed through the flow meters are mixed and introduced into the deposition chamber 1 under reduced pressure by an exhaust device (not shown). In addition, the pressure meter 18 measures the total pressure in the case of mixed gas.

堆積室1内を減圧にしたり、導入されたガスを排気する
ために、ガス排気管20が堆積室1に連結されている。
A gas exhaust pipe 20 is connected to the deposition chamber 1 in order to reduce the pressure inside the deposition chamber 1 and to exhaust the introduced gas.

ガス排気管の他端は不図示の排気装置に連結される。The other end of the gas exhaust pipe is connected to an exhaust device (not shown).

本発明に於いて、ガスの供給源9.10.11゜12の
個数は適宜、増減されうるものである。
In the present invention, the number of gas supply sources 9, 10, 11, 12 can be increased or decreased as appropriate.

つまシ、単一の原料ガスを使用する場合にはガス供給源
は1つで足りる。しかしながら、2種の原料ガスを混合
して使用する場合、単一の原料ガスに(触媒ガスあるい
はキャリアーガス等)を混合する場合には2つ以上必要
である。
However, if a single raw material gas is used, one gas supply source is sufficient. However, when two types of raw material gases are mixed and used, or when a single raw material gas (catalyst gas, carrier gas, etc.) is mixed, two or more are required.

なお、原料の中には常温で気体にならず、液体のままの
ものもあるので、液体原料を用いる場合には、不図示の
気化装置が設置される。気化装置には加熱沸騰を利用す
るもの、液体原料中にキャリアーガスを通過させるもの
等がある。
Note that some raw materials do not turn into gas at room temperature and remain liquid, so when using liquid raw materials, a vaporizer (not shown) is installed. There are two types of vaporizers: those that utilize heating and boiling, and those that pass a carrier gas through a liquid raw material.

気化によって得られた原料ガスはフローメータを通って
堆積室1内に導入される。
The source gas obtained by vaporization is introduced into the deposition chamber 1 through a flow meter.

このような第1図に示した装置を使用して本発明の方法
により以下のようにしてa−8tからなる堆積膜を形成
することができる。
Using the apparatus shown in FIG. 1 and the method of the present invention, a deposited film consisting of a-8t can be formed in the following manner.

まず、堆積室1内の支持台3上に支持体2をセットする
First, the support body 2 is set on the support stand 3 in the deposition chamber 1.

支持体2としては、形成された堆積膜の用途等に応じて
種々のものが使用される。該支持体を形成できる材料と
しては、導電性支持体には、例えばN1CLステンレス
、AI、Crs Mob Au、 Nb、Ta、 V、
 Ti、 Pt、 Pd等の金属またはこれらの合金、
半導電性支持体には、Sts Ge 等の半導体、また
電気絶縁性支持体には、ポリエステル、ポリエチレン、
ポリカーボネート1、セルローズアセテート、ポリプロ
ピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリス
チレン、ポリアミド等の合成樹脂、ガラス、セラミック
ス、紙等を挙げることができる。支持体2の形状及び大
きさは、その使用する用途に応じて、適宜決定される。
Various types of supports 2 can be used depending on the purpose of the deposited film formed. Examples of materials that can form the support include N1CL stainless steel, AI, Crs Mob Au, Nb, Ta, V,
Metals such as Ti, Pt, Pd or alloys thereof,
Semiconducting supports include semiconductors such as Sts Ge, and electrically insulating supports include polyester, polyethylene,
Examples include synthetic resins such as polycarbonate 1, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, and polyamide, glass, ceramics, and paper. The shape and size of the support 2 are determined as appropriate depending on the intended use.

特に、本発明の方法に於いては、支持体の温度を150
〜300℃程度と比較的低い温度とすることができるの
で、上記の支持体を形成する材料の中でも、従来のグロ
ー放電堆積法や従来の熱エネルギー堆積法には適用でき
力かった耐熱性の低い材料からなる支持体をも使用する
ことが可能となった。
In particular, in the method of the present invention, the temperature of the support is 150°C.
Since the temperature can be relatively low at about ~300°C, among the materials for forming the support mentioned above, it is possible to use materials with high heat resistance that cannot be applied to conventional glow discharge deposition methods or conventional thermal energy deposition methods. It is now possible to use supports made of low material.

このように支持体2を堆積室1内の支持台3上に置いた
後に、ガス排気管20を通して不図示の排気装置により
堆積室内の空気を排気し減圧にする。減圧下の堆積室内
の気圧は5 X 10’Torr以下、好適には10 
Torr以下が望ましい。
After the support 2 is placed on the support stand 3 in the deposition chamber 1 in this manner, the air in the deposition chamber is exhausted through the gas exhaust pipe 20 by an exhaust device (not shown) to reduce the pressure. The atmospheric pressure in the deposition chamber under reduced pressure is less than 5 x 10' Torr, preferably 10
Torr or less is desirable.

熱エネルギ付与・手段として、電熱ヒータ4を用いる場
合には堆積室1内が減圧されたところで、ヒーター4に
通電し、支持体3を所定の温度に加熱する。このときの
支持体の温度は、150〜300℃、好ましくは、20
0〜250℃とされる。
When an electric heater 4 is used as a means for applying thermal energy, once the pressure inside the deposition chamber 1 has been reduced, the heater 4 is energized to heat the support 3 to a predetermined temperature. The temperature of the support at this time is 150 to 300°C, preferably 20°C.
The temperature is 0 to 250°C.

このように、本発明の方法に於いては支持体温度が比較
的低温であるので、グロー放電堆積法や5iH4H5i
tHaを原料として用いた熱エネルギー堆積法に於ける
ような支持体の高温加熱を必要としないために、このだ
めに必要とされるエネルギー消費を節約することができ
る。
As described above, since the support temperature is relatively low in the method of the present invention, it is possible to use the glow discharge deposition method or the 5iH4H5i method.
Since high temperature heating of the support is not required as in thermal energy deposition methods using tHa as a raw material, the energy consumption required for this process can be saved.

次に、先に挙げたよりなa−8i膜形成用の原料化合物
の(1種以上の)ガスが貯蔵されている供給源9のバル
ブ14−1,16−1を各々開き、原料ガスを堆積室1
内に送りこむ。
Next, the valves 14-1 and 16-1 of the supply source 9 storing the gases of the raw material compound (one or more) for forming the a-8i film mentioned above are opened, and the raw material gas is deposited. Room 1
Send it inside.

このとき対応するフローメータ15−1で計測しながら
流量調整を行う。通常、原料ガスの流量は10〜100
08CCM、好適には20〜5o。
At this time, the flow rate is adjusted while being measured by the corresponding flow meter 15-1. Usually, the flow rate of the raw material gas is 10 to 100
08CCM, preferably 20-5o.

SCCMの範囲が望ましい。SCCM range is preferred.

堆積室l内の原料ガスの圧力は1o−2〜1o。The pressure of the source gas in the deposition chamber 1 is 1o-2 to 1o.

Torr、好ましくは10 〜I Torrの範囲に維
持されることが望ましい。
Torr, preferably maintained in the range of 10 to I Torr.

このようにして、支持体2の表面近傍を流れる原料ガス
には熱エネルギーが付与され、熱励起・熱分解か促され
、生成物質であるa−8iが支持体上に堆積される。
In this way, thermal energy is imparted to the raw material gas flowing near the surface of the support 2, promoting thermal excitation and thermal decomposition, and a-8i, which is a product, is deposited on the support.

本発明の方法に使用される原料ガスは、先に述べたよう
に、熱エネルギーによって容易に励起、分解するので、
5〜50λ/see程度の高い成膜速度が得られる。a
−’St以外の分解生成物及び分解しなかった余剰の原
料ガス等はガス排気管20を通して排出され、一方、新
たな原料ガスがガス導入管17を通して連続的に供給さ
れる。
As mentioned above, the raw material gas used in the method of the present invention is easily excited and decomposed by thermal energy.
A high film forming rate of about 5 to 50 λ/see can be obtained. a
Decomposition products other than -'St and undecomposed surplus raw material gas are discharged through the gas exhaust pipe 20, while new raw material gas is continuously supplied through the gas introduction pipe 17.

本発明の方法に於いて祉励起エネルギーとして熱エネル
ギーを使用するが、高熱意ではなく低熱量の付与そある
ので、該エネルギーを付与すべき原料ガスの占める所定
の空間に対して常に均一に付与できる。
In the method of the present invention, thermal energy is used as excitation energy, but since it is applied with a low amount of heat rather than with high heat, the energy is always applied uniformly to a predetermined space occupied by the raw material gas to be applied. can.

形波過程にある堆積膜へのグロー放電堆積法に於いて認
められたような高出力放[による影響はなく、堆積時で
膜表面の乱れ、堆積膜内の欠陥を起こすことなく、均一
性を保ちつつ堆積膜の形成が継続される。
There is no effect of high-power radiation on the deposited film during the waveform process, as observed in the glow discharge deposition method. The formation of the deposited film continues while maintaining the temperature.

このようにしてa−8i膜が支持体2上に形成され、a
 −8iの所望の膜厚が得られたところで、ヒータ4か
らの熱エネルギーの付与を停止し、更[パルプ14−1
.16−1を閉じ、原料ガスの供給を停止する。a −
S i膜の膜厚は、形成されたa−8i膜の用途等に応
じて適宜選択される。
In this way, an a-8i film is formed on the support 2, and a
When the desired film thickness of -8i is obtained, the application of thermal energy from the heater 4 is stopped, and further [pulp 14-1
.. 16-1 is closed and the supply of raw material gas is stopped. a-
The thickness of the Si film is appropriately selected depending on the intended use of the formed a-8i film.

次に、不図示の排気装置の駆動により、堆積室内のガス
を排除した後、支持体及び堆積膜が常温となったところ
でパルプ21をあけて、堆積室に大気を徐々に導入し、
堆積室内を常圧に戻して、a−8i膜の形成された支持
体を取シ出す。
Next, after the gas in the deposition chamber is removed by driving an exhaust device (not shown), the pulp 21 is opened when the support and the deposited film have reached room temperature, and atmospheric air is gradually introduced into the deposition chamber.
The inside of the deposition chamber is returned to normal pressure, and the support on which the a-8i film is formed is taken out.

このようにして本発明の方法により支持体上に形成され
たa−8f膜は、電気的、光学的特性の均一性、品質の
安定性に優れたa−8i膜である。
The a-8f film thus formed on the support by the method of the present invention is an a-8i film with excellent uniformity of electrical and optical properties and stability of quality.

なお、以上説明した本発明の方法の一例に於いては、減
圧下に於いてM!私膜が形成されたが、これに限定され
ることなく、本発明方法は、所望に応じて、常圧下、加
圧下に於いて行なうこともできる。
In addition, in one example of the method of the present invention explained above, M! Although a private membrane was formed, the method of the present invention is not limited thereto, and the method of the present invention can also be carried out under normal pressure or under pressurized pressure, as desired.

以上のような本発明の方法によれば、励起エネルギーと
して、低熱量の熱エネルギーを使用し、かつ該熱エネル
ギーによって容易に励起、分解する原料ガスを用いたこ
とにより、高い成速度による低エネルギーレベルでのa
−8im権膜の形成が可能となり、電気的、光学的特性
の均一性、品質の安定性に優れたa−8i堆稙膜全形戊
することができるようになった。従つて、本発明の方法
に於いては、従来のゲロー放電、堆積法や従来の熱エネ
ルギー堆積法、には適用できなかった耐熱性の低い材料
からなる支持体をも使用することができ、また支持体の
高温加熱に必要とされるエネルギー消費を節約すること
か可能となった。
According to the method of the present invention as described above, thermal energy with a low calorific value is used as excitation energy, and a raw material gas that is easily excited and decomposed by the thermal energy is used. a at level
It has become possible to form a -8im film, and it has become possible to form a whole a-8i deposited film with excellent uniformity of electrical and optical properties and stability of quality. Therefore, in the method of the present invention, supports made of materials with low heat resistance that cannot be applied to conventional gelatin discharge, deposition methods, or conventional thermal energy deposition methods can also be used. It also became possible to save energy consumption required for high temperature heating of the support.

以下、本発明の方法を実施例に従って更に詳細に説明す
る。
Hereinafter, the method of the present invention will be explained in more detail according to examples.

実施例1 第1図に示した装置を使用し、a−8i堆積膜形成用の
原料として先に挙げた珈式シラン化合物座1を用い、更
にハロゲン化合物として、■、を用い、a−8i(アモ
ルファス−5i)膜の形成を以Fのようにして実施した
。まず、支持体(ポリエチレンテレフタレート)を堆積
室1内の支持台3にセントし、ガス排気管20全通して
排気装置(不図示)によって堆積室1内を10 ’l:
’orr VC減圧し、ヒータ4に通電して支持f4一
温度を225°CK保ち、次に環式シラ/化合物N1が
充填された原料供給漁9のバルブ14−1.16−1及
び工、充填された供給源29のパルプ14.−5 、1
6−5を各々開き、原料ガス?及びハロゲン化合物ガス
を堆積室1内TIc導入した。
Example 1 Using the apparatus shown in FIG. 1, using the above-mentioned silane compound 1 as the raw material for forming the a-8i deposited film, and using 2 as the halogen compound, the a-8i (Amorphous-5i) The film was formed as described in F below. First, a support (polyethylene terephthalate) is placed on the support stand 3 in the deposition chamber 1, and the entire gas exhaust pipe 20 is passed through the deposition chamber 1 using an exhaust device (not shown) to pump the inside of the deposition chamber 1 for 10'l.
'orr VC pressure is reduced, the heater 4 is energized to maintain the support f4 temperature at 225°C, and then the valve 14-1.16-1 of the raw material supply tank 9 filled with cyclic sila/compound N1 and Pulp 14 in filled source 29. -5, 1
Open each 6-5 and check the raw material gas? and a halogen compound gas were introduced into the deposition chamber 1 TIc.

このとき対応するフローメータ15−1゜15−5で計
測しながら環式シラン化合物總1のガス流量を1508
CCMに、■、のガス流量を308CCMに調整した。
At this time, while measuring with the corresponding flow meters 15-1 and 15-5, the gas flow rate of the cyclic silane compound 1 was measured at 1508.
For CCM, the gas flow rate of (■) was adjusted to 308 CCM.

次に、堆積室内の圧力を0.1Torrに保ち、厚さ5
oooAのa−8i膜を、281 /secの成膜速度
で支持体2上に堆積させた。なお、熱エネルギーは、堆
積室1内に配置された支持体2全体の近傍を流れるガス
に対して、一様に付与された。このとき、a −8i以
外の分解生成物及び分解しなかった余剰の原料ガス等は
ガス排気管20を通して排出され、一方、新たな原料ガ
ス及びハロゲン化合物ガスがガス導入管17.30を通
して連続的に供給された。
Next, the pressure inside the deposition chamber was kept at 0.1 Torr, and the thickness was 5
An a-8i film of oooA was deposited on support 2 at a deposition rate of 281/sec. Note that the thermal energy was uniformly applied to the gas flowing near the entire support 2 disposed in the deposition chamber 1. At this time, decomposition products other than a-8i and surplus raw material gas that has not been decomposed are discharged through the gas exhaust pipe 20, while new raw material gas and halogen compound gas are continuously supplied through the gas introduction pipe 17.30. was supplied to.

このようにして本発明の方法により形成された、a−8
i膜の評価は、基板上に形成されたa −S i膜のそ
れぞれの上に、更にクシ型のAtのギャップ電極(長さ
250μ、巾5耶)を形成、して、光電流(光照射強度
AMI;約100m W / cf )と暗ilE流を
測定し、その光導電率σp及び光導電率σpと暗導電率
σdとの比(σp/σd)をめることによって行った。
A-8 thus formed by the method of the present invention
For evaluation of the i-film, a comb-shaped At gap electrode (length 250 μm, width 5 yen) was further formed on each of the a-Si films formed on the substrate, and a photocurrent (photocurrent) was formed. This was done by measuring the irradiation intensity (AMI; about 100 mW/cf) and the dark ILE current, and calculating the photoconductivity σp and the ratio of the photoconductivity σp to the dark conductivity σd (σp/σd).

なお、ギャップ電極は、上記めようにして形成されたa
−8i膜を蒸着槽に入れて、該檜を1度1O−Torr
の真空度まで減圧した後、5 真空度を10 Torrに調整して、蒸着速度20 X
 / secで、tsooXの膜厚で AIをa−8i
膜上に蒸着し、これを所定の形状を有するパターンマス
クを用いて、エンチングしてバター/ニンゲを行って形
成した。
Note that the gap electrode is a
-8i film was placed in a vapor deposition tank, and the cypress was heated to 1O-Torr once.
After reducing the pressure to a vacuum level of 5, the vacuum level was adjusted to 10 Torr, and the deposition rate was increased to 20
/sec, with a film thickness of tsooX, AI is a-8i
It was deposited on a film, and then etched using a pattern mask having a predetermined shape to form a butter/layer.

得られたσp値、σp/σd比を表1に示す。The obtained σp values and σp/σd ratios are shown in Table 1.

実施例2及び3 へ四ケ/化合物としてBr、(実施例2)またII′i
CI、(実施例3)を用いた以外は、実施例Iと同様に
してI型のa−8i膜の形成を実施し、得られたa −
S i膜を実施例1と同様にして評価した。評価結果を
表1に示す。
Examples 2 and 3 Br as a compound/(Example 2) and II'i
CI, (Example 3) was used to form a type I a-8i film in the same manner as in Example I, and the obtained a-8i film was formed in the same manner as in Example I.
The Si film was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

実fA&N4へ・12 a−81堆積膜形成用の原料及びハ”ロゲン化合物とり
、て、先に挙げた環式シラン化合物1’l!12゜i3
 、l’i4及び12.Br2 、 ct、oそれぞれ
を個々に組合わせて用い、ハ四ゲンガス流量を表1及び
表2に示した様に設定した以外は実施例1と同様にして
、a−8!膜を堆積した。得られたa−8i膜を実施例
1と同様にして評価した。
To actual fA&N4・12 a-81 Take the raw materials and halogen compounds for forming the deposited film, and add the cyclic silane compound 1'l!12゜i3 mentioned above.
, l'i4 and 12. A-8! was carried out in the same manner as in Example 1 except that Br2, ct, and o were each used in combination and the hydrogen gas flow rate was set as shown in Tables 1 and 2. A film was deposited. The obtained a-8i film was evaluated in the same manner as in Example 1.

評価結果を表1及び表2に示す。The evaluation results are shown in Tables 1 and 2.

比較例1〜4 a −S i堆積膜形成用の原料として先に挙げた環式
シラン化合物N11l 、l’111−12 、陽3.
N4を用い、ハpゲン化合物を使用しないこと以外社実
施例1と同様にして、a −S i膜を堆積した。
Comparative Examples 1 to 4 The cyclic silane compounds N11l, l'111-12, positive 3.
An a-Si film was deposited in the same manner as in Example 1 except that N4 was used and no halogen compound was used.

得られたa−8i膜を実施例1と同様にして評価した。The obtained a-8i film was evaluated in the same manner as in Example 1.

評価結果を表1及び表2に示す。The evaluation results are shown in Tables 1 and 2.

以上の実施例1〜12及び比較例1〜4の結果をまとめ
ると、成膜速度については表1及び表2の評価結果に示
されたように、同種のa −8i堆稙膜形成用原料を用
いたそれぞれ対応する実施例と比較例を比べた場合、ハ
ロゲン化合物を混合した場合は、そうしない場合よりも
約2〜6倍程度成膜速度が大きくなった。ノ・ロゲンの
種類による成膜連”度の促進の割合は、一般にCIえ、
 Br、 、 I!の順に大きい。
To summarize the results of Examples 1 to 12 and Comparative Examples 1 to 4 above, as shown in the evaluation results in Tables 1 and 2, the film formation rate was When comparing corresponding Examples and Comparative Examples in which the halogen compound was mixed, the film formation rate was about 2 to 6 times higher when the halogen compound was mixed than when it was not mixed. Generally speaking, the rate of promotion of film formation continuity depending on the type of
Br, , I! Largest in order of

また、本実施例に於いて形成され゛たa −S ’i膜
は、いずれ%電気的特性に関しても良好なものであった
Furthermore, the a-S'i films formed in this example had good electrical properties as well.

表 1 よ2σP:1縣(Ω・Cm)−1 表 2 よ2σP:9解(Ω・cm)−1Table 1 Yo2σP: 1 area (Ω・Cm)−1 Table 2 Yo2σP: 9 solutions (Ω・cm)−1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法に用いられる堆積膜形成装置の
一例の概略構成図である。 l:堆積室 2:支持体 3:支持台 4:ヒーター 5:導線 6−1.6−2゜6−3:ガ
スの流れ 9,10,11゜12:ガス供給源 13−
1.13−2゜13−3.13−4.18:圧力メータ
ー14−1.14−2.14−3.14−4゜16−1
.16−2.16−3.16−4゜21:バルブ 15
−1.15−2.15−3.15−4:フローメーター
 17゜17−1.17−2.17−3.17−4:ガ
ス導入管 七土=七丑20 :ガス排気管 出願人 キャノン株式会社
FIG. 1 is a schematic diagram of an example of a deposited film forming apparatus used in the method of the present invention. 1: Deposition chamber 2: Support 3: Support 4: Heater 5: Conductor 6-1.6-2゜6-3: Gas flow 9, 10, 11゜12: Gas supply source 13-
1.13-2゜13-3.13-4.18: Pressure meter 14-1.14-2.14-3.14-4゜16-1
.. 16-2.16-3.16-4゜21: Valve 15
-1.15-2.15-3.15-4: Flow meter 17゜17-1.17-2.17-3.17-4: Gas introduction pipe Nanato = Shichiushi 20: Gas exhaust pipe Applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)支持体が配置された堆積室内に、下記一般式; (但し、上記式中nは3.4または5.RはHまたは8
1H3を表わす)で表わされる環式シラン化合物及びハ
ロゲン化合物の気体状雰囲気を形成し、これら化合物に
熱エネルギーを与え、前記支持体上にシリコン原子を含
む堆積膜を形成することを特徴とする堆積膜の形成方法
(1) In the deposition chamber in which the support is placed, the following general formula; (However, in the above formula, n is 3.4 or 5.R is H or
1H3) and a halogen compound, and applying thermal energy to these compounds to form a deposited film containing silicon atoms on the support. How to form a film.
JP59098420A 1984-05-16 1984-05-16 Method of forming deposited film Expired - Fee Related JPH0712024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098420A JPH0712024B2 (en) 1984-05-16 1984-05-16 Method of forming deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098420A JPH0712024B2 (en) 1984-05-16 1984-05-16 Method of forming deposited film

Publications (2)

Publication Number Publication Date
JPS60242612A true JPS60242612A (en) 1985-12-02
JPH0712024B2 JPH0712024B2 (en) 1995-02-08

Family

ID=14219327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098420A Expired - Fee Related JPH0712024B2 (en) 1984-05-16 1984-05-16 Method of forming deposited film

Country Status (1)

Country Link
JP (1) JPH0712024B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152171A (en) * 1985-12-26 1987-07-07 Canon Inc Thin-film transistor
US6503570B2 (en) 2000-03-13 2003-01-07 Jrs Corporation Cyclosilane compound, and solution composition and process for forming a silicon film
US7314513B1 (en) 2004-09-24 2008-01-01 Kovio, Inc. Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
US7422708B2 (en) 2003-07-08 2008-09-09 Kovio, Inc. Compositions for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
US7485691B1 (en) 2004-10-08 2009-02-03 Kovio, Inc Polysilane compositions, methods for their synthesis and films formed therefrom
US7498015B1 (en) 2004-02-27 2009-03-03 Kovio, Inc. Method of making silane compositions
US7674926B1 (en) 2004-10-01 2010-03-09 Kovio, Inc. Dopant group-substituted semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
US7709307B2 (en) 2006-08-24 2010-05-04 Kovio, Inc. Printed non-volatile memory
US8092867B2 (en) 2006-10-06 2012-01-10 Kovio, Inc. Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
US8211396B1 (en) 2004-09-24 2012-07-03 Kovio, Inc. Heterocyclic semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
EP2589071A2 (en) * 2010-07-02 2013-05-08 Matheson Tri-Gas, Inc. Thin films and methods of making them using cyclohexasilane
US8624049B2 (en) 2010-01-18 2014-01-07 Kovio, Inc. Dopant group-substituted semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152171A (en) * 1985-12-26 1987-07-07 Canon Inc Thin-film transistor
US6503570B2 (en) 2000-03-13 2003-01-07 Jrs Corporation Cyclosilane compound, and solution composition and process for forming a silicon film
US7422708B2 (en) 2003-07-08 2008-09-09 Kovio, Inc. Compositions for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
US7553545B2 (en) 2003-07-08 2009-06-30 Kovio, Inc. Compositions and methods for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
US7879696B2 (en) 2003-07-08 2011-02-01 Kovio, Inc. Compositions and methods for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
US7767261B2 (en) 2003-07-08 2010-08-03 Kovio, Inc. Methods for forming passivated semiconductor nanoparticles
US7799302B1 (en) 2004-02-27 2010-09-21 Kovio, Inc. Silane compositions, methods of making the same, method for forming a semiconducting and/or silicon-containing film, and thin film structures formed therefrom
US8603426B1 (en) 2004-02-27 2013-12-10 Kovio, Inc. Method of making a silicon-containing film
US7498015B1 (en) 2004-02-27 2009-03-03 Kovio, Inc. Method of making silane compositions
US8367031B1 (en) 2004-02-27 2013-02-05 Kovio, Inc. Silane compositions, methods of making the same, method for forming a semiconducting and/or silicon-containing film, and thin film structures formed therefrom
US8124040B1 (en) 2004-02-27 2012-02-28 Kovio, Inc. Methods of making silane compositions
US8372194B1 (en) 2004-09-24 2013-02-12 Kovio, Inc. Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
US7981482B1 (en) 2004-09-24 2011-07-19 Kovio, Inc. Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
US8840857B1 (en) 2004-09-24 2014-09-23 Thin Film Electronics Asa Heterocyclic semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
US8211396B1 (en) 2004-09-24 2012-07-03 Kovio, Inc. Heterocyclic semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
US7314513B1 (en) 2004-09-24 2008-01-01 Kovio, Inc. Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
US7674926B1 (en) 2004-10-01 2010-03-09 Kovio, Inc. Dopant group-substituted semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
US8455604B1 (en) 2004-10-08 2013-06-04 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US7951892B1 (en) 2004-10-08 2011-05-31 Kovio, Inc. Doped polysilanes, compositions containing the same, methods for making the same, and films formed therefrom
US7723457B1 (en) 2004-10-08 2010-05-25 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US8236916B1 (en) 2004-10-08 2012-08-07 Kovio, Inc. Polysilane compositions, methods for their synthesis and films formed therefrom
US8242227B2 (en) 2004-10-08 2012-08-14 Kovio, Inc. Doped polysilanes, compositions containing the same, methods for making the same, and films formed therefrom
US7485691B1 (en) 2004-10-08 2009-02-03 Kovio, Inc Polysilane compositions, methods for their synthesis and films formed therefrom
US7709307B2 (en) 2006-08-24 2010-05-04 Kovio, Inc. Printed non-volatile memory
US8461284B2 (en) 2006-10-06 2013-06-11 Kovio, Inc. Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
US8092867B2 (en) 2006-10-06 2012-01-10 Kovio, Inc. Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
US8846507B2 (en) 2006-10-06 2014-09-30 Thin Film Electronics Asa Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
US8624049B2 (en) 2010-01-18 2014-01-07 Kovio, Inc. Dopant group-substituted semiconductor precursor compounds, compositions containing the same, and methods of making such compounds and compositions
EP2589071A2 (en) * 2010-07-02 2013-05-08 Matheson Tri-Gas, Inc. Thin films and methods of making them using cyclohexasilane
EP2589071A4 (en) * 2010-07-02 2014-04-09 Matheson Tri Gas Inc Thin films and methods of making them using cyclohexasilane

Also Published As

Publication number Publication date
JPH0712024B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JPS60242612A (en) Deposition film forming method
JPS60241222A (en) Formation of accumulated film
JPS60244022A (en) Formation of deposition film
JPS60242613A (en) Deposition film forming method
US4921722A (en) Method for forming deposited film
JPS60240120A (en) Formation of deposition film
JPS60241220A (en) Formation of accumulated film
JPS60242614A (en) Deposition film forming method
JPS60245129A (en) Forming method of accumulated film
JPS60249313A (en) Deposited film forming method
JPS60221575A (en) Formation of deposited film
JPS60219728A (en) Forming method of deposited film
JPS60246625A (en) Forming process of deposited film
JPS60244023A (en) Formation of deposition film
JPS60219732A (en) Forming method of deposited film
JPS60247920A (en) Formation of deposited film
JPS60241221A (en) Formation of accumulated film
JPS60249315A (en) Deposited film forming method
JPS60249314A (en) Deposited film forming method
JPS60246624A (en) Forming process of deposited film
JPS60219734A (en) Formation of deposited film
JPS60245127A (en) Forming method of accumulated film
JPS60246626A (en) Forming process of deposited film
JPS60244021A (en) Formation of deposition film
JPS60247918A (en) Formation of deposited film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees