JP2001201760A - Double layer type super twisted nematic liquid crystal display device - Google Patents

Double layer type super twisted nematic liquid crystal display device

Info

Publication number
JP2001201760A
JP2001201760A JP2000013220A JP2000013220A JP2001201760A JP 2001201760 A JP2001201760 A JP 2001201760A JP 2000013220 A JP2000013220 A JP 2000013220A JP 2000013220 A JP2000013220 A JP 2000013220A JP 2001201760 A JP2001201760 A JP 2001201760A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
twisted nematic
nematic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000013220A
Other languages
Japanese (ja)
Inventor
Hiroshi Ema
弘 江馬
Mitsuru Takigawa
満 滝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosiden Corp
Original Assignee
Hosiden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosiden Corp filed Critical Hosiden Corp
Priority to JP2000013220A priority Critical patent/JP2001201760A/en
Priority to DE2001102394 priority patent/DE10102394B4/en
Priority to GB0101543A priority patent/GB2360851B/en
Publication of JP2001201760A publication Critical patent/JP2001201760A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1397Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell

Abstract

PROBLEM TO BE SOLVED: To provide a double layer type STN liquid crystal display device in which transparent resistive films formed on inner surfaces of two sheets of glass substrates constituting a compensating liquid crystal device are connected to each other in parallel and electrically heated through a common source. SOLUTION: In a double layer type STN liquid crystal display device consisting of a displaying liquid crystal device 1 formed with a displaying electrode 13 and a compensating liquid crystal device 4 having an optically a compensative relation with the displaying liquid crystal device 1, at least two sides of transparent electrode films 43, 44 formed on inner surfaces of two sheets of glass substrates 5, 6 opposed to each other constituting the compensating liquid crystal device 4 are short-circuited by a short-circuiting conductive material member 8, and electric heater electrodes 7 are extended/formed on both sides opposing upper/lower or left/right of the transparent electrode films, and the common source is connected between both electric heater electrodes 7, and the transparent electrode films are used as electric heaters.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、2層型超捻れネ
マチック方式液晶表示素子に関し、特に、補償用液晶素
子を構成する2枚のガラス基板の内表面に形成される透
明抵抗膜を並列接続して共通電源により通電加熱する2
層型超捻れネマチック方式液晶表示素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-layer type super-twisted nematic liquid crystal display device, and in particular, connects a transparent resistive film formed on the inner surface of two glass substrates constituting a compensating liquid crystal device in parallel. Heating by common power supply 2
The present invention relates to a layer type super twisted nematic liquid crystal display device.

【0002】[0002]

【従来の技術】図3を参照して、2層型超捻れネマチッ
ク方式液晶表示素子の従来例を説明する。2層型超捻れ
ネマチック(STN)方式液晶表示素子は、2枚のガラ
ス基板2およびガラス基板3の間に形成した間隙にST
N形液晶を封入して表示用液晶素子1を構成する。一方
において、2枚のガラス基板5とガラス基板6の間に形
成した間隙に、表示用液晶素子1のSTN形液晶の捩れ
方向とは逆方向に捩れたSTN形液晶を封入し、表示用
液晶素子1に生ずる光学位相差を補償する補償用液晶素
子4を構成する。そして、これら表示用液晶素子1と補
償用液晶素子4とは重ねられている。
2. Description of the Related Art A conventional example of a two-layer type super twisted nematic liquid crystal display device will be described with reference to FIG. The two-layer type super twisted nematic (STN) type liquid crystal display element has an STN in a gap formed between two glass substrates 2 and 3.
The display liquid crystal element 1 is formed by enclosing an N-type liquid crystal. On the other hand, an STN liquid crystal twisted in a direction opposite to the twisting direction of the STN liquid crystal of the display liquid crystal element 1 is sealed in a gap formed between the two glass substrates 5 and 6, and the display liquid crystal is filled. A compensating liquid crystal element 4 for compensating an optical phase difference generated in the element 1 is formed. The display liquid crystal element 1 and the compensation liquid crystal element 4 are overlapped.

【0003】ここで、この2層型STN方式液晶表示素
子の応答時間の温度特性について、図4および図5を参
照して説明する。時間t=t1 で振幅一定の矩形波電圧
Vを印加し、t=t2 で印加電圧をゼロにしたとする
と、表示用液晶素子1の相対輝度は図3(b)に示され
る如くに変化する。この図において、Td、Td(off)
は遅延時間、Trは立ち上がり時間、Tfは立ち下がり
時間、Ton=Td+Trはオン時間、Toff =Td(of
f) +Tfはオフ時間である。
Here, the temperature characteristics of the response time of the two-layer type STN mode liquid crystal display device will be described with reference to FIGS. 4 and 5. FIG. Assuming that a rectangular wave voltage V having a constant amplitude is applied at time t = t 1 and the applied voltage is made zero at t = t 2 , the relative luminance of the display liquid crystal element 1 becomes as shown in FIG. Change. In this figure, Td, Td (off)
Is a delay time, Tr is a rise time, Tf is a fall time, Ton = Td + Tr is an on time, and Toff = Td (of
f) + Tf is the off time.

【0004】ところで、液体は一般に温度によりその粘
度が変化する。特に、液晶は固体と液体の性質を兼ね備
えているので、温度による粘度の変化が顕著である。図
5を参照するに、温度が0℃以下になると、粘度の上昇
に伴って遅延時間Tdおよび立ち上がり時間Trが極端
に遅くなり、従って、オン時間Ton=Td+Trは極端
に遅くなる。−30℃付近の低温においては、2層型S
TN方式液晶表示素子はオン時間Tonが遅すぎて実用に
ならなくなる。オフ時間Toff =Td(off)+Tfにつ
いても同様である。この低温における応答時間の増加は
コントラストが高い表示素子程顕著に現れ、これは車載
用の液晶パネルの如く高コントラストの液晶表示素子の
欠点とされている。
In general, the viscosity of a liquid changes depending on the temperature. In particular, since liquid crystals have both solid and liquid properties, the change in viscosity with temperature is remarkable. Referring to FIG. 5, when the temperature becomes 0 ° C. or lower, the delay time Td and the rise time Tr become extremely slow with the increase in the viscosity, and accordingly, the on-time Ton = Td + Tr becomes extremely slow. At low temperatures around -30 ° C, the two-layer S
The TN mode liquid crystal display element is not practical because the on-time Ton is too long. The same applies to the off time Toff = Td (off) + Tf. This increase in response time at low temperatures is more pronounced in display devices with higher contrast, which is a drawback of high-contrast liquid crystal display devices such as in-vehicle liquid crystal panels.

【0005】以上のことから、補償用液晶素子4を構成
するガラス基板5およびガラス基板6の内表面に透明抵
抗膜を形成し、これらガラス基板の内の一方のガラス基
板5の透明抵抗膜5aのみに必要に応じて通電して電気
ヒータとして使用している。図において、透明抵抗膜5
aとしてITO薄膜がガラス基板5の内表面全面に形成
されている。ガラス基板5の内面の左右に対向する2辺
には、透明抵抗膜5aに重なって電気ヒータ電極5bお
よび電気ヒータ電極5cが形成され、これら電気ヒータ
電極5bと電気ヒータ電極5cとの間にスイッチSWを
介して電源が接続される。この透明抵抗膜5aを電気ヒ
ータとして使用することにより、2層型STN方式液晶
表示素子の内部温度の著しい低下を防止することができ
る。
As described above, a transparent resistance film is formed on the inner surfaces of the glass substrates 5 and 6 constituting the compensating liquid crystal element 4, and the transparent resistance film 5a of one of the glass substrates 5 is formed. Only as necessary, electricity is supplied to use as an electric heater. In the figure, the transparent resistive film 5
As a, an ITO thin film is formed on the entire inner surface of the glass substrate 5. An electric heater electrode 5b and an electric heater electrode 5c are formed on two sides of the inner surface of the glass substrate 5 opposed to the left and right so as to overlap the transparent resistance film 5a, and a switch is provided between the electric heater electrode 5b and the electric heater electrode 5c. A power supply is connected via the SW. By using the transparent resistance film 5a as an electric heater, it is possible to prevent a significant decrease in the internal temperature of the two-layer STN mode liquid crystal display element.

【0006】[0006]

【発明が解決しようとする課題】先の2層型STN方式
液晶表示素子は、補償用液晶素子4を構成する2枚のガ
ラス基板5およびガラス基板6の内の一方のガラス基板
5の内表面に形成されれる透明抵抗膜5aのみに、電気
ヒータ電極5bと電気ヒータ電極5cを介して積極的に
電圧を印加、通電して加熱するものである。ところで、
一方のガラス基板5の内表面に形成されれる透明抵抗膜
5aと他方のガラス基板6の内表面に形成される透明抵
抗膜とは間隙が小さいところから浮遊コンデンサを構成
しているので、この浮遊コンデンサを介して他方のガラ
ス基板6の内表面に形成される透明抵抗膜にも電源から
電流が流通せしめられ、この透明抵抗膜は電位を有する
に到る。
The two-layer type STN type liquid crystal display device has an inner surface of one of two glass substrates 5 and 6 constituting a compensating liquid crystal device 4. Only the transparent resistance film 5a formed above is heated and heated by applying a voltage positively through the electric heater electrode 5b and the electric heater electrode 5c. by the way,
Since the transparent resistive film 5a formed on the inner surface of the one glass substrate 5 and the transparent resistive film formed on the inner surface of the other glass substrate 6 form a floating capacitor from a place where the gap is small, the floating capacitor is formed. A current is also passed from a power supply to a transparent resistance film formed on the inner surface of the other glass substrate 6 via a capacitor, and the transparent resistance film has a potential.

【0007】ここで、透明抵抗膜5aは電圧印加、通電
によりそれ自体内に電位差が生じており、電気ヒータ電
極5b側が12Vであるものとすると、電気ヒータ電極
5cにおいてはおよそ0Vである。そして、ガラス基板
6の内表面に形成される透明抵抗膜は一様におよそ6V
の電位を有するに到る。従って、補償用液晶素子4に封
入されたSTN形液晶42はこの両透明抵抗膜間の電位
差により駆動される。即ち、補償用液晶素子4の中央部
においては両透明抵抗膜間の電位は等しく液晶の駆動は
生じないが、補償用液晶素子4の対向する左右両端部近
傍においては電位差は6Vとなり、この電位差により液
晶は駆動される。この電位差に起因する液晶の駆動によ
り、特に、補償用液晶素子4の対向する左右両端部近傍
において表示用液晶素子1と補償用液晶素子4との間の
適正な光学位相差補償関係が損なわれることになる。
Here, a potential difference is generated in the transparent resistive film 5a by application of a voltage and energization, and when the electric heater electrode 5b side is 12V, the electric resistance is about 0V at the electric heater electrode 5c. The transparent resistive film formed on the inner surface of the glass substrate 6 has a uniform
Having a potential of Therefore, the STN liquid crystal 42 sealed in the compensating liquid crystal element 4 is driven by the potential difference between the two transparent resistive films. That is, in the central portion of the compensating liquid crystal element 4, the potential between the two transparent resistive films is equal, and the liquid crystal is not driven. However, the potential difference is 6 V near the opposite left and right ends of the compensating liquid crystal element 4, and this potential difference is Drives the liquid crystal. Due to the driving of the liquid crystal caused by this potential difference, an appropriate optical phase difference compensation relationship between the display liquid crystal element 1 and the compensation liquid crystal element 4 is impaired, especially near the left and right opposite ends of the compensation liquid crystal element 4. Will be.

【0008】この発明は、補償用液晶素子を構成する2
枚のガラス基板の内表面に形成される透明抵抗膜を並列
接続して共通電源により通電加熱することにより上述の
問題を解消した2層型STN方式液晶表示素子を提供す
るものである。
According to the present invention, there is provided a liquid crystal element for compensating 2
An object of the present invention is to provide a two-layer STN mode liquid crystal display device in which the above-mentioned problem is solved by connecting transparent resistance films formed on the inner surfaces of a plurality of glass substrates in parallel and heating them with a common power supply.

【0009】[0009]

【課題を解決するための手段】請求項1:表示用電極1
3が形成された表示用液晶素子1と、この表示用液晶素
子1と光学的に補償関係をなす補償用液晶素子4とより
成る2層型STN方式液晶表示素子において、補償用液
晶素子4を構成する対向する2枚のガラス基板5、6の
内表面に形成される透明電極膜43、44を短絡用導電
材料部材8により少なくとも2辺を短絡し、透明電極膜
の上下或いは左右に対向する両辺に電気ヒータ電極7を
延伸形成し、両電気ヒータ電極7間に共通電源を接続し
て透明電極膜を電気ヒータとして使用する2層型STN
方式液晶表示素子を構成した。
Means for Solving the Problems Claim 1: Display electrode 1
In a two-layer type STN mode liquid crystal display element including a display liquid crystal element 1 on which a liquid crystal element 3 is formed and a compensation liquid crystal element 4 optically compensating with the display liquid crystal element 1, the compensation liquid crystal element 4 At least two sides of the transparent electrode films 43 and 44 formed on the inner surfaces of the two opposing glass substrates 5 and 6 are short-circuited by the short-circuiting conductive material member 8 so as to oppose the transparent electrode films vertically or horizontally. A two-layer type STN in which electric heater electrodes 7 are formed to extend on both sides and a common power supply is connected between the electric heater electrodes 7 to use a transparent electrode film as an electric heater.
A liquid crystal display device was constructed.

【0010】そして、請求項2:請求項1に記載される
2層型STN方式液晶表示素子において、透明電極膜4
3、44をITOにより形成した2層型STN方式液晶
表示素子を構成した。また、請求項3:請求項1および
請求項2の内の何れかに記載される2層型STN方式液
晶表示素子において、短絡用導電材料部材8は、表面に
金属コーティングを施されたスペーサ81とこのスペー
サ81を透明抵抗膜43と透明抵抗膜44の間に電気機
械的に接合固定する接着剤82より成る2層型STN方
式液晶表示素子を構成した。
In the two-layer STN mode liquid crystal display element according to the present invention, the transparent electrode film 4
A two-layer STN mode liquid crystal display element in which Nos. 3 and 44 were formed of ITO was formed. Claim 3: In the two-layer STN mode liquid crystal display element according to any one of claims 1 and 2, the short-circuiting conductive material member 8 includes a spacer 81 having a surface coated with a metal coating. Thus, a two-layer STN mode liquid crystal display device comprising an adhesive 82 for electro-mechanically bonding and fixing the spacer 81 between the transparent resistive film 43 and the transparent resistive film 44 was constructed.

【0011】更に、請求項4:請求項1および請求項2
の内の何れかに記載される2層型STN方式液晶表示素
子において、電気ヒータ電極7をガラス基板5の透明抵
抗膜43とガラス基板6の透明抵抗膜44の間に形成さ
れる間隙に進入介在させて短絡用導電材料部材8として
共通に使用する2層型STN方式液晶表示素子を構成し
た。そして、請求項5:請求項4に記載される2層型S
TN方式液晶表示素子において、電気ヒータ電極7形成
導電材料をガラス基板5の透明抵抗膜43とガラス基板
6の透明抵抗膜44の間に形成される間隙にまで充填し
て電気ヒータ電極7を構成した2層型STN方式液晶表
示素子を構成した。
Further, claim 4: claim 1 and claim 2
In the two-layer STN mode liquid crystal display element described in any one of the above, the electric heater electrode 7 enters the gap formed between the transparent resistive film 43 of the glass substrate 5 and the transparent resistive film 44 of the glass substrate 6. A two-layer type STN type liquid crystal display element commonly used as the short-circuit conductive material member 8 with the interposition was formed. Claim 5: The two-layer type S according to claim 4
In the TN type liquid crystal display element, the electric heater electrode 7 is formed by filling a conductive material for forming the electric heater electrode 7 into a gap formed between the transparent resistive film 43 of the glass substrate 5 and the transparent resistive film 44 of the glass substrate 6. Thus, a two-layer type STN mode liquid crystal display device was constructed.

【0012】また、請求項6:請求項1ないし請求項5
の内の何れかに記載される2層型STN方式液晶表示素
子において、補償用液晶素子4を構成する対向する2枚
のガラス基板5、6間をメインシール材41により接合
封止し、短絡用導電材料部材8を電気ヒータ電極7に平
行に形成した2層型STN方式液晶表示素子を構成し
た。
Also, claim 6: claims 1 to 5
In the two-layer type STN type liquid crystal display element described in any one of the above, two opposing glass substrates 5 and 6 constituting the compensating liquid crystal element 4 are joined and sealed by the main seal material 41, and short-circuited. A two-layer type STN type liquid crystal display element in which a conductive material member 8 was formed in parallel with the electric heater electrode 7 was constructed.

【0013】[0013]

【発明の実施の形態】この発明の実施の形態を図1の実
施例を参照して説明する。図1において、表示用液晶素
子1のガラス基板2の内表面には、透明表示電極13が
予め形成されている。ガラス基板3の内表面には、1枚
の透明共通電極14が全面に予め形成されている。そし
て、ガラス基板2とガラス基板3の間に形成される間隙
に、STN形液晶12を封入してメインシール部材11
により封止している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the embodiment shown in FIG. In FIG. 1, a transparent display electrode 13 is formed in advance on the inner surface of a glass substrate 2 of the display liquid crystal element 1. On the inner surface of the glass substrate 3, one transparent common electrode 14 is formed on the entire surface in advance. Then, an STN liquid crystal 12 is sealed in a gap formed between the glass substrate 2 and the glass substrate 3 so that the main seal member 11 is formed.
Sealing.

【0014】補償用液晶素子4のガラス基板5の一方の
表面には、1枚の透明抵抗膜43が全面に予め形成され
ている。この透明抵抗膜43の左右に対向する両辺には
導電材料層より成る電気ヒータ電極7が延伸形成されて
いる。ガラス基板6の一方の表面には、1枚の透明抵抗
膜44が全面に予め形成されている。そして、ガラス基
板5の透明抵抗膜43とガラス基板6の透明抵抗膜44
の間に形成される間隙に、表示用液晶素子1に封入した
STN形液晶12の捩れ方向とは逆方向に捩れたSTN
形液晶42を封入してシール部材41により封止してい
る。ガラス基板5の透明抵抗膜43とガラス基板6の透
明抵抗膜44の間は、それぞれの左右に対向する両辺に
おいて短絡用導電材料部材8により結合短絡され、両透
明抵抗膜は並列に接続されたことになる。並列に接続さ
れた透明抵抗膜43および透明抵抗膜44は、両電気ヒ
ータ電極7を介して共通電源に接続され、通電により発
熱せしめられる。
On one surface of the glass substrate 5 of the compensating liquid crystal element 4, one transparent resistance film 43 is formed on the entire surface in advance. An electric heater electrode 7 made of a conductive material layer is formed to extend on both sides of the transparent resistance film 43 opposed to the left and right. On one surface of the glass substrate 6, one transparent resistance film 44 is previously formed on the entire surface. Then, the transparent resistance film 43 of the glass substrate 5 and the transparent resistance film 44 of the glass substrate 6
STN twisted in the direction opposite to the twisting direction of the STN type liquid crystal 12 sealed in the display liquid crystal element 1 in the gap formed between them.
A liquid crystal 42 is sealed and sealed by a seal member 41. The transparent resistive film 43 of the glass substrate 5 and the transparent resistive film 44 of the glass substrate 6 are short-circuited by a short-circuiting conductive material member 8 on both sides facing each other, and the two transparent resistive films are connected in parallel. Will be. The transparent resistive film 43 and the transparent resistive film 44 connected in parallel are connected to a common power supply via both electric heater electrodes 7 and generate heat when energized.

【0015】以上の通り、透明抵抗膜43および透明抵
抗膜44は並列に接続した状態で共通の電源に接続する
ので、両透明抵抗膜は実質上同電位であり、その結果、
両透明抵抗膜の間の液晶が駆動されることはない。そし
て、透明抵抗膜は並列接続したことで、並列抵抗は透明
抵抗膜1枚の抵抗より小さくなる。従って、発熱量は増
加して発熱効果は向上する。即ち、発熱量を増大するに
は抵抗値の低い透明抵抗膜を選択使用する必要がある
が、抵抗値の低い透明抵抗膜は一般にコスト高である。
この発明は、コスト高の透明抵抗膜を形成せずに、汎用
の廉価のITOにより透明抵抗膜を形成し、これを並列
接続して並列合成抵抗を小さくし、発熱効果を向上して
いる。
As described above, since the transparent resistive films 43 and 44 are connected to a common power supply in a state of being connected in parallel, the two transparent resistive films have substantially the same potential.
The liquid crystal between the two transparent resistance films is not driven. Then, since the transparent resistance films are connected in parallel, the parallel resistance becomes smaller than the resistance of one transparent resistance film. Therefore, the amount of heat generated increases, and the heat generation effect is improved. That is, in order to increase the calorific value, it is necessary to select and use a transparent resistance film having a low resistance value, but a transparent resistance film having a low resistance value is generally expensive.
According to the present invention, a transparent resistive film is formed by a general-purpose inexpensive ITO without forming a costly transparent resistive film, and the transparent resistive films are connected in parallel to reduce a parallel combined resistance, thereby improving a heat generating effect.

【0016】図2(a)を参照して補償用液晶素子の左
右に対向する両辺近傍について、詳細に説明する。短絡
用導電材料部材8は、表面に金属コーティングを施され
たスペーサ81とこのスペーサ81を透明抵抗膜43と
透明抵抗膜44の間に電気機械的に接合固定する接着剤
82より成る。更に、図2(b)を参照して補償用液晶
素子の左右に対向する両辺近傍について説明する。これ
は、ガラス基板5の透明抵抗膜43の左右に対向する両
辺に延伸形成される両電気ヒータ電極7を、その幅を拡
大することによりガラス基板5の透明抵抗膜43とガラ
ス基板6の透明抵抗膜44の間に形成される間隙にまで
進入介在させて短絡用導電材料部材8として共通に使用
し、短絡構造を簡略化している。即ち、電気ヒータ電極
7形成導電材料をガラス基板5の透明抵抗膜43とガラ
ス基板6の透明抵抗膜44の間に形成される間隙にまで
充填して電気ヒータ電極7を構成する。電気ヒータ電極
7形成導電材料として銀ペーストを使用することによ
り、電気ヒータ電極7と短絡用導電材料部材8とを同時
に容易に形成することができる。
Referring to FIG. 2A, the vicinity of both sides of the compensating liquid crystal element which are opposed to each other will be described in detail. The short-circuiting conductive material member 8 is composed of a spacer 81 having a metal coating on the surface and an adhesive 82 for electro-mechanically bonding and fixing the spacer 81 between the transparent resistive film 43 and the transparent resistive film 44. Further, the vicinity of both sides of the compensating liquid crystal element facing left and right will be described with reference to FIG. This is because the electric heater electrodes 7 formed on both sides of the transparent resistive film 43 of the glass substrate 5 which are opposed to the left and right sides are expanded so that the transparent resistive film 43 of the glass substrate 5 and the transparent resistive film 43 of the glass substrate 6 are enlarged. A short circuit structure is simplified by penetrating into the gap formed between the resistive films 44 and commonly used as the conductive material member 8 for short circuit. That is, the electric heater electrode 7 is formed by filling the conductive material for forming the electric heater electrode 7 into the gap formed between the transparent resistive film 43 of the glass substrate 5 and the transparent resistive film 44 of the glass substrate 6. By using a silver paste as the conductive material for forming the electric heater electrode 7, the electric heater electrode 7 and the short-circuit conductive material member 8 can be easily formed at the same time.

【0017】[0017]

【発明の効果】以上の通りであって、この発明は、補償
用液晶素子を構成する2枚のガラス基板の内表面に形成
される透明抵抗膜の双方に共通電源を接続して通電加熱
することにより、透明抵抗膜の一方のみに通電加熱する
従来例において両透明抵抗膜の間に発生していた電位差
をキャンセルすることができ、その結果、両透明抵抗膜
の間の液晶が駆動されることはなく、光学的補償効果を
維持することができる。
As described above, according to the present invention, a common power supply is connected to both of the transparent resistive films formed on the inner surfaces of the two glass substrates constituting the compensating liquid crystal element, and current is heated. This makes it possible to cancel the potential difference between the two transparent resistance films in the conventional example in which only one of the transparent resistance films is energized and heated. As a result, the liquid crystal between the two transparent resistance films is driven. In this case, the optical compensation effect can be maintained.

【0018】そして、透明電極膜43、44を廉価なI
TOにより形成し、これにより液晶表示素子の製造コス
トを低下している。また、電気ヒータ電極7をガラス基
板5の透明抵抗膜43とガラス基板6の透明抵抗膜44
の間に形成される間隙に進入介在させて短絡用導電材料
部材8として共通に使用することにより、透明抵抗膜間
の短絡構造を簡略化している。更に、電気ヒータ電極7
形成導電材料をガラス基板5の透明抵抗膜43とガラス
基板6の透明抵抗膜44の間に形成される間隙に迄充填
して電気ヒータ電極7を構成することにより、透明抵抗
膜間の短絡構造を簡単容易に形成することができる。電
気ヒータ電極7形成導電材料として銀ペーストを使用す
ることにより、電気ヒータ電極7と短絡用導電材料部材
8とを同時に容易に形成することができる。
Then, the transparent electrode films 43 and 44 are made of inexpensive I
It is formed by TO, which reduces the manufacturing cost of the liquid crystal display element. The electric heater electrode 7 is connected to the transparent resistance film 43 of the glass substrate 5 and the transparent resistance film 44 of the glass substrate 6.
The short-circuiting structure between the transparent resistive films is simplified by penetrating and interposing the gap formed between them and commonly using the conductive material member 8 for short-circuiting. Further, the electric heater electrode 7
By forming the electric heater electrode 7 by filling the formed conductive material into the gap formed between the transparent resistive film 43 of the glass substrate 5 and the transparent resistive film 44 of the glass substrate 6, a short-circuit structure between the transparent resistive films is formed. Can be formed easily and easily. By using a silver paste as the conductive material for forming the electric heater electrode 7, the electric heater electrode 7 and the short-circuit conductive material member 8 can be easily formed at the same time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例を説明する図。FIG. 1 illustrates an embodiment.

【図2】図1の一部の詳細を説明する図。FIG. 2 is a diagram illustrating a part of FIG. 1 in detail.

【図3】従来例を説明する図。FIG. 3 illustrates a conventional example.

【図4】液晶表示素子の動作を説明する図。FIG. 4 illustrates an operation of a liquid crystal display element.

【図5】液晶表示素子の応答時間の温度特性を示す図。FIG. 5 is a diagram showing a temperature characteristic of a response time of a liquid crystal display element.

【符号の説明】[Explanation of symbols]

1 表示用液晶素子 13 表示用電極 4 補償用液晶素子 5 ガラス基板 6 ガラス基板 7 電気ヒータ電極 8 短絡用導電材料部材 43 透明電極膜 44 透明電極膜 Reference Signs List 1 display liquid crystal element 13 display electrode 4 compensation liquid crystal element 5 glass substrate 6 glass substrate 7 electric heater electrode 8 conductive material member for short circuit 43 transparent electrode film 44 transparent electrode film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09F 9/00 304 G09F 9/00 304C Fターム(参考) 2H089 HA25 JA09 KA20 LA03 LA07 NA15 PA04 QA06 RA10 TA02 TA08 2H092 GA63 HA04 NA01 PA03 PA06 QA10 2H093 NA07 NC01 NC63 NC76 ND02 ND54 NE03 NF13 NG03 5G435 AA00 AA12 AA17 BB12 EE09 EE33 EE41 FF00 GG21 HH02 HH12 HH15 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G09F 9/00 304 G09F 9/00 304C F term (Reference) 2H089 HA25 JA09 KA20 LA03 LA07 NA15 PA04 QA06 RA10 TA02 TA08 2H092 GA63 HA04 NA01 PA03 PA06 QA10 2H093 NA07 NC01 NC63 NC76 ND02 ND54 NE03 NF13 NG03 5G435 AA00 AA12 AA17 BB12 EE09 EE33 EE41 FF00 GG21 HH02 HH12 HH15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表示用電極が形成された表示用液晶素子
と、この表示用液晶素子と光学的に補償関係をなす補償
用液晶素子とより成る2層型超捻れネマチック方式液晶
表示素子において、 補償用液晶素子を構成する対向する2枚のガラス基板の
内表面に形成される透明電極膜を短絡用導電材料部材に
より少なくとも2辺を短絡し、透明電極膜の上下或いは
左右に対向する両辺に電気ヒータ電極を延伸形成し、両
電気ヒータ電極間に共通電源を接続して透明電極膜を電
気ヒータとして使用することを特徴とする2層型超捻れ
ネマチック方式液晶表示素子。
1. A two-layer super-twisted nematic liquid crystal display device comprising: a display liquid crystal element on which a display electrode is formed; and a compensation liquid crystal element optically compensating with the display liquid crystal element. At least two sides of the transparent electrode film formed on the inner surfaces of two opposing glass substrates constituting the compensating liquid crystal element are short-circuited by a short-circuiting conductive material member, and the transparent electrode film is formed on both sides of the transparent electrode film facing up and down or left and right A two-layer type super-twisted nematic liquid crystal display device, wherein an electric heater electrode is formed by extension, and a common power supply is connected between the electric heater electrodes to use a transparent electrode film as an electric heater.
【請求項2】 請求項1に記載される2層型超捻れネマ
チック方式液晶表示素子において、 透明電極膜をITOにより形成したことを特徴とする2
層型超捻れネマチック方式液晶表示素子。
2. The two-layer type super-twisted nematic liquid crystal display device according to claim 1, wherein the transparent electrode film is formed of ITO.
A layer type super twisted nematic liquid crystal display device.
【請求項3】 請求項1および請求項2の内の何れかに
記載される2層型超捻れネマチック方式液晶表示素子に
おいて、 短絡用導電材料部材は、表面に金属コーティングを施さ
れたスペーサとこのスペーサを透明抵抗膜と透明抵抗膜
の間に電気機械的に接合固定する接着剤より成ることを
特徴とする2層型超捻れネマチック方式液晶表示素子。
3. The two-layer super-twisted nematic liquid crystal display device according to claim 1, wherein the short-circuiting conductive material member comprises a spacer having a surface coated with a metal coating. A two-layer type super-twisted nematic liquid crystal display device comprising an adhesive for electromechanically bonding and fixing the spacer between the transparent resistive films.
【請求項4】 請求項1および請求項2の内の何れかに
記載される2層型超捻れネマチック方式液晶表示素子に
おいて、 電気ヒータ電極をガラス基板の透明抵抗膜とガラス基板
の透明抵抗膜の間に形成される間隙に進入介在させて短
絡用導電材料部材として共通に使用することを特徴とす
る2層型超捻れネマチック方式液晶表示素子。
4. The two-layer type super-twisted nematic liquid crystal display device according to claim 1, wherein the electric heater electrode comprises a transparent resistive film on a glass substrate and a transparent resistive film on a glass substrate. A two-layer type super-twisted nematic liquid crystal display element, wherein the two-layer type super twisted nematic liquid crystal display element is commonly used as a short-circuit conductive material member by penetrating into and interposing a gap formed between the two.
【請求項5】 請求項4に記載される2層型超捻れネマ
チック方式液晶表示素子において、 電気ヒータ電極形成導電材料をガラス基板の透明抵抗膜
とガラス基板の透明抵抗膜の間に形成される間隙にまで
充填して電気ヒータ電極を構成したことを特徴とする2
層型超捻れネマチック方式液晶表示素子。
5. The two-layer type super-twisted nematic liquid crystal display device according to claim 4, wherein a conductive material for forming an electric heater electrode is formed between the transparent resistive film of the glass substrate and the transparent resistive film of the glass substrate. The electric heater electrode is constituted by filling up to the gap.
A layer type super twisted nematic liquid crystal display device.
【請求項6】 請求項1ないし請求項5の内の何れかに
記載される2層型超捻れネマチック方式液晶表示素子に
おいて、 補償用液晶素子を構成する対向する2枚のガラス基板間
をメインシール材により接合封止し、短絡用導電材料部
材を電気ヒータ電極に平行に形成したことを特徴とする
2層型超捻れネマチック方式液晶表示素子。
6. A two-layer type super-twisted nematic liquid crystal display device according to claim 1, wherein a gap between two opposing glass substrates constituting a compensating liquid crystal device is mainly provided. A two-layer super-twisted nematic liquid crystal display device, wherein a short-circuiting conductive material member is formed parallel to an electric heater electrode by bonding and sealing with a sealing material.
JP2000013220A 2000-01-21 2000-01-21 Double layer type super twisted nematic liquid crystal display device Pending JP2001201760A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000013220A JP2001201760A (en) 2000-01-21 2000-01-21 Double layer type super twisted nematic liquid crystal display device
DE2001102394 DE10102394B4 (en) 2000-01-21 2001-01-19 Double-layer STN liquid crystal display element
GB0101543A GB2360851B (en) 2000-01-21 2001-01-22 Two-layer super-twisted nematic liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000013220A JP2001201760A (en) 2000-01-21 2000-01-21 Double layer type super twisted nematic liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2001201760A true JP2001201760A (en) 2001-07-27

Family

ID=18540837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000013220A Pending JP2001201760A (en) 2000-01-21 2000-01-21 Double layer type super twisted nematic liquid crystal display device

Country Status (3)

Country Link
JP (1) JP2001201760A (en)
DE (1) DE10102394B4 (en)
GB (1) GB2360851B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228591A1 (en) * 2002-06-26 2004-01-15 Siemens Ag DSTN display with electromagnetic shielding
JP2008085287A (en) * 2006-08-28 2008-04-10 Hitachi Chem Co Ltd Method for connecting circuit member
JP2010039386A (en) * 2008-08-07 2010-02-18 Denso Corp Liquid crystal display

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0026616D0 (en) 2000-10-31 2000-12-13 Varintelligent Bvi Ltd A heater
DE10164063B4 (en) * 2001-12-24 2007-12-06 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Composite disc with an electrically controllable functional element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093355A (en) * 1977-02-04 1978-06-06 General Motors Corporation Symmetrical internal heater for liquid crystal display
US5886763A (en) * 1997-09-26 1999-03-23 Ois Optical Imaging Systems, Inc. LCD heater utilizing Z-axis conductive adhesive to attach bus bars to ito
DE19848547A1 (en) * 1997-11-07 1999-05-12 Mannesmann Vdo Ag Display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228591A1 (en) * 2002-06-26 2004-01-15 Siemens Ag DSTN display with electromagnetic shielding
US7180558B2 (en) 2002-06-26 2007-02-20 Siemens Aktiengesellschaft DSTN display with electromagnetic shielding
JP2008085287A (en) * 2006-08-28 2008-04-10 Hitachi Chem Co Ltd Method for connecting circuit member
JP2010039386A (en) * 2008-08-07 2010-02-18 Denso Corp Liquid crystal display
JP4623161B2 (en) * 2008-08-07 2011-02-02 株式会社デンソー Liquid crystal display device

Also Published As

Publication number Publication date
DE10102394B4 (en) 2008-07-10
GB2360851B (en) 2003-07-09
GB2360851A (en) 2001-10-03
GB0101543D0 (en) 2001-03-07
DE10102394A1 (en) 2001-08-23

Similar Documents

Publication Publication Date Title
US5559614A (en) Liquid crystal display with integral heater and method of fabricating same
US5353148A (en) Electrochromic device
US4093355A (en) Symmetrical internal heater for liquid crystal display
EP2759865B1 (en) Liquid crystal display panel and method for manufacturing the same
US7023519B2 (en) Internal heater embedded in an LCD cell
TWI819038B (en) Switchable optical device and method for manufacturing of a switchable optical device
JPH0827460B2 (en) Optical modulator
JP2001201760A (en) Double layer type super twisted nematic liquid crystal display device
JPH03107123A (en) Panel heater
JPS61166590A (en) Liquid crystal display element and driving thereof
US6433476B1 (en) EL lamp with heater electrode
JP2000214476A (en) Liquid crystal display device
US20230014763A1 (en) Dimming glass, dimming module and operating method thereof
JPH07230079A (en) Liquid crystal display device
JP2000047247A (en) Doublelayer-mode stn type liquid crystal display element
JP2001201730A (en) Double layer type super twisted nematic system liquid crystal display device
JP2536157B2 (en) Liquid crystal display
JPH10228013A (en) Liquid crystal display element
JP2617709B2 (en) Optical modulation element and driving method thereof
JP2002250926A (en) Panel heater for liquid crystal display element
JPH04289820A (en) Liquid crystal display element
JPH01189634A (en) Liquid crystal display device
JPS6120572Y2 (en)
JP2003043515A (en) Liquid crystal display device
JPH08171084A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224