JPS60220315A - Liquid crystal display device - Google Patents
Liquid crystal display deviceInfo
- Publication number
- JPS60220315A JPS60220315A JP7731184A JP7731184A JPS60220315A JP S60220315 A JPS60220315 A JP S60220315A JP 7731184 A JP7731184 A JP 7731184A JP 7731184 A JP7731184 A JP 7731184A JP S60220315 A JPS60220315 A JP S60220315A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- layer
- heating
- heat
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133382—Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
Landscapes
- Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、液晶表示装置に係り、特にスメクチック液晶
を用いた熱書き込み型の液晶表示装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a liquid crystal display device, and particularly to a thermal writing type liquid crystal display device using smectic liquid crystal.
液晶表示装置は、情報機器関係、特に情報末端の表示装
置として広く使用されている。スメクチック液晶を主成
分として用いている熱書き込み型の液晶表示装置におい
ては、ガラス基板上に設けた液晶加熱用電極に電流を流
し、加熱用電極に発生したジュール熱で液晶を加熱して
いる。このため、加熱用電極で発生した熱を効果的に液
晶層に与えることができる従来の液晶表示装置としては
、特開昭57−192925号公報に示すように、カロ
熱電極とガラス基板との間にサーマルノくリア(断熱層
)を設けた方式のものが提案されている。Liquid crystal display devices are widely used in information equipment, particularly as display devices for information terminals. In a thermal writing type liquid crystal display device that uses smectic liquid crystal as a main component, current is passed through a liquid crystal heating electrode provided on a glass substrate, and the liquid crystal is heated by Joule heat generated in the heating electrode. For this reason, a conventional liquid crystal display device that can effectively apply the heat generated by the heating electrode to the liquid crystal layer is a combination of a Caloric heating electrode and a glass substrate, as shown in Japanese Patent Application Laid-open No. 57-192925. A method has been proposed in which a thermal layer (insulating layer) is provided between the two.
第1図は従来の液晶表示装置の基本素子構造を示す断面
図である。上下のガラス基板1a、lbの内面にストラ
イプ状の液晶加熱電極3と透明電極5を形成し、それら
の間に液晶層4をはさみ込んだ構造でおる。そして加熱
電極3と透明電極5は交差しておシ、その間にマトリッ
クスが形成されている。また、加熱電極3と下側ガラス
基板1bとの間には、加熱電極3の熱が液晶層4方向に
のみ伝導しやすいように、断熱絶縁層2が設けられてい
る。この断熱層2の効果によシ、加熱電極3で発生した
熱は、液晶層4の加熱に有効に作用する。FIG. 1 is a sectional view showing the basic element structure of a conventional liquid crystal display device. A striped liquid crystal heating electrode 3 and a transparent electrode 5 are formed on the inner surfaces of the upper and lower glass substrates 1a and 1b, and a liquid crystal layer 4 is sandwiched between them. The heating electrode 3 and the transparent electrode 5 intersect with each other, and a matrix is formed between them. Further, a heat insulating layer 2 is provided between the heating electrode 3 and the lower glass substrate 1b so that the heat of the heating electrode 3 is easily conducted only in the direction of the liquid crystal layer 4. Due to the effect of this heat insulating layer 2, the heat generated by the heating electrode 3 effectively acts on heating the liquid crystal layer 4.
第2図は従来の液晶表示装置における加熱電極にパルス
電流を与えたときの液晶層の温度変化を示す線図である
。図においてAは第1図に示す加熱電極の表面の温度変
化、Bは液晶層の上部の温度変化を示している。加熱電
極3へのパルス電流の通電時間toは各加熱電極3でせ
いぜい数ms〜io数m9である。このような瞬間的な
通電時間toに対しては、断熱層2の断熱効果により液
晶層4は有効に加熱される。しかし、通電加熱の終了し
たのちの冷却過程をみると、第1図に示される電極表面
のA点および液晶層の上部B点の冷却速度は加熱を終了
した直後は大であるが、時間の経過とともに冷却速度は
小さくなり、温度の低下はゆるやかになる。そのため、
一度書き込みを行ったあと、続けて書き込み動作を繰り
返して行った場合には、次のような不都合が生じる。FIG. 2 is a diagram showing temperature changes in a liquid crystal layer when a pulse current is applied to a heating electrode in a conventional liquid crystal display device. In the figure, A shows the temperature change on the surface of the heating electrode shown in FIG. 1, and B shows the temperature change in the upper part of the liquid crystal layer. The duration to of the pulse current applied to the heating electrodes 3 is at most several ms to several io m9 for each heating electrode 3. For such an instantaneous energization time to, the liquid crystal layer 4 is effectively heated due to the heat insulating effect of the heat insulating layer 2. However, when we look at the cooling process after the electrical heating ends, we find that the cooling rate at point A on the electrode surface and point B at the top of the liquid crystal layer shown in Figure 1 is high immediately after heating ends, but over time. As time passes, the cooling rate decreases and the temperature decreases more slowly. Therefore,
If writing is performed once and then the writing operation is repeated repeatedly, the following inconvenience will occur.
第3図は熱書き込み動作を繰#)返した場合における液
晶層の加熱サイクルを示す線図である。図におけるT’
l、Tz・・・・・・T、は各熱書き込み動作の終了時
における液晶温度でおって、書き込み動作を繰シ返すに
従ってだんだん高くなっている。FIG. 3 is a diagram showing the heating cycle of the liquid crystal layer when the thermal writing operation is repeated. T' in the figure
1, Tz...T is the liquid crystal temperature at the end of each thermal write operation, and gradually increases as the write operation is repeated.
熱書き込み動作の繰シ返しにより、T、が液晶のネマス
チツク相とスメクチック相の相転移動温度T8Nより置
くなると、熱畜き込み動作ができなくなるという不都合
が生ずる。また、従来の液晶表示装置では、TmがT[
lNを越えなくとも、TIIがTINに接近すると書き
込み後の表示品質にばらつきが生じるという問題を有し
ていた。Due to repeated thermal writing operations, if T is lower than the phase transition temperature T8N between the nematic phase and smectic phase of the liquid crystal, a disadvantage arises in that the thermal storage operation becomes impossible. Furthermore, in conventional liquid crystal display devices, Tm is T[
Even if TII does not exceed IN, there is a problem in that when TII approaches TIN, the display quality after writing varies.
本発明の目的は、連続して熱書き込み動作をすることが
できる液晶表示装置を提供することにある。An object of the present invention is to provide a liquid crystal display device that can perform continuous thermal writing operations.
本発明は、加熱電極による液晶層の加熱終了後、液晶層
および加熱電極を急速に冷却する手段として、基板の表
面の少なくとも一部に基板および断熱層よシ高い熱伝導
率をもった高熱伝導層を設けることにしたものである。The present invention provides a means for rapidly cooling the liquid crystal layer and the heating electrode after the heating electrode finishes heating the liquid crystal layer. We decided to provide layers.
このような液晶表示装置における熱書き込み、すなわち
瞬間的な加熱時には電極で発生した熱を断熱層により有
効に液晶層に与えることができる一方、液晶加熱を終了
したのちの冷却時には、断熱層と基板との間に設けた高
熱伝導層によシ、断熱層を通ってくる熱を高熱伝導層で
吸収するとともに、熱容量の大きいガラス基板に早く熱
伝達することができる。このようにして液晶層および加
熱電極の冷却速度を犬にすることにより、連続的に熱書
き込みができるようにしたものである。During thermal writing in such liquid crystal display devices, that is, instantaneous heating, the heat generated in the electrodes can be effectively applied to the liquid crystal layer by the heat insulating layer. The high heat conductive layer provided between the heat insulating layer absorbs the heat passing through the heat insulating layer, and allows the heat to be quickly transferred to the glass substrate having a large heat capacity. By controlling the cooling rate of the liquid crystal layer and the heating electrode in this way, continuous thermal writing can be performed.
C発明の実施例〕 以下、本発明の実施例を図に基づいて説明する。Example of invention C] Embodiments of the present invention will be described below based on the drawings.
第4図および第5図は、本発明の液晶表示装置の素子構
造を示す分解斜視図および断面構造図である。一方のガ
ラス基板1の上面には高熱伝導層8、断熱層2および加
熱電極3の順に積層され、一方、ガラス基板1bに対面
する上側のガラス基板1aには透明電極5が配設され、
この加熱電極3と透明電極5との間にスメクチック液晶
層がはさみ込まれている。この実施例では、高熱伝導層
が下側のガラス基板1aの全面に形成した場合を示して
いる。このように構成してなる液晶表示装置の素子であ
るガラス基板としては、板厚が1、1 m t 、熱伝
導率が0.0027 Ca1acrIT−’ a FB
I−’a7::−’(25C)、高熱伝導層は銅(熱伝
導率0.943Catscrn−’ an−”* ”f
::−’ )の蒸着膜2.lJmを用いている。また、
断熱層は熱伝導率0.0003 Ca t・crn−’
・派−1・C−1のキシレン重合体であり、膜厚が5μ
mである。加熱電極はアルミニウム(熱伝導率0.5
Cat*crn−’ *8+30− ’ @ C−’
) テ、膜厚1.0μmを用いている。また、透明電極
としてはIn2O35−02の0.2μmの蒸着膜ヲ用
いている。このように構成してなる液晶表示装置におけ
る熱書き込みは、加熱電極3に電流を流し、加熱電極3
の抵抗発熱からの熱伝導で液晶層4を加熱することによ
シ行われる。また、書き込みを取9消すときは、電極を
加熱し冷却時に透明電極5と加熱電極3との間に除去電
圧を印加してなされる。FIG. 4 and FIG. 5 are an exploded perspective view and a sectional structural view showing the element structure of the liquid crystal display device of the present invention. A high thermal conductivity layer 8, a heat insulating layer 2 and a heating electrode 3 are laminated in this order on the upper surface of one glass substrate 1, while a transparent electrode 5 is arranged on the upper glass substrate 1a facing the glass substrate 1b.
A smectic liquid crystal layer is sandwiched between the heating electrode 3 and the transparent electrode 5. This example shows a case where a highly thermally conductive layer is formed on the entire surface of the lower glass substrate 1a. The glass substrate that is an element of the liquid crystal display device configured in this manner has a thickness of 1.1 m t and a thermal conductivity of 0.0027 Ca1acrIT-' a FB
I-'a7::-' (25C), the high thermal conductivity layer is copper (thermal conductivity 0.943Catscrn-'an-"*"f
::-' ) vapor deposited film 2. lJm is used. Also,
The thermal conductivity of the heat insulating layer is 0.0003 Cat・crn-'
・It is a xylene polymer of group-1/C-1, and the film thickness is 5μ.
It is m. The heating electrode is aluminum (thermal conductivity 0.5
Cat*crn-'*8+30-'@C-'
) A film thickness of 1.0 μm is used. Further, as a transparent electrode, a 0.2 μm vapor-deposited film of In2O35-02 is used. Thermal writing in the liquid crystal display device configured in this way is carried out by passing a current through the heating electrode 3.
This is done by heating the liquid crystal layer 4 by heat conduction from resistance heat generation. Further, when writing is to be canceled, the electrode is heated and a removal voltage is applied between the transparent electrode 5 and the heating electrode 3 when the electrode is cooled.
第6図に加熱電極に加熱電流を10時間与えた際の時間
経過と液晶温度との関係が示されている。FIG. 6 shows the relationship between the elapsed time and the liquid crystal temperature when a heating current was applied to the heating electrode for 10 hours.
図における特性は、第1図に示した液晶層上部のB点に
おける時間経過と液晶温度の変化を示しているもので、
加熱電極の加熱時間1oまで液晶層は温度を上昇し、通
電加熱を終了したのちの温度は降下する。この図におい
て、to以降の実線は高熱伝導層を設けた場合を示し、
破線は高熱伝導層を設けていない場合を示している。液
晶層の冷却過程で液晶層がネマスチツク相とスメクチッ
ク相の相転移温度T II N以下になるまでの時間は
図から明らかなように、高熱伝導層の有無によってそれ
ぞれ(ts to )+ (t+’ to)となシ、高
熱伝導層を設けた場合の方が冷却速度が大である。The characteristics in the figure show the change in liquid crystal temperature over time at point B above the liquid crystal layer shown in Figure 1.
The temperature of the liquid crystal layer increases until the heating time of the heating electrode reaches 1o, and the temperature decreases after the electrical heating ends. In this figure, the solid line after to indicates the case where a high thermal conductivity layer is provided,
The broken line shows the case where no high thermal conductive layer is provided. As is clear from the figure, the time it takes for the liquid crystal layer to become below the phase transition temperature T II N between the nemastic phase and the smectic phase during the cooling process of the liquid crystal layer depends on the presence or absence of the high thermal conductivity layer, respectively (ts to ) + (t+' To), the cooling rate is higher when a high thermal conductivity layer is provided.
このように液晶層の冷却速度を大きくすると、次のよう
な作用効果がある。Increasing the cooling rate of the liquid crystal layer in this way has the following effects.
すなわち、加熱電極に流すパルス状の電流は、数mis
〜10数msa+(通電時間to )と短時間であって
、この瞬間的な加熱では加熱時間中には断熱層2の断熱
効果で液晶層側が効果的に加熱される。一方、高熱伝導
層側は断熱層2の効果により加熱電極3で加熱した熱が
断熱層2を通って高熱伝導層までに熱伝導するのに時間
的な遅れが生ずる。このため瞬間的な通電時間1oの間
は、高熱伝導層8の温度上昇はわずかであり、このよう
な状態で加熱が終了して冷却過程に入り、断熱層を通っ
てガラス基板1へ熱伝達される、この冷却段階では、断
熱層2とガラス基板1aとの間に高熱伝導層8がおるの
で、高熱伝導層の吸熱作用によp熱を吸収するとともに
、この熱を熱容量の大きいガラス基板1aの方へ早く熱
伝達させる効果がある。そのために第6図に示すように
、加熱終了後の冷却速度が大きくなる。In other words, the pulsed current flowing through the heating electrode is several mis
This instantaneous heating is as short as ~10-odd msa+ (current application time to), and the liquid crystal layer side is effectively heated by the heat insulating effect of the heat insulating layer 2 during the heating time. On the other hand, on the high heat conductive layer side, due to the effect of the heat insulating layer 2, there is a time delay in the heat heated by the heating electrode 3 being conducted through the heat insulating layer 2 to the high heat conductive layer. Therefore, during the instantaneous energization time 1o, the temperature rise in the highly thermally conductive layer 8 is slight, and in this state heating ends and a cooling process begins, where heat is transferred to the glass substrate 1 through the heat insulating layer. In this cooling stage, the high thermal conductivity layer 8 is placed between the heat insulating layer 2 and the glass substrate 1a, so that the high thermal conductivity layer absorbs p heat by the endothermic action, and this heat is transferred to the glass substrate with a large heat capacity. This has the effect of quickly transferring heat toward 1a. Therefore, as shown in FIG. 6, the cooling rate after completion of heating increases.
なお、本実施例では高熱伝導層として銅を用すているが
冷却過程において断熱層からガラス基板へ熱を早く伝
達させるという観点から、断熱層および基板より高い熱
伝導率を有する材料でおればいずれを用いてもよい。例
えば、金属材料としてアルミニウム(熱伝導率0.5C
at・Crn−’ @813G−’aC−’)、Ag(
熱伝導率0.934CatsCrn−’ ・5ea−’
C″′1 )があシ、また無機材料としてはアルミナ(
熱伝導率0.05cBLmcm−’ 1eO−’ *C
−’ )、高熱伝導性を有する5aC(熱伝導率0.6
cat・cm−’ ・減−1・C−1)も有効である。Although copper is used as the high thermal conductivity layer in this example, from the viewpoint of quickly transferring heat from the insulation layer to the glass substrate during the cooling process, any material with higher thermal conductivity than the insulation layer and the substrate may be used. Either may be used. For example, aluminum (thermal conductivity 0.5C) is used as a metal material.
at・Crn-'@813G-'aC-'), Ag(
Thermal conductivity 0.934CatsCrn-'5ea-'
C″′1) is inorganic, and as an inorganic material, alumina (
Thermal conductivity 0.05cBLmcm-'1eO-' *C
-' ), 5aC with high thermal conductivity (thermal conductivity 0.6
cat・cm−′・reduction−1・C−1) is also effective.
第7図および第8図は、本発明の他の実施例を示す断面
図である。第7図では加熱電極3と同じ幅でガラス基板
la上に高熱伝導層8と断熱層2を設けた場合を示して
いる。第8図においては、高熱伝導層8tl−ガラス基
板1aの全面に設け、断熱層2と加熱電極3とはほぼ同
じ幅で設けてなる場合を示している。FIGS. 7 and 8 are cross-sectional views showing other embodiments of the present invention. FIG. 7 shows a case where a high thermal conductivity layer 8 and a heat insulating layer 2 are provided on a glass substrate la with the same width as the heating electrode 3. FIG. 8 shows a case where the high thermal conductivity layer 8tl is provided over the entire surface of the glass substrate 1a, and the heat insulating layer 2 and the heating electrode 3 are provided with approximately the same width.
第9図および第10図は、本発明の他の実施例を示す断
面図であって、第9図では高熱伝導層8をガラス基板1
の外表面のみに設けた場合を示しており、第10図の実
施例では高熱伝導層8をガラス基板1の両側表面に設け
た場合である。これらの実施例においても本発明の目的
を達成することができる。9 and 10 are cross-sectional views showing other embodiments of the present invention, in which the high heat conductive layer 8 is placed on a glass substrate 1.
In the embodiment shown in FIG. 10, the high thermal conductivity layer 8 is provided only on the outer surface of the glass substrate 1. The objects of the present invention can also be achieved in these embodiments.
本発明によれば、加熱電極によシ液晶層を加熱したのち
、液晶層および加熱電極を急漱に冷却でき、連続して熱
誓き込み動作を行うことができるという効果がある。According to the present invention, after the liquid crystal layer is heated by the heating electrode, the liquid crystal layer and the heating electrode can be rapidly cooled, and the heat-pushing operation can be performed continuously.
また、冷却速度をさらに犬にした場合には、書き込みを
行った画素の液晶の散乱状態と書き込みを行わない画素
の液晶の非散乱状態の光の透過率の差が大であり、表示
品質の向上を図ることができるという効果も有している
。In addition, when the cooling rate is increased further, the difference in light transmittance between the scattered state of the liquid crystal of the pixel where writing is performed and the non-scattered state of the liquid crystal of the pixel where no writing is performed is large, and the display quality is affected. It also has the effect of allowing improvements to be made.
第1図は従来の液晶表示装置の基本素子構造を示す断面
図、第2図は従来の液晶表示装置の素子の温度変化を示
す説明図、第3図は従来の液晶表示装置の素子において
熱書き込み動作を繰り返した場合の素子の温度変化の説
明図、第4図および第5図は、本発明の液晶表示装置の
素子構造を示す分解斜視図および断面図、第6図は本発
明と従来品との素子の温度変化を比較また説明図、第7
図〜第10図は本発明の他の実施例を示す断面図である
。
1・・・ガラス基板、2・・・断熱層、3・・・加熱電
極、4・・・液晶層、5・・・透明電極、丘=ブラシ鴎
I哄訃・・高熱伝導層。
代理人 弁理士 鵜沼辰之
茅 l 目
)ト 2 巨す ノa
茅4.目
l^
第5 目
第6 固
積用t (側3う
茅7 目
b
!久
茅8 目
10− δ
茅q 口Fig. 1 is a cross-sectional view showing the basic element structure of a conventional liquid crystal display device, Fig. 2 is an explanatory diagram showing temperature changes in the elements of a conventional liquid crystal display device, and Fig. 3 is a cross-sectional view showing the basic element structure of a conventional liquid crystal display device. 4 and 5 are exploded perspective views and sectional views showing the element structure of the liquid crystal display device of the present invention, and FIG. 6 is an explanatory diagram of the temperature change of the element when writing operations are repeated. Comparison and explanatory diagram of the temperature change of the element with the product, No. 7
Figures 1 to 10 are cross-sectional views showing other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1...Glass substrate, 2...Insulating layer, 3...Heating electrode, 4...Liquid crystal layer, 5...Transparent electrode, Hill = Brush porridge...High thermal conductivity layer. Agent Patent Attorney Tatsuyuki Unuma l 目) ト 2 Gurona 4. Eye l^ 5th eye 6th solid accumulation t (side 3 grass 7 eye b ! Kuhaya 8 eye 10- δ Kayaq Mouth
Claims (1)
熱電極を有するスメクチック液晶を主成分として用いる
熱書き込み型の液晶表示装置において、前記基板表面の
少なくとも一部に前記基板および断熱層よシ熱伝導率の
高い高熱伝導層を形成することを特徴とする液晶表示装
置。 2、特許請求の範囲第1項において、前記熱伝導率の高
い高熱伝導層は基板と断熱層との間に設けることを特徴
とする液晶表示装置、 3、特許請求の範囲第1項および第2項において、前記
熱伝導率の高い高熱伝導層は前記基板の全表面に設けた
ことを特徴とする液晶表示装置。 4、特許請求の範囲第2項において、前記熱伝導率の高
い高熱伝導層が液晶加熱電極に対面する基板上の部分の
みに設けることを特徴とする液晶表示装置。[Claims] 1. In a thermal writing type liquid crystal display device using a smectic liquid crystal as a main component having a heat insulating layer and a liquid crystal heating electrode disposed on one glass substrate, at least a portion of the surface of the substrate is and a liquid crystal display device characterized by forming a highly thermally conductive layer having higher thermal conductivity than a heat insulating layer. 2. A liquid crystal display device according to claim 1, wherein the highly thermally conductive layer having high thermal conductivity is provided between a substrate and a heat insulating layer; 3. Claims 1 and 2. 3. The liquid crystal display device according to item 2, wherein the highly thermally conductive layer having high thermal conductivity is provided on the entire surface of the substrate. 4. The liquid crystal display device according to claim 2, wherein the highly thermally conductive layer having high thermal conductivity is provided only on a portion of the substrate facing the liquid crystal heating electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7731184A JPS60220315A (en) | 1984-04-17 | 1984-04-17 | Liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7731184A JPS60220315A (en) | 1984-04-17 | 1984-04-17 | Liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60220315A true JPS60220315A (en) | 1985-11-05 |
Family
ID=13630366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7731184A Pending JPS60220315A (en) | 1984-04-17 | 1984-04-17 | Liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60220315A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS647021A (en) * | 1987-06-10 | 1989-01-11 | Philips Nv | Reflection mode display device |
-
1984
- 1984-04-17 JP JP7731184A patent/JPS60220315A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS647021A (en) * | 1987-06-10 | 1989-01-11 | Philips Nv | Reflection mode display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4978203A (en) | Liquid crystal device with an apparent hysteresis | |
US4029393A (en) | Integrated thermally compensated liquid crystal display device | |
JP3628342B2 (en) | Dielectric optical waveguide device | |
JPS60220315A (en) | Liquid crystal display device | |
JPH05196951A (en) | Liquid crystal display element | |
US4598978A (en) | Screen of a display device using a mixed thermal and electrical effect | |
JPH11261073A (en) | Semiconductor element and its heating method | |
JPH07153559A (en) | Transparent sheet heater | |
BE1007663A3 (en) | A display device. | |
JP2648339B2 (en) | Liquid crystal display | |
JP2001201760A (en) | Double layer type super twisted nematic liquid crystal display device | |
JPH04271323A (en) | Liquid crystal display element | |
JPH03290619A (en) | Liquid crystal cell | |
JP3290550B2 (en) | Nonlinear element substrate and electro-optical device | |
JPS62121424A (en) | Liquid crystal cell | |
JPS597345A (en) | Liquid crystal panel | |
JPS63173027A (en) | Matrix display device | |
JPS62153835A (en) | Liquid crystal element | |
JPS63190746A (en) | Composite-layer glass having function for preventing dew condensation | |
JPH05286418A (en) | Electrochromic mirror with defogging heater | |
JP2001242439A (en) | Panel heater for liquid crystal display device | |
JPS62143026A (en) | Heat writing type liquid crystal display | |
JPS63250627A (en) | Electrooptic device | |
JPS60120390A (en) | Liquid crystal dispaly element structure | |
JPS63109492A (en) | Matrix display device |