JPS63190746A - Composite-layer glass having function for preventing dew condensation - Google Patents

Composite-layer glass having function for preventing dew condensation

Info

Publication number
JPS63190746A
JPS63190746A JP62018471A JP1847187A JPS63190746A JP S63190746 A JPS63190746 A JP S63190746A JP 62018471 A JP62018471 A JP 62018471A JP 1847187 A JP1847187 A JP 1847187A JP S63190746 A JPS63190746 A JP S63190746A
Authority
JP
Japan
Prior art keywords
layer
glass
heat
temperature
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62018471A
Other languages
Japanese (ja)
Inventor
Yasuo Taketo
竹藤 安男
Fumiyuki Shida
志田 文行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62018471A priority Critical patent/JPS63190746A/en
Publication of JPS63190746A publication Critical patent/JPS63190746A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture composite-layer glass having the function for preventing dew condensation by constituting an electrically-conductive layer formed with a metallic layer on a transparent resin film between two sheets of glass plates and interposing both a heat-ray reflective film layer for conducting electricity to the electrically- conductive layer and a space layer having proper thickness via a spacer to the parallel end parts thereof. CONSTITUTION:An electrically-conductive layer wherein a layer of metal (silver, gold and copper or the like) and/or metallic oxide (SnO2 and In2O3 or the like) having <=5,000Angstrom preferably 50-1,000Angstrom thickness is formed on a transparent resin film (polyethylene terephthalate or the like and about 25-100mu thickness) is constituted between two sheets of glass plates. The resin film constituting this electrically-conductive layer has about 80% visible light transmission and about 90% infrared reflection coefficient. Further both a heat-ray reflective film layer for constituting an electrode and a terminal conducting electricity and a space layer are interposed to the parallel end parts of the electrically-conductive layer by utilizing a spacer. Thereby a composite-layer glass which is available and transparent and has the function for shielding heat rays and the function for preventing dew condensation is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はショーケースあるいは建築部材として有用な透
明で熱線遮蔽機能を有しかつ結露防止機能を有する複層
硝子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transparent double-layer glass useful as a showcase or a building member, which has a heat ray shielding function and a dew condensation prevention function.

〔従来技術とその問題点〕[Prior art and its problems]

複層硝子の主な用途の1つである冷蔵ショーケースおよ
び冷凍ショーケース分野では、省エネルギー性能はもち
ろん防露性能も重要である。
In the field of refrigerated showcases and frozen showcases, which is one of the main uses for double-layer glass, not only energy-saving performance but also dew-proofing performance is important.

一般の複層硝子、例えば厚さ、3 %の硝子で121X
の空間層をはさんだ複層硝子は、庫内空気温度0℃、空
気流速37n/秒、庫外空気温度δ℃、空気流速l m
7秒の条件下では、庫外側硝子表面温度が19℃となり
69%以上の相対湿度下では庫外側硝子表面に結露し庫
内内容物が見えにくくなる。
General double-layer glass, for example, 121X with a thickness of 3% glass
The double-layered glass sandwiching the spatial layer of
Under the condition of 7 seconds, the surface temperature of the outside glass is 19° C., and under the relative humidity of 69% or more, dew condenses on the outside glass surface, making it difficult to see the contents inside the refrigerator.

そこで、透明な熱線反射フィルムを貼り付けて断熱性能
を向上し、庫外側硝子表面温度の低下を抑制することに
より結露を防止する熱線反射フィルム貼り複層硝子(特
開昭55−3542 ) 、透明な熱線反射フィルムを
宙吊り状態で張り、かつ空気層を介在させることにより
断熱性能と結露防止機能を向上した熱線反射フィルム宙
吊り複層硝子(特開昭56−92140)がある。しか
しながら、これらの複層硝子は庫外側硝子表面から庫内
への熱損失を単に抑制することで結露防止をはかるもの
であり、特に湿度の高い条件では防露性能にも限界があ
った。
Therefore, a transparent heat-reflecting film-applied double-layer glass (Japanese Unexamined Patent Publication No. 55-3542), which improves the heat insulation performance by attaching a transparent heat-reflecting film and prevents condensation by suppressing the drop in the temperature of the outside glass surface, has been developed. There is a heat ray reflective film-suspended multi-layer glass (Japanese Patent Laid-Open No. 56-92140) which has improved heat insulation performance and dew condensation prevention function by suspending a heat ray reflective film and interposing an air layer. However, these double-layered glasses prevent dew condensation by simply suppressing heat loss from the outside glass surface to the inside of the refrigerator, and their dew-proof performance is also limited, especially under humid conditions.

一方、庫外側硝子を硝子内に抵抗導線を埋込んだ熱線入
り硝子または庫内側硝子面に極く薄く酸化錫等の金属酸
化物層を化学気相成長法等により形成させこれに電極を
取り付けた面発熱硝子にした強制結露防止複層硝子もあ
る。これらの複層硝子は断熱性能が劣るため、結露を防
止するには常にまたは断続的に通電して庫外側硝子を暖
めておく必要があり、湿度が高い条件でも防露できる反
面、冷熱の損失が大きく、電力の消費が多いという欠点
があった。
On the other hand, the glass on the outside of the refrigerator is either heated glass with a resistance conductor embedded in the glass, or a very thin layer of metal oxide such as tin oxide is formed on the glass inside the refrigerator by chemical vapor deposition, and electrodes are attached to this. There is also double-layer glass that prevents condensation and uses heat-generating glass on both sides. These double-layered glasses have poor insulation performance, so in order to prevent condensation, it is necessary to constantly or intermittently turn on electricity to warm the outer glass of the refrigerator.Although it can prevent condensation even in high humidity conditions, it does not reduce the loss of cooling heat. The drawback is that it consumes a lot of power.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは省エネルギー性能が良く且つ如何なる条件
においても結露しない複層硝子の研究を行なった結果、
断熱性能を向上させる為に使われている熱線反射フィル
ムが導電性をも合せ持つことに注目し、本発明に到達し
た。
The inventors conducted research on double-layer glass that has good energy-saving performance and does not condense under any conditions.
The present invention was achieved by noting that the heat ray reflective film used to improve heat insulation performance also has electrical conductivity.

すなわち本発明は、2枚の硝子板の間に、透明樹脂フィ
ルムに5000A以下の厚みに金属およびまたは金属酸
化物層を形成させて導電層を構成し該導電層の平行する
端部に電極および通電端子を構成させてなる熱線反射フ
ィルム層および空気層を介在させることを特徴とする結
露防止機能を有する複層硝子である。
That is, in the present invention, a conductive layer is formed by forming a metal and/or metal oxide layer on a transparent resin film with a thickness of 5000A or less between two glass plates, and electrodes and current-carrying terminals are provided at parallel ends of the conductive layer. This is a double-layer glass having a dew condensation prevention function characterized by interposing a heat ray reflective film layer and an air layer.

本発明の複層硝子において熱線反射フィルム層は、通常
、次のようにして形成される。すなわち、基体となる樹
脂フィルムとしては、透明なものであればいずれでも良
いが、好ましくは化学的に安定で光学的劣化が少なくか
つ引裂き強度が優れた例えばポリエチレンテレフタレー
トなどのポリエステル、ポリメチルメタクリレート、安
定化されたポリエチレン、ポリプロピレンおよび塩化ビ
ニル共重合体が挙げられるが、なかでもポリエステルフ
ィルムが多用される。通常、これらの樹脂フィルムは1
5〜300μ専好ましくは25〜100μm程度の厚み
を有するものであり、場合によりフィルム表面保護層を
形成させることもできる。
In the double-layer glass of the present invention, the heat ray reflective film layer is usually formed as follows. That is, the base resin film may be any transparent material, but preferably polyesters such as polyethylene terephthalate, polymethyl methacrylate, etc., which are chemically stable, have little optical deterioration, and have excellent tear strength. Examples include stabilized polyethylene, polypropylene and vinyl chloride copolymers, among which polyester films are frequently used. Usually, these resin films are 1
It has a thickness of about 5 to 300 μm, preferably about 25 to 100 μm, and a film surface protective layer can be formed if necessary.

上記した樹脂フィルム基体に5000A以下好ましくは
艶〜100OAの厚さの金属およびまたは金属酸化物層
を形成させて導電層を構成させる方法としては、可視範
囲内では低い光学吸収性を有するが長波長赤外線は反射
する金属である銀、金、銅、ニッケル、アルミニウム等
を真空蒸着法またはスパッタリング法によって樹脂フィ
ルム表面に積層させる方法が一般的に採用される。
A method of forming a conductive layer by forming a metal and/or metal oxide layer with a thickness of 5000A or less, preferably glossy to 100OA on the resin film substrate described above, has low optical absorption in the visible range but has long wavelengths. A method generally employed is to laminate silver, gold, copper, nickel, aluminum, etc., which are metals that reflect infrared rays, on the surface of a resin film by vacuum evaporation or sputtering.

一方、金属酸化物層としては5n02+  In2O3
または錫をドープしたインジウム膜であるいわゆるIT
O膜を採用することもできる。 か(してまた、金属の
薄膜を適当な厚さの高屈折率誘電体ではさんで可視域の
光に対して反射防止することで可視光透過率を向上した
積層体を採用することもできる。
On the other hand, the metal oxide layer is 5n02+ In2O3
Or the so-called IT which is an indium film doped with tin.
An O film can also be used. (Also, it is also possible to use a laminate that improves visible light transmittance by sandwiching a thin metal film between high-refractive-index dielectrics of appropriate thickness to prevent reflection of light in the visible range.) .

導電層を構成した樹脂フィルムは、可視光透過率80%
、赤外反射率90%に近いものが得られる。
The resin film that made up the conductive layer has a visible light transmittance of 80%.
, an infrared reflectance close to 90% can be obtained.

本発明において、導電層の平行する端部とは、2枚の硝
子板の間に介在させる上記した導電層を有する樹脂フィ
ルムの、通常、長辺上の等しい間隔にある両端部の位置
を意味するものであり、本発明の複層硝子においてはこ
の部分に電極および通電端子が通常設けられる。電極は
、たとえば熱線反射フィルムを硝子板に固定した際、複
層硝子の視野を遮げない部位、すなわち固定部材として
用いるスペーサーに隠れる部位またはスペーサーの極(
近くの部位に視野面をはさむ形で1対の帯状または線状
の電極としてとり付げられる。
In the present invention, the parallel ends of the conductive layer refer to the positions of both ends, which are generally equally spaced on the long side, of the resin film having the above-mentioned conductive layer interposed between two glass plates. In the double-layer glass of the present invention, electrodes and current-carrying terminals are usually provided in this portion. For example, when a heat ray reflective film is fixed to a glass plate, the electrode should be placed in a part that does not block the view of the multilayer glass, that is, a part that is hidden behind a spacer used as a fixing member, or a pole of the spacer (
A pair of band-shaped or linear electrodes are attached to nearby areas with the viewing surface sandwiched between them.

一般に熱線反射フィルム宙吊り複層硝子に用いられる熱
線反射フィルムにおいては、金属およびまたは金属酸化
物層が露出しているので簡単に電極を取付けることがで
きる。この際用いられる電極としては、熱線反射フィル
ムの金属およびまたは金属酸化物層上に、更にたとえば
銀ペースト等の導電性ペーストをプリント配線してもよ
いし、銅リボンに導電性を有する粘着剤や接着剤を塗布
した導電テープを貼り付けても良い。その他如何。
In the heat ray reflective film generally used for suspended multilayer glass, the metal and/or metal oxide layer is exposed, so electrodes can be easily attached. For the electrodes used at this time, a conductive paste such as silver paste may be further printed on the metal and/or metal oxide layer of the heat ray reflective film, or a conductive adhesive or a copper ribbon may be used. A conductive tape coated with adhesive may be attached. How about something else?

なる方法でも良いがフィルムと電極間の電気抵抗がフィ
ルムの電気抵抗に比べ相対的に小さいことが必要である
However, it is necessary that the electrical resistance between the film and the electrode be relatively small compared to the electrical resistance of the film.

また、電気がフィルム以外を通って導通しないようにす
ることも必要である。たとえば、1対の電極によって挟
まれる形となるスペーサーは、スペーサーと金属および
または金属酸化物層間を絶縁するか、スペーサー自体の
材質を電気絶縁材料にする方法等が採用される。このよ
うにして形成される電極は、外部電源と接続するために
設けられた通電端子により銅線などの電気の良導体を用
いてつながれる。このような電極の取出し、絶縁および
通電端子の取り付は以外は、通常、熱線反射フィルム宙
吊り複層硝子の製造と同じように行なうことができる。
It is also necessary to prevent electricity from passing through anything other than the film. For example, for a spacer sandwiched between a pair of electrodes, a method is adopted in which the spacer and a metal and/or metal oxide layer are insulated, or the material of the spacer itself is an electrically insulating material. The electrodes formed in this manner are connected to an electrically conductive terminal provided for connection to an external power source using a good electrical conductor such as a copper wire. Other than taking out the electrodes, insulating them, and attaching the current-carrying terminals, these steps can be carried out in the same manner as in the production of multilayer glass suspended with a heat ray reflective film.

本発明の複層硝子においては、熱線反射フィルム層およ
び空間層は通常前記したスペーサーの利用によって2枚
の硝子板の間に固定して介在させる方法が採用される。
In the double-layer glass of the present invention, the heat ray reflective film layer and the space layer are usually fixedly interposed between two glass plates by using the above-mentioned spacer.

この場合、スペーサーは熱線反射フィルムの固定と共に
空間層の厚み調節作用も有する。空気層の厚みは厚い程
断熱性能は向上するが複層硝子の厚みが厚くなり結果と
してショーケースの内容積を小さくするので通常200
程度に制限される。空間層の厚みは通常低温側硝子板と
高温側硝子板との間で適宜調節されるが低温側空気層の
厚みを高温側空気層の厚みに比べて厚くした方が断熱性
能が良好なうえ、発熱させた場合の高温側硝子温度の上
昇も大きい。
In this case, the spacer has the function of fixing the heat ray reflective film and also adjusting the thickness of the space layer. The thicker the air layer, the better the insulation performance, but the thicker the double-layer glass becomes, which reduces the internal volume of the showcase, so it is usually 200.
limited to a certain extent. The thickness of the space layer is usually adjusted appropriately between the glass plate on the low temperature side and the glass plate on the high temperature side, but it is better to make the thickness of the air layer on the low temperature side thicker than the thickness of the air layer on the high temperature side for better insulation performance. , when heat is generated, the temperature of the glass on the high-temperature side also increases significantly.

スペーサーは通常非導電性の材質から選択使用されるが
、スペーサー自体を電極とすることも可能であり目的に
適合した材質が選択使用される。
The spacer is normally selected from non-conductive materials, but it is also possible to use the spacer itself as an electrode, and a material suitable for the purpose is selected and used.

熱線反射フィルム層および空間層を介在させた2枚の硝
子板は熱線反射フィルム層の保護のために通常適宜のシ
ーラント例えばポリサルファイドポリマーによってシー
ルされる。
Two glass plates with a heat-reflecting film layer and a space layer interposed therebetween are usually sealed with a suitable sealant, such as a polysulfide polymer, to protect the heat-reflecting film layer.

本発明の結露防止機能を有する複層硝子は次の様に使う
のが最も効果的である。
The double-layer glass having the dew condensation prevention function of the present invention is most effective when used in the following manner.

すなわち、本発明の複層硝子を組込まれた製品は、断熱
性能が熱線反射フィルム宙吊り複層硝子と同様忙極めて
良好である故、通常の条件においては通電しな(ても結
露しないので常時は通電しない。異常に湿度が高くなり
結露する状態になった時点で、熱線反射フィルム温度を
外気温度と同じにした場合の熱線反射フィルムから低温
側硝子への熱損失に見合う電熱が供給される。供給電熱
がこの損失熱量より小さい場合には防露性能が低下し、
一方供給電熱がこの損失熱量より大きい場合には低温側
硝子および高温側硝子への熱損失が増すだけで本質的に
不都合はない。
In other words, products incorporating the double-layered glass of the present invention have extremely good heat insulation performance, similar to the heat-reflective film suspended double-layered glass, so they cannot be used at all times without electricity being applied (even if no dew condensation occurs) under normal conditions. No electricity is applied.When the humidity becomes abnormally high and condensation occurs, electric heat is supplied to compensate for the heat loss from the heat ray reflective film to the glass on the low temperature side when the temperature of the heat ray reflective film is the same as the outside temperature. If the supplied electric heat is smaller than this amount of heat loss, the dew protection performance will decrease,
On the other hand, if the supplied electric heat is larger than this amount of heat loss, there is essentially no problem except that the heat loss to the low-temperature side glass and the high-temperature side glass increases.

〔作  用〕[For production]

本発明の複層硝子は、透明樹脂フィルムに金属およびま
たは金属酸化物層を形成させて導電層を構成させこれに
通電可能とした熱線反射フィルム層と適宜の厚みの空間
層を介在させているので、低高温境界域に設置すること
Kより、多湿環境下にある高温域においても充分に結露
を防止しかつ低温域への熱線の透過および伝熱を効率よ
く防止することができる。
The double-layer glass of the present invention has a conductive layer formed by forming a metal and/or metal oxide layer on a transparent resin film, and a heat ray reflective film layer that allows electricity to be passed through the conductive layer, and a space layer of an appropriate thickness. Therefore, by installing it in the low-temperature boundary region, it is possible to sufficiently prevent dew condensation even in the high-temperature region in a humid environment, and efficiently prevent the transmission of heat rays and heat transfer to the low-temperature region.

実施例 工。Example engineering.

結露防止機能を有する複層硝子の製造:1550 tn
x x 650謳の硝子板に合うよう厚み61LI!の
スペーサーを裁断した。枠に組み上げた際、接する角を
、それぞれのスペーサー間の絶縁ができるように約帆5
期づつ削り取った。このスペーサーをナイロン製のコー
ナーキーを用いて枠に組み上げ、長辺の2本のスペーサ
ーには接着剤自体も導電性を有する厚さ37μmの導電
両面テープを貼り、一方短辺のスペーサーには電気絶縁
性を有する厚さ6μmの両面テープを貼った。長辺のス
ペーサーからはそれぞれ外部電源と接続する為の、シー
ラントを通して外に出る充分な長さを持つ通電端子を取
り付けた。熱線反射フィルムを、金属積層面が上記の導
電および非導電テープに接する様に、貼り付けた。同じ
サイズの特に絶縁していない別のスペーサー枠を重ね接
着剤で固定しサブ・アセンブルとした。
Manufacture of double-layer glass with anti-condensation function: 1550 tn
Thickness 61LI to fit the glass plate of x x 650! I cut out the spacer. When assembled into a frame, make sure that the corners that touch each other are approximately 5cm apart so that there is insulation between each spacer.
I removed it one by one. This spacer is assembled into a frame using nylon corner keys, and conductive double-sided tape with a thickness of 37 μm, whose adhesive itself is conductive, is applied to the two long side spacers, while the short side spacers are electrically conductive. A 6 μm thick double-sided tape with insulating properties was applied. From each spacer on the long side, we attached a power terminal with enough length to pass through the sealant and connect to an external power source. A heat ray reflective film was attached so that the metal laminated surface was in contact with the above conductive and nonconductive tapes. Another uninsulated spacer frame of the same size was overlapped and fixed with adhesive to create a sub-assembly.

この実験に用いた熱線反射フィルムは、力μmITO4
00A 銀      80A ITO400A することによって調製したもので可視光透過率86%、
表面抵抗は1000口、コーテイング面の放射率は帆1
5、ポリエチレンテレフタレート面の放射率ハ0.60
である。このアセンブルにおける熱反射フィルムの金属
および≠#社金金属酸化物層硝子板との間の空間層およ
びこれに相対する側の空間層の厚みはそれぞれ9.5u
および9.5 mmである。
The heat ray reflective film used in this experiment has a power μmITO4
00A Silver 80A ITO400A Visible light transmittance 86%,
The surface resistance is 1000 mouths, and the emissivity of the coating surface is 1 sail.
5. Emissivity of polyethylene terephthalate surface is 0.60
It is. In this assembly, the thickness of the space layer between the metal of the heat reflective film and the metal oxide layer glass plate and the space layer on the opposite side are each 9.5u.
and 9.5 mm.

また電極の長さは1525 m、電極間の間隔は626
朋であった。また電極端子間の電気抵抗は6.50であ
った。
The length of the electrodes is 1525 m, and the spacing between the electrodes is 626 m.
It was my friend. Further, the electrical resistance between the electrode terminals was 6.50.

防露試験: それぞれ空調装置1および1′を有し隣設された低温室
2と恒温恒湿室3との境界壁の中央部に前記した複層硝
子4を設置した第1図に示す試験装置を用いた。この恒
温恒湿室の湿度測定は電気抵抗式湿度計であるアスマン
電動通風湿度計で行った。画室の温度測定はデジタル式
自動温度記録計5に接続した冷接点6と低温室側、複層
硝子の恒温恒湿室側表面および恒温恒湿室に夫々設置し
たCC熱電対7を第1図に示すように接続した。複層硝
子4は熱線反射フィルムの金属コーテイング面を低温室
側に向け、試験体取付は部に鉛直に設置した。恒温恒湿
室を温度5℃相相対変80%に保持し、低温室温度を段
階的に下げ結露の発生を観察した。
Condensation-proof test: The test shown in Fig. 1, in which the above-mentioned double-layer glass 4 was installed in the center of the boundary wall between a low-temperature chamber 2 and a constant temperature and humidity chamber 3, each having an air conditioner 1 and 1' and located adjacent to each other. using the device. The humidity in this constant temperature and humidity room was measured using an Assmann electric ventilation hygrometer, which is an electrical resistance hygrometer. The temperature of the compartment is measured using a cold junction 6 connected to a digital automatic temperature recorder 5 and CC thermocouples 7 installed on the low temperature chamber side, on the surface of the double-layer glass on the constant temperature and humidity chamber side, and in the constant temperature and humidity chamber, respectively. Connected as shown. The double-layer glass 4 was installed with the metal-coated surface of the heat ray reflective film facing the low-temperature room side, and the test specimen was mounted vertically. The constant temperature and humidity chamber was maintained at a temperature of 5° C. and a phase relative change of 80%, and the temperature of the cold chamber was lowered stepwise to observe the occurrence of dew condensation.

低温室温度を一3℃に下げた段階で周辺部にくもりが発
生した。
When the temperature in the low-temperature room was lowered to -3°C, cloudiness appeared in the surrounding area.

低温室温度を一6℃に下げた段階で、周辺部にくもりお
よび小滴が発生し、下部から中央部にかけてくもりが発
生した。この時恒温恒湿室側の硝子中央部表面温度は2
1.4℃であった。
When the temperature of the cold room was lowered to -6° C., cloudiness and small droplets occurred at the periphery, and cloudiness occurred from the bottom to the center. At this time, the surface temperature of the central part of the glass on the constant temperature and humidity chamber side is 2.
The temperature was 1.4°C.

発熱試験: 前記のようにしてくもりを生じている複層硝子の端子に
電圧計を並列に電流計を直列に接続し、変圧器を介して
商用電源に継ぎ端子間電圧17.5Vで電気を流した。
Heat generation test: Connect a voltmeter in parallel and an ammeter in series to the terminals of the double-layered glass that has become cloudy as described above, connect to a commercial power source via a transformer, and apply electricity at a voltage of 17.5 V between the terminals. It flowed.

電流計は2.7Aを示し、10分后に恒温恒湿室側の硝
子中央部表面温度は23.2℃になり硝子のくもりは完
全に取り除かれた。
The ammeter showed 2.7A, and after 10 minutes, the surface temperature of the central part of the glass on the side of the constant temperature and humidity chamber reached 23.2°C, and the cloudiness of the glass was completely removed.

実施例 2゜ 実施例1の複層硝子(6)の他に、空気層の厚みのみを
変えた同じ構造の複層硝子0および0を作った。この複
層硝子を、熱線反射フィルムの金属コーテイング面を低
温室側に向け、防露試験装置にセットした。恒温恒湿室
を温度5℃、空気流速1m1秒、低温室温度を0℃、空
気流速3m/秒に保持し、各部の温度が安定した時点で
恒温恒湿室側硝子表面温度を記録した。
Example 2 In addition to the double-layer glass (6) of Example 1, double-layer glasses 0 and 0 were made having the same structure except that only the thickness of the air layer was changed. This double-layer glass was set in a dew-proof test device with the metal-coated surface of the heat ray reflective film facing the cold room side. The constant temperature and humidity chamber was maintained at a temperature of 5° C. and an air flow rate of 1 m/sec, and the cold chamber temperature was maintained at 0° C. and an air flow rate of 3 m/sec. When the temperature of each part became stable, the glass surface temperature on the side of the constant temperature and humidity chamber was recorded.

結果は表−1の通りである。The results are shown in Table-1.

表  −1 これにより、高温側空気層厚みを低温側空気層厚みに比
べ薄(した方が断熱性が良いことがわかった。
Table 1 As a result, it was found that insulation is better when the thickness of the air layer on the high temperature side is thinner than the thickness of the air layer on the low temperature side.

実施例 3゜ 実施例2の空気層厚みの異なる3種複層硝子に実施例1
0発熱試験と同様に電流計と電圧計を接続し、変圧器を
介して商用電源に継いだ。
Example 3゜Example 1 was applied to the three types of multilayer glass with different air layer thicknesses of Example 2.
As in the zero heat generation test, an ammeter and a voltmeter were connected, and connected to a commercial power source via a transformer.

恒温恒湿室を温度5℃、空気流速1 m1秒、低温室温
度を0℃、空気流速3 m1秒に保持して、電力量一定
でフィルムに通電した。
The constant temperature and humidity chamber was maintained at a temperature of 5° C. and an air flow rate of 1 ml sec, and the cold room temperature was maintained at 0° C. and an air flow rate of 3 ml sec, and electricity was applied to the film at a constant amount of electric power.

各部の温度が安定した時点で電流、電圧、恒温恒湿側表
面硝子温度を記録した。結果は表−2の通りである。
When the temperature of each part became stable, the current, voltage, and surface glass temperature on the constant temperature and constant humidity side were recorded. The results are shown in Table-2.

これより、高温側空気層厚みを低温側空気層厚みに比べ
薄くした方が、同じ電力量でも、高温側硝子表面温度の
上昇が大きいことがわかった。
From this, it was found that when the thickness of the air layer on the high temperature side is made thinner than the thickness of the air layer on the low temperature side, the rise in the surface temperature of the glass on the high temperature side is greater even for the same amount of electric power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の結露防止機能を有する複層硝子を低温
室と恒温恒湿室の境界に設置し防露試験を行なった際の
配置図である。 図において 1および1′:  空 調 装 置、 2:低 温 室、3:恒温恒湿室、 4 :複 層 硝 子、 5 :デジタル式自動温度記
録計、6:冷  接  点、7:CC熱電 対。 特許出願人  三井東圧化学株式会社 代理人  若  林     忠 第1図
FIG. 1 is a layout diagram in which a dew-proof test was conducted by installing the double-layer glass having a dew-condensation prevention function according to the present invention at the boundary between a low-temperature chamber and a constant temperature and humidity chamber. In the figure, 1 and 1': air conditioner, 2: low temperature room, 3: constant temperature and humidity room, 4: double layer glass, 5: digital automatic temperature recorder, 6: cold junction, 7: CC thermocouple. Patent applicant Mitsui Toatsu Chemical Co., Ltd. Agent Tadashi Wakabayashi Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)2枚の硝子板の間に、透明樹脂フイルムに500
0Å以下の厚みに金属およびまたは金属酸化物層を形成
させて導電層を構成し該導電層の平行する端部に電極お
よび通電端子を構成させてなる熱線反射フイルム層およ
び空間層を介在させることを特徴とする結露防止機能を
有する複層硝子。
(1) Place a transparent resin film between two glass plates with a 500%
A conductive layer is formed by forming a metal and/or metal oxide layer with a thickness of 0 Å or less, and a heat ray reflective film layer and a space layer are interposed on the parallel ends of the conductive layer, which constitute electrodes and current-carrying terminals. Double-layer glass with anti-condensation function.
JP62018471A 1987-01-30 1987-01-30 Composite-layer glass having function for preventing dew condensation Pending JPS63190746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62018471A JPS63190746A (en) 1987-01-30 1987-01-30 Composite-layer glass having function for preventing dew condensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62018471A JPS63190746A (en) 1987-01-30 1987-01-30 Composite-layer glass having function for preventing dew condensation

Publications (1)

Publication Number Publication Date
JPS63190746A true JPS63190746A (en) 1988-08-08

Family

ID=11972556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62018471A Pending JPS63190746A (en) 1987-01-30 1987-01-30 Composite-layer glass having function for preventing dew condensation

Country Status (1)

Country Link
JP (1) JPS63190746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043919A1 (en) * 1998-02-24 1999-09-02 Figla Co., Ltd. Light-transmitting sheet material having heat generation function and system using the sheet-material
CN1328468C (en) * 2004-08-12 2007-07-25 李勇强 Combined door and window
KR100865867B1 (en) * 1998-12-25 2008-10-29 피그라 가부시키 가이샤 Light-transmitting sheet material having heat generation function and system using the sheet-material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS419196Y1 (en) * 1964-02-12 1966-05-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS419196Y1 (en) * 1964-02-12 1966-05-02

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043919A1 (en) * 1998-02-24 1999-09-02 Figla Co., Ltd. Light-transmitting sheet material having heat generation function and system using the sheet-material
KR100865867B1 (en) * 1998-12-25 2008-10-29 피그라 가부시키 가이샤 Light-transmitting sheet material having heat generation function and system using the sheet-material
CN1328468C (en) * 2004-08-12 2007-07-25 李勇强 Combined door and window

Similar Documents

Publication Publication Date Title
CA1105975A (en) Multi-pane glazed door defrosting system
US3379859A (en) Electrically heated transparent panel and prtective circuit therefor
ES2425843T3 (en) Electric thermal glass panel, manufacturing procedure, as well as window
US7728260B2 (en) Warm window system
EP0036657A2 (en) Infrared reflective, visible light transparent windows
US20030127452A1 (en) Electrically conductive heated glass panel assembly, control system, and method for producing panels
US2625640A (en) Multiple glass sheet glazing unit
WO2001058213A1 (en) Vacuum deposition of bus bars onto conductive transparent films
JP5424059B2 (en) Multi-layer glass structure and cold insulation showcase
BR112015012505B1 (en) FRIDGE DOOR/WINDOW
US20150136460A1 (en) Enhanced Bus Bar System For Aircraft Transparencies
US20140265758A1 (en) Three side silver frit on heated glass
KR100228516B1 (en) Multi-layer glass
JPS63190746A (en) Composite-layer glass having function for preventing dew condensation
JPS6226308B2 (en)
US20160353526A1 (en) Heat generating glass panel
JPH07196341A (en) Cloudiness removing glass
WO2012043104A1 (en) Planar heat generation body and heating device
JPH11314943A (en) Anti-fogging glass
JP4033579B2 (en) Electrode structure of plate material having heat generation function and electrode forming method
JP2021018836A (en) Heat-generating sheet with excellent flexibility
JPH0437867Y2 (en)
CN217031766U (en) Plate-like object with demisting function and refrigerating and freezing device
US3388462A (en) Method of producing multiple glass sheet glazing units
JPH0680388B2 (en) See-through board