JP2008085287A - Method for connecting circuit member - Google Patents

Method for connecting circuit member Download PDF

Info

Publication number
JP2008085287A
JP2008085287A JP2007010638A JP2007010638A JP2008085287A JP 2008085287 A JP2008085287 A JP 2008085287A JP 2007010638 A JP2007010638 A JP 2007010638A JP 2007010638 A JP2007010638 A JP 2007010638A JP 2008085287 A JP2008085287 A JP 2008085287A
Authority
JP
Japan
Prior art keywords
semiconductor chip
connection
circuit
circuit board
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007010638A
Other languages
Japanese (ja)
Inventor
Kazuya Matsuda
和也 松田
Kenzo Takemura
賢三 竹村
Takuya Chayama
卓也 茶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007010638A priority Critical patent/JP2008085287A/en
Publication of JP2008085287A publication Critical patent/JP2008085287A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83234Applying energy for connecting using means for applying energy being within the device, e.g. integrated heater
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83238Applying energy for connecting using electric resistance welding, i.e. ohmic heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83865Microwave curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83868Infrared [IR] curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83871Visible light curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83874Ultraviolet [UV] curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/8388Hardening the adhesive by cooling, e.g. for thermoplastics or hot-melt adhesives

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection method capable of sufficiently suppressing overheat of a semiconductor chip in the case of connecting the semiconductor chip to a circuit board by heating a connection member arranged between the semiconductor chip and the circuit board. <P>SOLUTION: In the connection method of the circuit board, the connection member 30 composed of an adhesive composition is arranged between the circuit board 10 and the semiconductor chip 20 which are opposed to each other, the connection member 30 is heated to stick the semiconductor chip 20 to the circuit board 10 and to electrically connect both electrodes of the circuit board 10 and the semiconductor chip 20. The circuit board 10 is provided with a heating circuit 8a arranged on a portion on which the connection member 30 is arranged and the heating processing is performed by supplying a current to the heating circuit 8a and heating the connection member 30. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回路部材の接続方法に関する。   The present invention relates to a method for connecting circuit members.

半導体素子や液晶表示素子と回路基板との接続等、回路部材同士を接続する方法として、熱硬化性樹脂又は熱可塑性樹脂を含有する加熱接着性接着剤からなる接続部材を用いる方法が知られている。例えば、特許文献1には、半導体素子と配線基板の接続に熱硬化性樹脂からなる接続部材を使用することが記載されている。また、特許文献2には、配線基板同士の接続に接続部材として異方導電性材料を使用することが記載されている。特許文献2の異方導電性材料は、熱可塑性樹脂を主成分とする接着剤成分中に金属粉末、金属酸化物などの導電性粒子が分散したものである。   As a method for connecting circuit members such as a connection between a semiconductor element or a liquid crystal display element and a circuit board, a method using a connection member made of a heat-adhesive adhesive containing a thermosetting resin or a thermoplastic resin is known. Yes. For example, Patent Document 1 describes that a connection member made of a thermosetting resin is used for connection between a semiconductor element and a wiring board. Patent Document 2 describes that an anisotropic conductive material is used as a connection member for connection between wiring boards. The anisotropic conductive material of Patent Document 2 is obtained by dispersing conductive particles such as metal powder and metal oxide in an adhesive component mainly composed of a thermoplastic resin.

上記接続部材は、接続する回路部材上に直接塗布しこれを乾燥して製膜する方法により用いられる場合もあるし、ポリエチレンテレフタレートなどのキャリアーフィルム上に製膜されたフィルムの形態で供給される場合もある。いずれの場合においても接続する回路部材の間に接続部材を介在させ、その状態で加圧しながら接続部材を加熱処理する。これにより、同一回路部材中で隣接する電極間の絶縁性を維持しながら対向する電極同士が電気的に接続されると同時に回路部材同士が接着固定される。   The connecting member may be used by a method in which the connecting member is directly applied onto a circuit member to be connected and dried to form a film, or supplied in the form of a film formed on a carrier film such as polyethylene terephthalate. In some cases. In any case, the connecting member is interposed between the circuit members to be connected, and the connecting member is heated while being pressed in this state. Thereby, while maintaining the insulation between the electrodes which adjoin in the same circuit member, the electrodes which oppose are electrically connected, and circuit members are adhesively fixed simultaneously.

なお、接着剤成分が熱硬化性樹脂である場合には、加熱処理により接続部材が硬化して回路部材同士が接続される。一方、接着剤成分が熱可塑性樹脂である場合には、加熱処理により接続部材が軟化した状態にて圧着することにより回路部材同士が接続される。
特開昭60−262430号公報 特開昭55−104007号公報
When the adhesive component is a thermosetting resin, the connection member is cured by the heat treatment and the circuit members are connected to each other. On the other hand, when the adhesive component is a thermoplastic resin, the circuit members are connected by pressure bonding in a state where the connection member is softened by the heat treatment.
JP 60-262430 A Japanese Patent Laid-Open No. 55-104007

上記の通り、回路部材同士を接続する工程においては、接続部材を硬化又は軟化させるために加熱処理を行う。従来、接続部材を加熱する方法として、オーブン、熱プレス等の外部加熱手段が用いられている。これらの外部加熱手段を用いた場合、加熱処理すべき接続部材のみならず、回路部材も加熱される。そのため、耐熱性の低い光センサ等の特殊回路を内蔵した半導体チップを回路基板に接続する際には、半導体チップの機能不良を引き起こすことがあった。   As described above, in the step of connecting the circuit members, heat treatment is performed to cure or soften the connection member. Conventionally, an external heating means such as an oven or a hot press is used as a method for heating the connecting member. When these external heating means are used, not only the connection member to be heat-treated but also the circuit member is heated. Therefore, when a semiconductor chip incorporating a special circuit such as an optical sensor with low heat resistance is connected to a circuit board, the semiconductor chip may malfunction.

例えば、接続工程において熱プレスを使用する場合、回路基板上に接続部材を介して半導体チップを所定の位置に載置し、電熱ヒータが内蔵された加圧ヘッドを半導体チップの上方から押圧して加熱する手法が一般的に採用されている。この場合、加圧ヘッドからの熱エネルギーは半導体チップを介して接続部材に伝えられる。接続部材を十分に加熱処理するためには、接続部材の加熱処理に必要な温度よりも高い温度に加圧ヘッドの表面温度を設定する必要がある。そうすると、高温の加圧ヘッドで押圧されることにより、半導体チップは過熱され、上述のような機能不良の問題を招来する可能性がより高くなる。   For example, when a hot press is used in the connection process, a semiconductor chip is placed on a circuit board via a connection member at a predetermined position, and a pressure head incorporating an electric heater is pressed from above the semiconductor chip. A heating method is generally employed. In this case, the thermal energy from the pressure head is transmitted to the connection member via the semiconductor chip. In order to sufficiently heat the connection member, it is necessary to set the surface temperature of the pressure head to a temperature higher than the temperature required for the heat treatment of the connection member. If it does so, a semiconductor chip will be overheated by being pressed with a high temperature pressurization head, and the possibility of causing the malfunction problem mentioned above becomes higher.

本発明は、上記事情に鑑みてなされたものであり、半導体チップと回路基板の間に配置した接続部材を加熱処理して半導体チップと回路基板を接続する際に、半導体チップの過熱を十分に抑制可能な接続方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and when a connecting member disposed between a semiconductor chip and a circuit board is heat-treated to connect the semiconductor chip and the circuit board, the semiconductor chip is sufficiently heated. It is an object to provide a connection method that can be suppressed.

本発明の回路部材の接続方法は、対向配置された回路基板と半導体チップとの間に接着剤組成物からなる接続部材を介在させ、この接続部材を加熱処理して回路基板と半導体チップとを接着すると共に回路基板及び半導体チップにそれぞれ配設された電極同士を電気的に接続するものであって、回路基板は接続部材との対向面の該接続部材が配置される領域に加熱回路を備えるものであり、上記加熱処理は加熱回路に通電して発熱させることにより行うことを特徴とする。   In the method for connecting circuit members according to the present invention, a connection member made of an adhesive composition is interposed between a circuit board and a semiconductor chip arranged to face each other, and the connection member is subjected to a heat treatment to connect the circuit board and the semiconductor chip. The circuit board and the semiconductor chip are electrically connected to each other and bonded to each other, and the circuit board includes a heating circuit in a region where the connection member is disposed on a surface facing the connection member. The heat treatment is performed by energizing the heating circuit to generate heat.

本発明によれば、接続部材と加熱回路とが接しているため、加熱処理に必要な熱エネルギーを加熱回路から接続部材に直接供給することができる。したがって、熱プレスを使用する場合のように半導体チップを介して接続部材の加熱処理を行う場合と比較し、半導体チップに過大な熱エネルギーが流入することがない。そのため、半導体チップの温度上昇を十分に抑制しながら、接続部材を十分に加熱処理することができる。よって、半導体チップが耐熱性の低いものであっても、熱による機能不良が生じることを十分に抑制できる。   According to the present invention, since the connection member and the heating circuit are in contact, the heat energy required for the heat treatment can be directly supplied from the heating circuit to the connection member. Therefore, excessive heat energy does not flow into the semiconductor chip as compared with the case where the connecting member is heat-treated through the semiconductor chip as in the case of using a hot press. Therefore, the connection member can be sufficiently heat-treated while sufficiently suppressing the temperature rise of the semiconductor chip. Therefore, even if the semiconductor chip has low heat resistance, it is possible to sufficiently suppress the occurrence of malfunction due to heat.

本発明における加熱処理は、回路基板と半導体チップとが互いに押圧される方向に全体を加圧しながら行うことが好ましい。加熱処理を加圧しながら行うと、両者の電極同士の接続信頼性をより高いものとすることができる。   The heat treatment in the present invention is preferably performed while pressurizing the whole in a direction in which the circuit board and the semiconductor chip are pressed against each other. When the heat treatment is performed while applying pressure, the connection reliability between the two electrodes can be made higher.

また、本発明によれば、上述の半導体チップの熱による機能不良の問題に加え、従来の熱プレスによる接続処理の以下のような問題も十分に解消することができる。すなわち、熱プレスを用いて回路基板と半導体チップとの接続処理を繰り返し行うと、電熱ヒータによる加熱が繰り返されることで加圧ヘッドに熱膨張による歪が生じる。接続部材を用いた電極同士の接続処理においては加圧ヘッドの平行度が良好な接続信頼性を得るために極めて重要である。そのため、一定時間毎に加圧ヘッドの平行度を調整する必要があり、かかる調整は作業効率の低下を招来していた。   Further, according to the present invention, in addition to the above-mentioned problem of malfunction due to heat of the semiconductor chip, the following problems of connection processing by conventional heat press can be sufficiently solved. That is, when the connection process between the circuit board and the semiconductor chip is repeatedly performed using a heat press, the heating by the electric heater is repeated, so that the pressure head is distorted due to thermal expansion. In the connection process between the electrodes using the connection member, the parallelism of the pressure head is extremely important for obtaining good connection reliability. For this reason, it is necessary to adjust the parallelism of the pressure head every certain time, and this adjustment causes a reduction in work efficiency.

これに対し、本発明における加熱処理は加熱回路により行うため、電熱ヒータを内蔵しない加圧ヘッドを備えるプレスを使用できる。あるいは、電熱ヒータを内蔵するものであってもその電熱ヒータを使用する必要がない。そのため、熱膨張による加圧ヘッドの歪や劣化を十分に抑制することができる。その結果、加圧ヘッドの平行度の調整回数を低減でき、作業効率を向上できる。   On the other hand, since the heat treatment in the present invention is performed by a heating circuit, a press having a pressure head that does not incorporate an electric heater can be used. Or even if it incorporates an electric heater, it is not necessary to use the electric heater. Therefore, distortion and deterioration of the pressure head due to thermal expansion can be sufficiently suppressed. As a result, the number of adjustments of the parallelism of the pressure head can be reduced, and work efficiency can be improved.

本発明における回路基板は、接続部材との対向面に回路パターンを備えるものであり、この回路パターンは半導体チップの電極に接続される電極と、上記加熱回路とが互いに電気的に絶縁して配設されてなることが好ましい。加熱回路と電極とが電気的に絶縁されていると、加熱処理に使用され、それにより役目を終了した加熱回路が接続された半導体チップに電気的な影響を与えることを十分に防止できる。   The circuit board according to the present invention is provided with a circuit pattern on the surface facing the connecting member, and this circuit pattern is arranged such that the electrode connected to the electrode of the semiconductor chip and the heating circuit are electrically insulated from each other. It is preferable to be provided. When the heating circuit and the electrode are electrically insulated, it is possible to sufficiently prevent an electrical influence on the semiconductor chip to which the heating circuit that has been used for the heat treatment and has finished its role is connected.

加熱回路の接続部材と当接する部分のシート抵抗値は、回路部材の加熱処理に必要な発熱量を効率的に得る観点から、2〜150Ω/□であることが好ましい。また、加熱回路は、一層の導電層からなる単層構造又は二層以上の導電層を積層してなる積層構造とすることができる。加熱回路が単層構造の場合、金属薄膜、インジウム−スズ酸化物層、インジウム−亜鉛酸化物層及び酸化スズ層からなる群より選ばれる導電層で構成することができる。加熱回路が積層構造の場合、上記導電層の群より互いに独立に選ばれる二層以上の導電層で構成することができる。   The sheet resistance value of the portion in contact with the connection member of the heating circuit is preferably 2 to 150Ω / □ from the viewpoint of efficiently obtaining the heat generation amount necessary for the heat treatment of the circuit member. Further, the heating circuit can have a single-layer structure including a single conductive layer or a stacked structure in which two or more conductive layers are stacked. When the heating circuit has a single-layer structure, the heating circuit can be formed of a conductive layer selected from the group consisting of a metal thin film, an indium-tin oxide layer, an indium-zinc oxide layer, and a tin oxide layer. When the heating circuit has a laminated structure, the heating circuit can be composed of two or more conductive layers selected independently from each other from the group of conductive layers.

接続部材として、接着剤成分と、前記接着剤成分中に分散している導電粒子とを備える異方導電性接着剤組成物をフィルム状に成形してなるものを使用することが好ましい。これにより、対向する電極間の低い接続抵抗及び隣接する電極間の優れた絶縁性の両方をより高水準に達成できる。   As the connecting member, it is preferable to use a member formed by forming an anisotropic conductive adhesive composition comprising an adhesive component and conductive particles dispersed in the adhesive component into a film shape. Thereby, both the low connection resistance between the opposing electrodes and the excellent insulation between the adjacent electrodes can be achieved at a higher level.

接着剤成分は、フィルム形成材と、エポキシ樹脂と、潜在性硬化剤とを含有するものであることが好ましい。接続部材が接着剤成分としてこれらを含有すると、接続部材のフィルム状への加工が容易であると共に、加熱によって接続部材を硬化させることで回路基板と半導体チップとを容易に接続できる。   The adhesive component preferably contains a film forming material, an epoxy resin, and a latent curing agent. When the connecting member contains these as an adhesive component, it is easy to process the connecting member into a film, and the circuit board and the semiconductor chip can be easily connected by curing the connecting member by heating.

本発明によれば、半導体チップと回路基板の間に配置した接続部材を加熱処理して半導体チップと回路基板を接続する際に、半導体チップの過熱を十分に抑制可能な接続方法を提供することができる。   According to the present invention, there is provided a connection method capable of sufficiently suppressing overheating of a semiconductor chip when the connection member disposed between the semiconductor chip and the circuit board is heated to connect the semiconductor chip and the circuit board. Can do.

以下、添付図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明は省略する。また、図面の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted. For the convenience of the drawings, the dimensional ratios in the drawings do not necessarily match those described.

図1は、本実施形態において使用する回路基板の一例を示す上面図である。図1に示す回路基板10は、矩形のガラス基板1と、このガラス基板1の表面上に形成された回路パターンとを備えている。この回路パターンは、半導体チップの電極部にそれぞれ接続される電極部3,4と、接続部材を加熱処理する際に使用される加熱回路8とによって構成されている。   FIG. 1 is a top view showing an example of a circuit board used in the present embodiment. A circuit board 10 shown in FIG. 1 includes a rectangular glass substrate 1 and a circuit pattern formed on the surface of the glass substrate 1. This circuit pattern is composed of electrode portions 3 and 4 respectively connected to the electrode portions of the semiconductor chip, and a heating circuit 8 used when the connection member is heated.

図1に示すように、電極部3は複数の電極3aで構成され、複数の電極3aはガラス基板1の一辺の縁部にそれぞれ略等間隔となるように形成されている。各々の電極3aは、ガラス基板1の辺13の縁部を基端とし、辺13と対向する辺14の方向に形成されており、ガラス基板1の中央部分の手前まで延在している。同様に、電極部4は複数の電極4aで構成され、複数の電極4aはガラス基板1の辺14の縁部にそれぞれ略等間隔となるように形成されている。各々の電極4aは、ガラス基板1の辺14の縁部を基端とし、辺13の方向に形成されており、ガラス基板1の中央部分の手前まで延在している。   As shown in FIG. 1, the electrode part 3 is comprised by the some electrode 3a, and the some electrode 3a is formed so that it may become substantially equal intervals at the edge part of the one side of the glass substrate 1, respectively. Each electrode 3 a is formed in the direction of the side 14 facing the side 13 with the edge of the side 13 of the glass substrate 1 as the base end, and extends to the front of the central portion of the glass substrate 1. Similarly, the electrode part 4 is comprised by the some electrode 4a, and the some electrode 4a is formed so that it may become substantially equal intervals at the edge part of the edge | side 14 of the glass substrate 1, respectively. Each electrode 4 a is formed in the direction of the side 13 with the edge of the side 14 of the glass substrate 1 as the base end, and extends to the front of the central portion of the glass substrate 1.

加熱回路8は、ガラス基板1の中央部分に形成された矩形の加熱部8aと、この加熱部8aに連結され、これに電流を供給するための電流供給部8bとによって構成されている。この加熱部8aが形成されている部分に回路部材を介して半導体チップが配置される。半導体チップが配置された状態で、電源の端子を回路基板10に接続して加熱部8aに電流を供給できるように、電流供給部8bの先端側はガラス基板1の辺14の縁部にまで延在している。   The heating circuit 8 includes a rectangular heating unit 8a formed in the central portion of the glass substrate 1 and a current supply unit 8b connected to the heating unit 8a and supplying current to the heating unit 8a. A semiconductor chip is arranged through a circuit member in a portion where the heating portion 8a is formed. In the state where the semiconductor chip is arranged, the front end side of the current supply unit 8b extends to the edge of the side 14 of the glass substrate 1 so that the power supply terminal can be connected to the circuit board 10 and current can be supplied to the heating unit 8a. It is extended.

加熱回路8は、電極3a,4aと離隔して形成されており、これらは互いに電気的に独立している。加熱部8a上に配置する接続部材を十分均一に加熱する観点から、加熱回路8の加熱部8aは電極部3,4を避けた領域に、可能な限り広い面積で形成することが望ましい。   The heating circuit 8 is formed separately from the electrodes 3a and 4a, and these are electrically independent from each other. From the viewpoint of sufficiently uniformly heating the connecting member disposed on the heating portion 8a, it is desirable that the heating portion 8a of the heating circuit 8 be formed in a region avoiding the electrode portions 3 and 4 with as wide an area as possible.

加熱回路8は、金属薄膜、あるいはインジウム−スズ酸化物(ITO:Indium Tin Oxide)、インジウム−亜鉛酸化物(IZO:Indium Zinc Oxide)又は酸化スズからなる層によって構成することができる。加熱回路8を構成可能な上記材質のうち、接続処理後に光学顕微鏡を用いて接続状態を容易に外観検査できる等の観点から、ITO又はIZOが好ましい。なお、加熱回路8は、上記材質一種からなる単層構造としても、異なる材質からなる層を二層以上積層してなる積層構造としてもよい。   The heating circuit 8 can be formed of a metal thin film or a layer made of indium tin oxide (ITO), indium zinc oxide (IZO), or tin oxide. Of the above materials that can constitute the heating circuit 8, ITO or IZO is preferable from the viewpoint that the appearance of connection can be easily inspected using an optical microscope after the connection process. The heating circuit 8 may have a single layer structure made of one kind of the above materials or a laminated structure in which two or more layers made of different materials are laminated.

加熱回路8の厚さは、十分に薄いことが好ましい。加熱回路8が十分に薄いものであると、スパッタリング等の成膜法により容易にガラス基板1上に形成することが可能であると共に、接続構造中に存在しても接続部分の構造に空間的制約を与えることがないという利点がある。   The thickness of the heating circuit 8 is preferably sufficiently thin. If the heating circuit 8 is sufficiently thin, it can be easily formed on the glass substrate 1 by a film forming method such as sputtering, and even if it exists in the connection structure, it is spatial in the structure of the connection portion. There is an advantage that there is no restriction.

加熱回路8の加熱部8aのシート抵抗値は、使用する接続部材の種類にもよるが、接続部材の加熱処理に必要な発熱量を効率的に得る観点から、2〜150Ω/□であることが好ましい。シート抵抗値が2Ω/□未満であると、十分な発熱量を得るためには高電流を印加しなければならず、電源装置の設計に制約が生じてしまう傾向にある。他方、シート抵抗値が150Ω/□を超えると高電圧を印加しなければ十分な発熱量は得られず、高電圧対応の特殊電源装置が必要となってしまう傾向にある。なお、ここでいうシート抵抗値とは、四探針法を用いた表面抵抗測定器によって測定される値をいう。   The sheet resistance value of the heating part 8a of the heating circuit 8 is 2 to 150Ω / □ from the viewpoint of efficiently obtaining the heat generation amount necessary for the heat treatment of the connection member, although it depends on the type of the connection member used. Is preferred. If the sheet resistance value is less than 2Ω / □, a high current must be applied in order to obtain a sufficient calorific value, and there is a tendency that the design of the power supply device is restricted. On the other hand, if the sheet resistance value exceeds 150Ω / □, a sufficient amount of heat cannot be obtained unless a high voltage is applied, and a special power supply device corresponding to the high voltage tends to be required. Here, the sheet resistance value is a value measured by a surface resistance measuring instrument using a four-probe method.

ガラス基板1の表面上に形成する電極3a,4a及び加熱回路8は、作業性の観点からスパッタリング等の成膜法によってそれぞれ形成することが好ましい。なお、電極3a,4a及び加熱回路8を同一の材質で構成する場合、ガラス基板1の一方面の全面に成膜した後、不要な部分をエッチング等によって削除して回路パターン(電極部3,4及び加熱回路8)を形成してもよい。   The electrodes 3a, 4a and the heating circuit 8 formed on the surface of the glass substrate 1 are each preferably formed by a film forming method such as sputtering from the viewpoint of workability. When the electrodes 3a and 4a and the heating circuit 8 are made of the same material, after the film is formed on the entire surface of the one side of the glass substrate 1, unnecessary portions are deleted by etching or the like to remove circuit patterns (electrode portions 3, 3). 4 and heating circuit 8) may be formed.

図2は、上述の回路基板10と半導体チップが接続された接続構造を示す模式断面図である。図2に示す接続構造100は、対向配置された回路基板10及び半導体チップ20を備えており、回路基板10と半導体チップ20との間には、これらを接続する接続部30bが設けられている。   FIG. 2 is a schematic cross-sectional view showing a connection structure in which the above-described circuit board 10 and a semiconductor chip are connected. A connection structure 100 shown in FIG. 2 includes a circuit board 10 and a semiconductor chip 20 that are arranged to face each other, and a connection portion 30b that connects them is provided between the circuit board 10 and the semiconductor chip 20. .

半導体チップ20は、回路基板10との対向面に、回路基板10の電極部3,4の各電極とそれぞれ接続される複数の電極5a,6aを備えている。半導体チップ20の具体例としては、ICチップ、抵抗体チップ、コンデンサチップ等の部品が挙げられる。これらのチップ部品は、多数の電極を備えているものが一般的である。   The semiconductor chip 20 includes a plurality of electrodes 5 a and 6 a connected to the electrodes of the electrode portions 3 and 4 of the circuit board 10 on the surface facing the circuit board 10. Specific examples of the semiconductor chip 20 include components such as an IC chip, a resistor chip, and a capacitor chip. These chip parts are generally provided with a large number of electrodes.

半導体チップ20が有する複数の電極の表面は、金、銀、錫、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金及びITOから選ばれる1種で構成されてもよく、2種以上で構成されていてもよい。また、電極の表面の材質は、すべての電極において同一であってもよく、異なっていてもよい。   The surfaces of the plurality of electrodes of the semiconductor chip 20 may be composed of one or more selected from gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum and ITO. May be. Moreover, the material of the surface of an electrode may be the same in all the electrodes, and may differ.

図2に示すように接続部30bは、接続部材に含まれる接着剤成分の硬化物32bと、これに分散している導電粒子35とを備えている。そして、接続構造100においては、回路基板10の電極3aと半導体チップ20の電極5aとが、また、回路基板10の電極4aと半導体チップ20の電極6aとが、導電粒子35を介して電気的にそれぞれ接続されている。このため、電極3a,5a間及び電極4a,6a間の接続抵抗が十分に低減され、回路基板10と半導体チップ20の良好な電気的接続が可能となる。他方、硬化物32bは電気絶縁性を有するものであり、隣接する電極同士は絶縁性が確保される。したがって、半導体チップ20の持つ機能を十分に発揮することができる。   As shown in FIG. 2, the connection portion 30 b includes a cured product 32 b of an adhesive component contained in the connection member, and conductive particles 35 dispersed therein. In the connection structure 100, the electrode 3a of the circuit board 10 and the electrode 5a of the semiconductor chip 20 are electrically connected via the conductive particles 35, and the electrode 4a of the circuit board 10 and the electrode 6a of the semiconductor chip 20 are electrically connected via the conductive particles 35. Are connected to each. For this reason, the connection resistance between the electrodes 3a and 5a and between the electrodes 4a and 6a is sufficiently reduced, and a good electrical connection between the circuit board 10 and the semiconductor chip 20 becomes possible. On the other hand, the cured product 32b has electrical insulation, and insulation between adjacent electrodes is ensured. Therefore, the functions of the semiconductor chip 20 can be sufficiently exhibited.

次に、接着剤成分が硬化する以前の状態の接続部材について説明する。接続部材としては、熱硬化性樹脂、硬化剤を含有する接着剤成分及び該接着剤成分中に分散している導電性粒子からなる異方導電性接着剤組成物をフィルム状に成形したもの(以下、「異方導電性フィルム」という。)を使用する。   Next, the connection member in a state before the adhesive component is cured will be described. As the connecting member, an anisotropic conductive adhesive composition comprising a thermosetting resin, an adhesive component containing a curing agent, and conductive particles dispersed in the adhesive component is formed into a film ( Hereinafter, it is referred to as “anisotropic conductive film”).

なお、接着剤成分は加熱により回路部材同士を接着可能なもの(加熱接着性接着剤)であれば、その含有成分は限定されない。例えば、接着剤成分の主成分をなす樹脂材料として、ポリエチレン、ポリプロピレンなどの熱可塑性樹脂を使用してもよい。ただし、耐熱性、耐湿性及び機械的特性の観点から、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂などの硬化性樹脂が好ましい。   In addition, if an adhesive component is what can adhere | attach circuit members by heating (heat-adhesive adhesive), the containing component will not be limited. For example, a thermoplastic resin such as polyethylene or polypropylene may be used as the resin material that forms the main component of the adhesive component. However, curable resins such as epoxy resins, polyimide resins, polyamideimide resins, and acrylic resins are preferable from the viewpoints of heat resistance, moisture resistance, and mechanical properties.

熱硬化性樹脂としては、任意の温度範囲における硬化処理が可能な熱硬化性樹脂であれば特に限定されないが、エポキシ樹脂であることが好ましい。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、ハロゲン化されていてもよく、水素添加されていてもよい。これらのエポキシ樹脂は、1種を単独で、又は2種以上を組み合わせて使用することができる。   Although it will not specifically limit as a thermosetting resin if it is a thermosetting resin which can be hardened in arbitrary temperature ranges, It is preferable that it is an epoxy resin. Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, fat Examples thereof include cyclic epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, and aliphatic chain epoxy resins. These epoxy resins may be halogenated or hydrogenated. These epoxy resins can be used individually by 1 type or in combination of 2 or more types.

熱硬化性樹脂用硬化剤としては、アミン系、フェノール系、酸無水物系、イミダゾール系、ヒドラジド系、ジシアンジアミド、三フッ化ホウ素−アミン錯体、スルホニウム塩、ヨードニウム塩、アミンイミド等が挙げられる。これらは、単独又は2種以上を混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。また、これらの硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したもの(潜在性硬化剤)は、可使時間が延長されるために好ましい。   Examples of the curing agent for thermosetting resins include amines, phenols, acid anhydrides, imidazoles, hydrazides, dicyandiamide, boron trifluoride-amine complexes, sulfonium salts, iodonium salts, and amine imides. These can be used alone or in admixture of two or more, and may be used by mixing a decomposition accelerator, an inhibitor and the like. In addition, those obtained by coating these curing agents with a polyurethane-based or polyester-based polymer substance and making them into microcapsules (latent curing agents) are preferable because the pot life is extended.

接着剤成分はフィルム形成性高分子(フィルム形成材)を含有してもよい。接着剤成分の全質量を基準として、フィルム形成性高分子の含有量は、2〜80質量%であることが好ましく、5〜70質量%であることがより好ましく、10〜60質量%であることが更に好ましい。フィルム形成性高分子としては、ポリスチレン、ポリエチレン、ポリビニルブチラール、ポリビニルホルマール、ポリイミド、ポリアミド、ポリエステル、ポリ塩化ビニル、ポリフェニレンオキサイド、尿素樹脂、メラミン樹脂、フェノール樹脂、キシレン樹脂、ポリイソシアネート樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリエステルウレタン樹脂などが用いられる。接着剤成分にフィルム形成性高分子を含有せしめると、異方導電性接着剤組成物を容易にフィルム状に加工することができるために好ましい。   The adhesive component may contain a film-forming polymer (film-forming material). Based on the total mass of the adhesive component, the content of the film-forming polymer is preferably 2 to 80% by mass, more preferably 5 to 70% by mass, and 10 to 60% by mass. More preferably. As the film-forming polymer, polystyrene, polyethylene, polyvinyl butyral, polyvinyl formal, polyimide, polyamide, polyester, polyvinyl chloride, polyphenylene oxide, urea resin, melamine resin, phenol resin, xylene resin, polyisocyanate resin, phenoxy resin, A polyimide resin, a polyester urethane resin, or the like is used. It is preferable to include a film-forming polymer in the adhesive component because the anisotropic conductive adhesive composition can be easily processed into a film.

上記のフィルム形成性高分子の中でも水酸基等の官能基を有する樹脂は接着性が向上することができるので、より好ましい。また、これらの高分子をラジカル重合性の官能基で変性したものも用いることができる。   Among the above film-forming polymers, a resin having a functional group such as a hydroxyl group is more preferable because the adhesion can be improved. Also, those obtained by modifying these polymers with radically polymerizable functional groups can be used.

さらに、接着剤成分は、加熱により遊離ラジカルを発生する硬化剤、ラジカル重合性物質、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂、イソシアネート類等を含有することもできる。   Further, the adhesive component is a curing agent that generates free radicals upon heating, a radical polymerizable substance, a filler, a softener, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, and a coupling agent. , Phenol resin, melamine resin, isocyanates and the like can also be contained.

接着剤成分中に分散させる導電性粒子としては、例えば金、銀、銅、ニッケル、はんだ等の金属やカーボンの粒子が挙げられる。あるいは、非導電性のガラス、セラミック、プラスチック等を核とし、この核を上記の金属やカーボンで被覆した被覆粒子でもよい。導電性粒子の平均粒径は分散性、導電性の観点から1〜18μmであることが好ましい。   Examples of the conductive particles dispersed in the adhesive component include metal particles such as gold, silver, copper, nickel, and solder, and carbon particles. Alternatively, coated particles in which non-conductive glass, ceramic, plastic, or the like is used as a core and the core is coated with the above metal or carbon may be used. The average particle diameter of the conductive particles is preferably 1 to 18 μm from the viewpoints of dispersibility and conductivity.

導電性粒子の配合割合は、接着剤成分100体積部に対して、0.1〜30体積部であることが好ましく、0.1〜10体積部であることがより好ましい。この配合割合が0.1体積部未満であると対向する電極間の接続抵抗が高くなる傾向にあり、30体積部を超えると隣接する電極間の短絡が生じやすくなる傾向がある。   The blending ratio of the conductive particles is preferably 0.1 to 30 parts by volume, and more preferably 0.1 to 10 parts by volume with respect to 100 parts by volume of the adhesive component. If the blending ratio is less than 0.1 part by volume, the connection resistance between the opposing electrodes tends to be high, and if it exceeds 30 parts by volume, a short circuit between adjacent electrodes tends to occur.

接続部材として、市販の異方導電性フィルムを購入して用いてもよく、例えば、AC−8955YW−23(商品名、日立化成工業株式会社製、商品名)などを好適に使用できる。   As the connecting member, a commercially available anisotropic conductive film may be purchased and used. For example, AC-8955YW-23 (trade name, manufactured by Hitachi Chemical Co., Ltd., trade name) can be suitably used.

(接続方法)
図3(a)〜(c)は、本発明に係る回路部材の接続方法の一実施形態を概略断面図により示す工程図である。本実施形態では、回路基板10の加熱回路8に通電することにより接続部材を熱硬化させて接続構造100を製造する。
(Connection method)
FIG. 3A to FIG. 3C are process diagrams showing an embodiment of a circuit member connection method according to the present invention in schematic cross-sectional views. In the present embodiment, the connection member 100 is thermally cured by energizing the heating circuit 8 of the circuit board 10 to manufacture the connection structure 100.

先ず、電極部3,4及び加熱回路8を一方面に備える回路基板10と、半導体チップ20と、異方導電性フィルム(接続部材)30とを用意する。異方導電性フィルム30は接着剤成分32と、この接着剤成分32中に分散している導電性粒子35とによって構成されている。異方導電性フィルム30の厚さは、5〜50μmであることが好ましい。異方導電性フィルム30の厚さが5μm未満であると、接続すべき電極間においてその充填量不足となる傾向がある。他方、50μmを超えると、接続すべき電極間の導通の確保が困難となる傾向がある。   First, the circuit board 10 provided with the electrode parts 3 and 4 and the heating circuit 8 on one surface, the semiconductor chip 20, and the anisotropic conductive film (connecting member) 30 are prepared. The anisotropic conductive film 30 is composed of an adhesive component 32 and conductive particles 35 dispersed in the adhesive component 32. The thickness of the anisotropic conductive film 30 is preferably 5 to 50 μm. When the thickness of the anisotropic conductive film 30 is less than 5 μm, the filling amount tends to be insufficient between the electrodes to be connected. On the other hand, when it exceeds 50 μm, it tends to be difficult to ensure conduction between the electrodes to be connected.

次に、回路パターンが形成された面を上にして回路基板10をプレス機の底面50上に配置する。その後、図3(a)に示すように、回路基板10の加熱部8aが形成されている位置に異方導電性フィルム30を載置する。このとき、異方導電性フィルム30は、加熱回路8の加熱部8aと、電極3a及び電極4aの先端部とを覆うように載置する。   Next, the circuit board 10 is placed on the bottom surface 50 of the press with the surface on which the circuit pattern is formed facing up. Thereafter, as shown in FIG. 3A, the anisotropic conductive film 30 is placed at a position where the heating portion 8a of the circuit board 10 is formed. At this time, the anisotropic conductive film 30 is placed so as to cover the heating portion 8a of the heating circuit 8 and the tips of the electrodes 3a and 4a.

次いで、半導体チップ20の各々の電極5a,6aが回路基板10の各々の電極3a,4aと対向する位置となるように位置合わせをして、図3(b)に示すように異方導電性フィルム30を介して回路基板10上に半導体チップ20を載置する。そして、図3(c)に示すように半導体チップ20の上方からプレス機の加圧ヘッドを押圧する。このとき、加圧ヘッドの当接面55及び底面50によって図3(c)の矢印A及び矢印B方向に全体を加圧すると共に、加熱回路8に電流を供給して加熱部8aを発熱させることによって異方導電性フィルム30の加熱処理を行う。   Next, the electrodes 5a and 6a of the semiconductor chip 20 are aligned so that they are opposed to the electrodes 3a and 4a of the circuit board 10, respectively, and anisotropically conductive as shown in FIG. The semiconductor chip 20 is placed on the circuit board 10 via the film 30. Then, as shown in FIG. 3C, the pressure head of the press is pressed from above the semiconductor chip 20. At this time, the entire surface is pressurized in the directions of arrows A and B in FIG. 3C by the contact surface 55 and the bottom surface 50 of the pressure head, and current is supplied to the heating circuit 8 to cause the heating unit 8a to generate heat. Then, the anisotropic conductive film 30 is heat-treated.

このときの加熱温度は、異方導電性フィルム30が硬化可能な温度とする。加熱温度は、60〜180℃が好ましく、70〜170℃がより好ましく、80〜160℃が更に好ましい。加熱温度が60℃未満であると硬化速度が遅くなる傾向があり、180℃を超えると望まない副反応が進行し易い傾向がある。加熱時間は、0.1〜180秒が好ましく、0.5〜180秒がより好ましく、1〜180秒が更に好ましい。   The heating temperature at this time is set to a temperature at which the anisotropic conductive film 30 can be cured. The heating temperature is preferably 60 to 180 ° C, more preferably 70 to 170 ° C, and still more preferably 80 to 160 ° C. If the heating temperature is less than 60 ° C, the curing rate tends to be slow, and if it exceeds 180 ° C, unwanted side reactions tend to proceed. The heating time is preferably 0.1 to 180 seconds, more preferably 0.5 to 180 seconds, and still more preferably 1 to 180 seconds.

異方導電性フィルム30の硬化により接続部30bが形成されて、図2に示すような接続構造100が得られる。接続の条件は、使用する用途、接着剤組成物、回路部材によって適宜選択される。なお、異方導電性フィルム30の接着剤成分が光によって硬化するものを含有する場合には、異方導電性フィルム30に対して活性光線やエネルギー線を適宜照射すればよい。活性光線としては、紫外線、可視光、赤外線等が挙げられる。エネルギー線としては、電子線、エックス線、γ線、マイクロ波等が挙げられる。   The connection part 30b is formed by hardening of the anisotropic conductive film 30, and the connection structure 100 as shown in FIG. 2 is obtained. The connection conditions are appropriately selected depending on the application to be used, the adhesive composition, and the circuit member. In addition, what is necessary is just to irradiate actinic light and an energy ray suitably to the anisotropic conductive film 30, when the adhesive agent component of the anisotropic conductive film 30 contains what hardens | cures with light. Examples of the active light include ultraviolet light, visible light, and infrared light. Examples of energy rays include electron beams, X-rays, γ rays, and microwaves.

本実施形態に係る接続方法によれば、異方導電性フィルム30の直下に位置する加熱回路8の加熱部8aによって、異方導電性フィルム30を直接加熱することができる。これにより、加圧ヘッドの電熱ヒータを熱源として利用する従来の接続方法と比較して、以下のような利点がある。すなわち、異方導電性フィルム30を集中的に加熱することが可能であるため、半導体チップ20に流入する熱エネルギーを低減できる。その結果、半導体チップ20が耐熱性の低いものであっても熱による機能不良の発生を十分に抑制できる。また、加圧ヘッドに内蔵された電熱ヒータを使用する必要がないため、熱膨張による加圧ヘッドの歪や加熱による加圧ヘッドの劣化を十分に防止できる。その結果、加圧ヘッドの平行度の調整などの作業回数を削減でき、接続処理の作業性を向上できる。   According to the connection method according to the present embodiment, the anisotropic conductive film 30 can be directly heated by the heating unit 8a of the heating circuit 8 located immediately below the anisotropic conductive film 30. Thereby, there are the following advantages compared with the conventional connection method using the electric heater of the pressure head as a heat source. That is, since the anisotropic conductive film 30 can be heated intensively, the thermal energy flowing into the semiconductor chip 20 can be reduced. As a result, even if the semiconductor chip 20 has low heat resistance, it is possible to sufficiently suppress the occurrence of malfunction due to heat. Further, since it is not necessary to use an electric heater built in the pressure head, it is possible to sufficiently prevent distortion of the pressure head due to thermal expansion and deterioration of the pressure head due to heating. As a result, the number of operations such as adjusting the parallelism of the pressure head can be reduced, and the workability of the connection process can be improved.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、異方導電性フィルムは単層構造に限定されるものではなく、複数の層が積層された多層構造であってもよい。多層構造の異方導電性フィルムは、例えば、接着剤成分及び導電粒子の種類あるいはこれらの含有量が異なる層を複数積層することによって製造することができる。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the gist thereof. For example, the anisotropic conductive film is not limited to a single layer structure, and may have a multilayer structure in which a plurality of layers are laminated. An anisotropic conductive film having a multilayer structure can be produced, for example, by laminating a plurality of layers having different types of adhesive components and conductive particles or different contents thereof.

また、上記実施形態においては、接続部材として導電性粒子を含有してなる異方導電性フィルムを例示したが、必ずしも導電性粒子を含有するものを使用しなくてもよい。ただし、電極同士をより高い接続信頼性でもって接続するためには、導電性粒子を含有するものを使用することが好ましい。導電性粒子が含有されているものを使用すると、半導体チップの電極又は回路基板の電極に高さのばらつきが多少あったとしても、電極同士をより確実に接続できるためである。   Moreover, in the said embodiment, although the anisotropic conductive film containing a conductive particle was illustrated as a connection member, what contains a conductive particle does not necessarily need to be used. However, in order to connect the electrodes with higher connection reliability, it is preferable to use those containing conductive particles. This is because, when conductive particles are used, the electrodes can be more reliably connected to each other even if there is some variation in height between the electrodes of the semiconductor chip or the electrodes of the circuit board.

さらに、上記実施形態においては、接続部材としてフィルム状に形成されたものを使用したが、接着剤組成物を回路基板上に直接塗布した後、これを乾燥することによって接続部材を形成してもよい。この場合、塗布した接着剤組成物の乾燥処理は、加熱回路8に通電して発熱させることにより行ってもよい。また、回路基板としてガラス基板を用いたものを例示したが、各種樹脂材料からなる基板の表面上に回路パターンを形成したものを使用してもよい。   Furthermore, in the said embodiment, although the thing formed in the film form was used as a connection member, even if it forms a connection member by drying this after apply | coating an adhesive composition directly on a circuit board. Good. In this case, the applied adhesive composition may be dried by energizing the heating circuit 8 to generate heat. Moreover, although what used the glass substrate as a circuit board was illustrated, what formed the circuit pattern on the surface of the board | substrate which consists of various resin materials may be used.

以下、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらに制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these.

(実施例1)
幅20mm、長さ30mm、厚さ0.7mmのガラス基板の表面上に、半導体チップの電極との電気的接点をなす多数の透明電極を形成した。かかる透明電極はITO薄膜からなるものであり、ガラス基板上に幅25μm、厚さ150nmの透明電極を合計480本形成した。
(Example 1)
On the surface of a glass substrate having a width of 20 mm, a length of 30 mm, and a thickness of 0.7 mm, a large number of transparent electrodes that form electrical contacts with the electrodes of the semiconductor chip were formed. The transparent electrode is made of an ITO thin film, and a total of 480 transparent electrodes having a width of 25 μm and a thickness of 150 nm are formed on a glass substrate.

また、ガラス基板の透明電極を形成した面と同一の表面上にはITO薄膜からなる加熱回路を更に形成した。かかる加熱回路はITOターゲットを用いたスパッタリング法によってガラス基板上にITO薄膜(厚さ150nm)を成膜した後、上記の透明電極とは電気的接点をもたないようにウェットエッチングによってパターニングして作製した。具体的には、上記の加熱回路は、ガラス基板の半導体チップと当接する部分に形成した加熱部と、この加熱部に外部から電流を供給するために形成した二つの電流供給部とによって構成されている。この加熱部は半導体チップが当接する面積のおよそ70%となるように、幅3.5mm、長さ20mmのサイズの矩形状とした。また、二つの電流供給部は、その先端部がガラス基板の周縁部にまで延在するように形成した。なお、四探針法により加熱回路の加熱部のシート抵抗値を測定したところ、10Ω/□であった。   Further, a heating circuit made of an ITO thin film was further formed on the same surface as the surface on which the transparent electrode of the glass substrate was formed. Such a heating circuit is formed by depositing an ITO thin film (thickness 150 nm) on a glass substrate by sputtering using an ITO target, and then patterning by wet etching so as not to have an electrical contact with the transparent electrode. Produced. Specifically, the heating circuit includes a heating part formed in a portion of the glass substrate that contacts the semiconductor chip and two current supply parts formed to supply current to the heating part from the outside. ing. The heating part was formed in a rectangular shape having a width of 3.5 mm and a length of 20 mm so as to be approximately 70% of the area where the semiconductor chip abuts. Moreover, the two current supply parts were formed so that the front-end | tip part extended to the peripheral part of a glass substrate. In addition, when the sheet resistance value of the heating part of the heating circuit was measured by the four probe method, it was 10Ω / □.

透明電極及び加熱回路を形成した側が上面となるようにガラス基板をプレス機に配置し、その上に幅5.0mm、長さ15mmのエポキシ樹脂系異方導電性フィルム(日立化成工業株式会社製、商品名:AC−8955YW−23)を載置した。その後、ガラス基板の透明電極と半導体チップの電極の位置が合うように、異方導電性フィルム上にテスト用の半導体チップ(幅4.0mm、長さ14mm、厚さ550μm)を室温(25℃)にて配置した。   The glass substrate is placed in a press so that the side on which the transparent electrode and the heating circuit are formed is the upper surface, and an epoxy resin anisotropic conductive film (width: 15 mm, length: 15 mm) on the press machine (manufactured by Hitachi Chemical Co., Ltd.) , Trade name: AC-8955YW-23). Thereafter, a test semiconductor chip (width 4.0 mm, length 14 mm, thickness 550 μm) is placed on the anisotropic conductive film so that the transparent electrode on the glass substrate and the electrode on the semiconductor chip are aligned with each other at room temperature (25 ° C. ).

ガラス基板上に異方導電性フィルム及び半導体チップがこの順序で載置された積層体に対して、プレス機を用いて全体を上下方向に加圧しながら、加熱回路に電流を供給することで異方導電性フィルムの加熱処理を行った。加圧ヘッドによる加圧は、3MPa(半導体チップの面積基準)の圧力で行った。また、加熱回路への通電は、加熱回路の電流供給部を通じて300mAの電流を15秒間の印加することにより行った。このような加熱処理によって異方導電性フィルムを熱硬化させて、半導体チップ、ガラス基板及びこれらの間に配置した接続部材の硬化物からなる接続構造を得た。   By applying current to the heating circuit while pressing the whole body in the vertical direction using a press machine, the laminated body in which the anisotropic conductive film and the semiconductor chip are placed in this order on the glass substrate is used. The directionally conductive film was heat-treated. Pressurization with the pressure head was performed at a pressure of 3 MPa (based on the area of the semiconductor chip). The energization of the heating circuit was performed by applying a current of 300 mA for 15 seconds through the current supply unit of the heating circuit. The anisotropic conductive film was thermally cured by such heat treatment to obtain a connection structure composed of a cured product of the semiconductor chip, the glass substrate, and the connection member disposed therebetween.

なお、接続処理を行うに先立ち、異方導電性フィルム内に熱電対(理化工業株式会社製、商品名:ST−50)を挿入し、接続処理中における異方導電性フィルムの温度を測定した。その結果、加熱処理開始から15秒後の異方導電性フィルムの温度は208℃であった。他方、接続処理中における半導体チップの温度を、放射温度計(キーエンス株式会社製)を用いて計測した。その結果、加熱処理開始から15秒後の半導体チップの温度は123℃であった。   Prior to the connection process, a thermocouple (Rika Kogyo Co., Ltd., trade name: ST-50) was inserted into the anisotropic conductive film, and the temperature of the anisotropic conductive film during the connection process was measured. . As a result, the temperature of the anisotropic conductive film 15 seconds after the start of the heat treatment was 208 ° C. On the other hand, the temperature of the semiconductor chip during the connection process was measured using a radiation thermometer (manufactured by Keyence Corporation). As a result, the temperature of the semiconductor chip 15 seconds after the start of the heat treatment was 123 ° C.

接続処理によって得られた接続構造を温度85℃、相対湿度85%の恒温恒湿槽に500時間放置した。その後、半導体チップの電極とガラス基板上の透明電極との接続部分の接続抵抗値を4端子法により測定した。その結果、恒温恒湿槽での処理を行う前に測定した接続抵抗値と比較して、その上昇率は10%未満であり、良好な接続信頼性であることが確認された。   The connection structure obtained by the connection treatment was left in a constant temperature and humidity chamber having a temperature of 85 ° C. and a relative humidity of 85% for 500 hours. Then, the connection resistance value of the connection part of the electrode of a semiconductor chip and the transparent electrode on a glass substrate was measured by the 4-terminal method. As a result, the rate of increase was less than 10% compared with the connection resistance value measured before the treatment in the thermostatic chamber, and it was confirmed that the connection reliability was good.

(実施例2)
ITO薄膜からなる加熱回路の代わりにIZO薄膜(厚さ150nm)からなる加熱回路を形成したことの他は、実施例1と同様にして接続構造の作製及び評価試験を行った。加熱回路の加熱部のシート抵抗値は、15Ω/□であった。また、加熱処理開始から15秒後の異方導電性フィルムの温度は198℃であった。他方、加熱処理開始から15秒後の半導体チップの温度は113℃であった。恒温恒湿槽(温度85℃、相対湿度85%)内での処理後(500時間放置後)の接続部分の接続抵抗値は、処理を行う前に測定した接続抵抗値と比較して、その上昇率は10%未満であり、良好な接続信頼性であることが確認された。
(Example 2)
A connection structure was prepared and evaluated in the same manner as in Example 1 except that a heating circuit consisting of an IZO thin film (thickness 150 nm) was formed instead of the heating circuit consisting of an ITO thin film. The sheet resistance value of the heating part of the heating circuit was 15Ω / □. The temperature of the anisotropic conductive film 15 seconds after the start of the heat treatment was 198 ° C. On the other hand, the temperature of the semiconductor chip 15 seconds after the start of the heat treatment was 113 ° C. The connection resistance value of the connection part after treatment (after standing for 500 hours) in a constant temperature and humidity chamber (temperature 85 ° C., relative humidity 85%) is compared with the connection resistance value measured before the treatment. The increase rate was less than 10%, and it was confirmed that the connection reliability was good.

(実施例3)
プレス機による加圧処理と加熱回路による加熱処理とを併用し、実施例1と同様にして接続構造を作製する作業を1000回連続して行った。作製した1000個の接続構造を温度85℃、相対湿度85%の恒温恒湿槽内に並べ、500時間放置した。その後、1000個の接続構造につき、実施例1と同様にして接続部分の接続抵抗値を4端子法により測定した。その結果、恒温恒湿槽での処理を行う前に測定した接続抵抗値と比較して、全ての接続構造について接続抵抗値の上昇率は10%未満であり、良好な接続信頼性であることが確認された。
(Example 3)
Using the pressurizing process by the press machine and the heating process by the heating circuit, the operation for producing the connection structure was continuously performed 1000 times in the same manner as in Example 1. The 1000 connected structures prepared were arranged in a constant temperature and humidity chamber having a temperature of 85 ° C. and a relative humidity of 85%, and left for 500 hours. Then, the connection resistance value of the connection part was measured by the 4-terminal method in the same manner as in Example 1 for 1000 connection structures. As a result, compared with the connection resistance value measured before performing the treatment in the constant temperature and humidity chamber, the increase rate of the connection resistance value is less than 10% for all connection structures, and the connection reliability is good. Was confirmed.

さらに、本実施例においては、1000個の接続構造の接続部の断面観察を行った。その結果、全ての接続構造において、半導体チップとガラス基板の間の介在する異方導電性フィルムの硬化物の厚さは接続構造の両端部でほぼ等しく、両端部の厚さの差は全て3μm以内であった。このことから1000回の接続処理を連続的に繰り返し行った場合でも加圧ヘッドの平行度が十分に維持されることが確認された。   Furthermore, in the present example, cross-sectional observation of the connection portions of 1000 connection structures was performed. As a result, in all connection structures, the thickness of the cured anisotropic conductive film interposed between the semiconductor chip and the glass substrate is substantially equal at both ends of the connection structure, and the difference in thickness between both ends is 3 μm. Was within. From this, it was confirmed that the parallelism of the pressure head was sufficiently maintained even when the connection process 1000 times was repeated continuously.

(比較例1)
プレス機による加圧処理と加熱回路による加熱処理とを併用して接続処理する代わりに、電熱ヒータが内蔵された加熱型加圧ヘッド(表面温度250℃)によって異方導電性フィルムを接続処理したことの他は、実施例1と同様にして接続構造の作製及び評価試験を行った。すなわち、ガラス基板上の加熱回路には電流は供給しない状態のまま、表面温度250℃の加圧ヘッドを上方から半導体チップに対して当接させ、15秒間加圧する接続処理を行った。この場合、加圧ヘッドからの熱エネルギーは半導体チップを介して異方導電性フィルムに供給される。
(Comparative Example 1)
Instead of jointly using press treatment with a press and heat treatment with a heating circuit, the anisotropic conductive film was connected with a heating pressure head (surface temperature 250 ° C.) with a built-in electric heater. Except for this, the connection structure was produced and evaluated in the same manner as in Example 1. That is, a connection process was performed in which a pressure head having a surface temperature of 250 ° C. was brought into contact with the semiconductor chip from above and pressurized for 15 seconds while no current was supplied to the heating circuit on the glass substrate. In this case, the thermal energy from the pressure head is supplied to the anisotropic conductive film via the semiconductor chip.

本比較例においては、接続処理開始から15秒後の異方導電性フィルムの温度は209℃であった。他方、加熱処理開始から15秒後の半導体チップの温度は245℃にまで上昇していた。なお、恒温恒湿槽(温度85℃、相対湿度85%)内での処理後(500時間放置後)の接続部分の接続抵抗値は、処理を行う前に測定した接続抵抗値と比較して、その上昇率は10%未満であり、良好な接続信頼性であることが確認された。   In this comparative example, the temperature of the anisotropic conductive film 15 seconds after the start of the connection process was 209 ° C. On the other hand, the temperature of the semiconductor chip 15 seconds after the start of the heat treatment rose to 245 ° C. In addition, the connection resistance value of the connection part after processing (after leaving for 500 hours) in a constant temperature and humidity chamber (temperature 85 ° C., relative humidity 85%) is compared with the connection resistance value measured before processing. The increase rate was less than 10%, and it was confirmed that the connection reliability was good.

(比較例2)
電熱ヒータが内蔵された加熱型加圧ヘッド(表面温度250℃)によって異方導電性フィルムを接続処理し、比較例1と同様にして接続構造を作製する作業を1000回連続して行った。作製した1000個の接続構造を温度85℃、相対湿度85%の恒温恒湿槽内に並べ、500時間放置した。その後、1000個の接続構造につき、実施例1と同様にして接続部分の接続抵抗値を4端子法により測定した。その結果、恒温恒湿槽での処理を行う前に測定した接続抵抗値と比較して、接続構造の作製開始後、始めの800個については接続抵抗値の上昇率はいずれも10%未満であった。これに対し、作業の終盤に作製した200個については接続抵抗値の上昇率が30〜50%のものがあり、作業の繰り返し回数が増えるに従い、接続抵抗値が高くなる傾向にあることが分かった。
(Comparative Example 2)
The anisotropic conductive film was connected by a heating type pressure head (surface temperature: 250 ° C.) with a built-in electric heater, and the connection structure was manufactured 1000 times in the same manner as in Comparative Example 1. The 1000 connected structures prepared were arranged in a constant temperature and humidity chamber having a temperature of 85 ° C. and a relative humidity of 85%, and left for 500 hours. Then, the connection resistance value of the connection part was measured by the 4-terminal method in the same manner as in Example 1 for 1000 connection structures. As a result, compared to the connection resistance value measured before performing the treatment in the thermo-hygrostat, the increase rate of the connection resistance value is less than 10% for the first 800 pieces after the start of the production of the connection structure. there were. On the other hand, for 200 pieces produced at the end of the work, there is a connection resistance value increase rate of 30 to 50%, and it is found that the connection resistance value tends to increase as the number of work repetitions increases. It was.

さらに、本比較例においては、接続抵抗値の上昇率が高かった接続構造の接続部の断面観察を行った。その結果、半導体チップとガラス基板の間に介在する異方導電性フィルムの硬化物の厚さは、接続構造の両端部を比較すると、8μmの差が生じていた。異方導電性フィルムの硬化物の厚さが不均一となった原因は、加熱冷却の繰り返しにより加圧ヘッドに歪が生じ、平行度が不十分になったためと考えられ、これが接続信頼性に影響を及ぼしたものと推察される。   Furthermore, in this comparative example, the cross-section observation of the connection part of the connection structure where the rate of increase in the connection resistance value was high was performed. As a result, the thickness of the cured anisotropic conductive film interposed between the semiconductor chip and the glass substrate had a difference of 8 μm when both ends of the connection structure were compared. The reason for the uneven thickness of the cured anisotropic conductive film is thought to be due to distortion of the pressure head due to repeated heating and cooling, resulting in insufficient parallelism, which increases connection reliability. It is inferred that it had an influence.

本発明に係る接続方法において使用する回路基板の一例を示す上面図である。It is a top view which shows an example of the circuit board used in the connection method which concerns on this invention. 回路基板と半導体チップが接続された状態を示す模式断面図である。It is a schematic cross section which shows the state with which the circuit board and the semiconductor chip were connected. 回路基板と半導体チップを接続する方法を概略模式図により示す工程図である。It is process drawing which shows the method of connecting a circuit board and a semiconductor chip with a schematic diagram.

符号の説明Explanation of symbols

10…回路基板、20…半導体チップ、30…異方導電性フィルム(接続部材)、3a,4a…回路基板の電極、5a,6a…半導体チップの電極、8…加熱回路、32…接着剤成分、35…導電粒子、100…接続構造。 DESCRIPTION OF SYMBOLS 10 ... Circuit board, 20 ... Semiconductor chip, 30 ... Anisotropic conductive film (connection member), 3a, 4a ... Circuit board electrode, 5a, 6a ... Semiconductor chip electrode, 8 ... Heating circuit, 32 ... Adhesive component 35 ... conductive particles, 100 ... connection structure.

Claims (8)

対向配置された回路基板と半導体チップとの間に接着剤組成物からなる接続部材を介在させ、前記接続部材を加熱処理して前記回路基板と前記半導体チップとを接着すると共に前記回路基板及び前記半導体チップにそれぞれ配設された電極同士を電気的に接続する回路部材の接続方法であって、
前記回路基板は、前記接続部材との対向面の該接続部材が配置される領域に加熱回路を備えるものであり、前記加熱処理は前記加熱回路に通電して発熱させることにより行う、接続方法。
A connection member made of an adhesive composition is interposed between the circuit board and the semiconductor chip arranged to face each other, the connection member is heated to bond the circuit board and the semiconductor chip, and the circuit board and the semiconductor chip. A circuit member connection method for electrically connecting electrodes disposed on a semiconductor chip,
The circuit board includes a heating circuit in a region where the connection member is disposed on a surface facing the connection member, and the heating process is performed by energizing the heating circuit to generate heat.
前記加熱処理は、前記回路基板と前記半導体チップとが互いに押圧される方向に全体を加圧しながら行う、請求項1に記載の接続方法。   The connection method according to claim 1, wherein the heat treatment is performed while pressing the whole in a direction in which the circuit board and the semiconductor chip are pressed against each other. 前記回路基板は、前記接続部材との対向面に回路パターンを備え、前記回路パターンは前記半導体チップの電極に接続される電極と前記加熱回路とが互いに電気的に絶縁して配設されてなる、請求項1又は2に記載の接続方法。   The circuit board includes a circuit pattern on a surface facing the connection member, and the circuit pattern is configured such that an electrode connected to an electrode of the semiconductor chip and the heating circuit are electrically insulated from each other. The connection method according to claim 1 or 2. 前記加熱回路の前記接続部材と当接する部分のシート抵抗値は、2〜150Ω/□である、請求項1〜3のいずれか一項に記載の接続方法。   4. The connection method according to claim 1, wherein a sheet resistance value of a portion of the heating circuit that abuts on the connection member is 2 to 150Ω / □. 前記加熱回路は、一層の導電層からなる単層構造を有し、前記導電層は金属薄膜、インジウム−スズ酸化物層、インジウム−亜鉛酸化物層及び酸化スズ層からなる群より選ばれる、請求項1〜4のいずれか一項に記載の接続方法。   The heating circuit has a single-layer structure including a single conductive layer, and the conductive layer is selected from the group consisting of a metal thin film, an indium-tin oxide layer, an indium-zinc oxide layer, and a tin oxide layer. Item 5. The connection method according to any one of Items 1 to 4. 前記加熱回路は、二層以上の導電層を積層してなる積層構造を有し、前記二層以上の導電層は、互いに独立に金属薄膜、インジウム−スズ酸化物層、インジウム−亜鉛酸化物層及び酸化スズ層からなる群より選ばれる、請求項1〜4のいずれか一項に記載の接続方法。   The heating circuit has a laminated structure formed by laminating two or more conductive layers, and the two or more conductive layers are independently formed of a metal thin film, an indium-tin oxide layer, an indium-zinc oxide layer. And the connection method as described in any one of Claims 1-4 chosen from the group which consists of a tin oxide layer. 前記接続部材は、接着剤成分と、前記接着剤成分中に分散している導電粒子とを備える異方導電性接着剤組成物からなるものである、請求項1〜6のいずれか一項に記載の接続方法。   The said connection member consists of an anisotropic conductive adhesive composition provided with an adhesive agent component and the electroconductive particle currently disperse | distributed in the said adhesive agent component, It is any one of Claims 1-6. The connection method described. 前記接着剤成分は、フィルム形成材と、エポキシ樹脂と、潜在性硬化剤とを含有するものである、請求項7に記載の接続方法。   The connection method according to claim 7, wherein the adhesive component contains a film forming material, an epoxy resin, and a latent curing agent.
JP2007010638A 2006-08-28 2007-01-19 Method for connecting circuit member Pending JP2008085287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010638A JP2008085287A (en) 2006-08-28 2007-01-19 Method for connecting circuit member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006230412 2006-08-28
JP2007010638A JP2008085287A (en) 2006-08-28 2007-01-19 Method for connecting circuit member

Publications (1)

Publication Number Publication Date
JP2008085287A true JP2008085287A (en) 2008-04-10

Family

ID=39355770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010638A Pending JP2008085287A (en) 2006-08-28 2007-01-19 Method for connecting circuit member

Country Status (1)

Country Link
JP (1) JP2008085287A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747129A1 (en) * 2012-12-18 2014-06-25 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Curing a heat-curable material in an embedded curing zone
KR101753066B1 (en) * 2015-12-14 2017-07-03 정관식 A film comprising conductive particle and the manufacturing method of flip chip package using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031209A (en) * 1998-07-15 2000-01-28 Matsushita Electric Ind Co Ltd Sealing method of ic chip with bump
JP2001201760A (en) * 2000-01-21 2001-07-27 Hosiden Corp Double layer type super twisted nematic liquid crystal display device
JP2004093841A (en) * 2002-08-30 2004-03-25 Optrex Corp Panel heater for liquid crystal display element, and liquid crystal display
JP2006041545A (en) * 1995-05-22 2006-02-09 Hitachi Chem Co Ltd Electrical connection structure of semiconductor chip, and wiring substrate used for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041545A (en) * 1995-05-22 2006-02-09 Hitachi Chem Co Ltd Electrical connection structure of semiconductor chip, and wiring substrate used for the same
JP2000031209A (en) * 1998-07-15 2000-01-28 Matsushita Electric Ind Co Ltd Sealing method of ic chip with bump
JP2001201760A (en) * 2000-01-21 2001-07-27 Hosiden Corp Double layer type super twisted nematic liquid crystal display device
JP2004093841A (en) * 2002-08-30 2004-03-25 Optrex Corp Panel heater for liquid crystal display element, and liquid crystal display

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747129A1 (en) * 2012-12-18 2014-06-25 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Curing a heat-curable material in an embedded curing zone
WO2014098577A1 (en) 2012-12-18 2014-06-26 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Curing a heat-curable material in an embedded curing zone
KR20150097585A (en) * 2012-12-18 2015-08-26 네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오 Curing a heat-curable material in an embedded curing zone
CN104937703A (en) * 2012-12-18 2015-09-23 荷兰应用自然科学研究组织Tno Curing a heat-curable material in an embedded curing zone
JP2016503235A (en) * 2012-12-18 2016-02-01 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオーNederlandse Organisatie voor toegepast−natuurwetenschappelijk onderzoek TNO Curing thermosetting materials in the embedded curing zone
US10717236B2 (en) 2012-12-18 2020-07-21 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Curing a heat-curable material in an embedded curing zone
KR102244094B1 (en) 2012-12-18 2021-04-26 네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오 Curing a heat-curable material in an embedded curing zone
KR101753066B1 (en) * 2015-12-14 2017-07-03 정관식 A film comprising conductive particle and the manufacturing method of flip chip package using the same

Similar Documents

Publication Publication Date Title
CN108848609B (en) Electromagnetic wave shielding film, flexible printed wiring board, and method for producing same
KR101246516B1 (en) Insulation-coated electroconductive particles
JP4814277B2 (en) Bonded body, method for manufacturing the bonded body, and anisotropic conductive film used for the bonded body
JP6259177B2 (en) Method for bonding anisotropic conductive film
KR20220029770A (en) Connection body and connection body production method
KR20180108735A (en) Manufacturing method of connection structure
CN102598884A (en) Mounting apparatus and manufacturing method of electronic module
EP2309834B1 (en) Compression bonding device, compression bonding method and pressing plate
JP7369756B2 (en) Connection body and method for manufacturing the connection body
JP2007115560A (en) Anisotropic conductive film and its manufacturing method
JP5386200B2 (en) Composite sheet
JP5829905B2 (en) Method for producing conductive particles, method for producing anisotropic conductive material, and method for producing connection structure
JP2008085287A (en) Method for connecting circuit member
JP2011187332A (en) Conductive particle, anisotropic conductive material, and connection structure
JPH0345842B2 (en)
KR100724720B1 (en) Conductive adhesive and connection method between terminals employing it
JP7287275B2 (en) ADHESIVE COMPOSITION AND METHOD FOR MANUFACTURING CONNECTED BODY
CN104206032B (en) The method of attachment of the manufacture method and electronic unit of connector
CN108292611A (en) Connection method
JP2000182691A (en) Circuit connecting member and connection method using therewith
JP2008303067A (en) Adhesive reel and circuit connector manufacturing method using it
JP2022040177A (en) Electronic component mounting substrate and electronic device
JP7294145B2 (en) Adhesive composition, connection structure and method for producing the same
JP2007335392A (en) Connecting method of circuit member
JP2016173982A (en) Anisotropic conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306