JPS60218070A - Quantitative determination of hydrogen peroxide by bacterial luciferase - Google Patents

Quantitative determination of hydrogen peroxide by bacterial luciferase

Info

Publication number
JPS60218070A
JPS60218070A JP7476684A JP7476684A JPS60218070A JP S60218070 A JPS60218070 A JP S60218070A JP 7476684 A JP7476684 A JP 7476684A JP 7476684 A JP7476684 A JP 7476684A JP S60218070 A JPS60218070 A JP S60218070A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
aldehyde
fmn
bacterial luciferase
nad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7476684A
Other languages
Japanese (ja)
Other versions
JPH0365959B2 (en
Inventor
Haruo Watanabe
治夫 渡辺
Noboru Mitsuhida
光飛田 登
Minoru Ando
實 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP7476684A priority Critical patent/JPS60218070A/en
Publication of JPS60218070A publication Critical patent/JPS60218070A/en
Publication of JPH0365959B2 publication Critical patent/JPH0365959B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To measure the coloring intensity of a sample liquid and to determine quantitatively H2O2 with high sensitivity without receiving the influence of the disturbing material in an H2O2-contg. sample by acting lower alcohol, NAD, higher alcohol, etc. as well as specific enzyme and bacterial luciferase to said sample. CONSTITUTION:The lower alcohol such as methanol, ethanol or the like and peroxidase are active to the H2O2-contg. sample to produce aldehyde and aldehyde hydrogenase is acted to said aldehyde in the presence of water and nicotineamide adenine dinucleotide (NAD) or the phosphate thereof (NADH). NAD(P)H-FMN oxidoreductase or diaphrase is acted to the formed NADH or NADPH in the presence of flavine mononucleotide (FMN). The bacterial luciferase is acted to the formed FMNH2 in the presence of straight chain aldehyde of 8-14C and O2. The luminous activity formed in such a way is measured by measuring the increasing speed of luminous intensity and detecting the peak thereof. The exact measurement of the H2O2 even in serum, urine, etc. is made possible with high sensitivity by making use of the higher peak as the concn. of the H2O2 is higher.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は細菌ルシフェラーゼによる過酸化水素の定量法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for quantifying hydrogen peroxide using bacterial luciferase.

(従1.一覧技術) 一般に臨床検査法で普及している生体成分の定量法は、
各種オキシダーゼを利用して過酸化水素を生成させ、過
酸化水素に発色剤の共存下、ペルオキシダーゼを作用さ
せ、その発色強度を測定して、生体成分の定量を行なう
。ところが、この発色法(v!に先決)では、試料から
生成する過酸化水素の濃度は10’Mが限度であり、こ
れ以下の濃度のものを測定することは難しい。
(Reference 1. List of techniques) Generally, the quantitative method of biological components that is widely used in clinical testing methods is as follows:
Hydrogen peroxide is generated using various oxidases, peroxidase is allowed to act on the hydrogen peroxide in the presence of a coloring agent, and the intensity of the coloring is measured to quantify biological components. However, in this coloring method (first determined by v!), the concentration of hydrogen peroxide generated from the sample is limited to 10'M, and it is difficult to measure concentrations lower than this.

蛍光法では、発色法による感度よりも増大させることが
できるが、青変の影響を受けるなどの欠点を有する。
Although the fluorescence method can increase the sensitivity more than the chromogenic method, it has drawbacks such as being affected by blue discoloration.

またルミノール反応、ルシゲニン反応などの化学発光法
では、10”M程度の過酸化水素を定量することができ
るが、これを臨床検査に応用した場合、試料としての血
清、尿などの中の妨害物質の影響を受け、感度は著しく
低下することが知られている。
In addition, chemiluminescence methods such as luminol reaction and lucigenin reaction can quantify approximately 10"M hydrogen peroxide, but when applied to clinical tests, interfering substances in serum, urine, etc. It is known that sensitivity is significantly reduced due to the influence of

従来、生物発光においては細菌ルシフェラーゼを用いて
NADH又はNADPHを定量すること、及びNAD−
NADPを定量すること、さらにはホタルルシフェラー
ゼを眉いてATPを定量することは知られているが、過
酸化水素を定量することは知られていなかった。
Conventionally, in bioluminescence, bacterial luciferase is used to quantify NADH or NADPH, and NAD-
Although it is known to quantify NADP and further to quantify ATP using firefly luciferase, it has not been known to quantify hydrogen peroxide.

(発明の目的) 本発明者等はこれらの事情を考慮して、過酸化水素の定
量法において、検出感度の増大、サンプルの少量化、従
来測定不能な血中物質の測定実現をはかるため種々鋭意
検討したところ、細菌ルシフェラーゼによる生物発光法
では血清、尿中の妨害物質の影響を比較的受けにくいこ
とを見出し、本発明に到達した。
(Purpose of the Invention) Taking these circumstances into consideration, the present inventors have developed various methods for quantifying hydrogen peroxide in order to increase the detection sensitivity, reduce the amount of sample, and measure blood substances that could not be measured conventionally. After extensive research, we have discovered that the bioluminescence method using bacterial luciferase is relatively unaffected by interfering substances in serum and urine, and have arrived at the present invention.

(発明の構成) すなわち本発明は(1)過酸化水素を含有する試料にア
ルキルアルコールの存在下、カタラーゼを作用させ、0
)生成するアルデヒドに水およびNAD又はNADPの
存在下、ホルムアルデヒドデヒドロゲナーゼ又はアルデ
ヒドデヒドロゲナーゼを作用させ、(III )生成す
るNADH又はNADPHにFMNの存在下、NADH
−FMNオキシドレダクターゼ、NADPH−FMNオ
キシドレダクターゼ又はジアホラーゼを作用させ、(l
v)生成するF M NHzに炭素原子数8〜14の直
鎖アルデヒドおよび酸素の存在下、細菌ルシフェラーゼ
を作用させ、(V)生成する発光活性を測定することに
より、試料中の過酸化水素を定量することを特徴とする
細菌ルシフェラーゼによる過酸化水素の定量法である。
(Structure of the Invention) That is, the present invention (1) allows catalase to act on a sample containing hydrogen peroxide in the presence of an alkyl alcohol, and
) The produced aldehyde is treated with formaldehyde dehydrogenase or aldehyde dehydrogenase in the presence of water and NAD or NADP, and (III) the produced NADH or NADPH is treated with NADH in the presence of FMN.
- Let FMN oxidoreductase, NADPH-FMN oxidoreductase or diaphorase act, (l
v) Allow bacterial luciferase to act on the generated F M NHz in the presence of a linear aldehyde having 8 to 14 carbon atoms and oxygen, and (V) measure the generated luminescent activity to determine hydrogen peroxide in the sample. This is a method for quantifying hydrogen peroxide using bacterial luciferase.

次に本発明方法をアルキルアルコールとしてメタノール
を使用した場合(4)、エタノールを使用した場合ω)
を化学式にて説明する。
Next, in the method of the present invention, when methanol is used as the alkyl alcohol (4), and when ethanol is used (ω)
is explained using a chemical formula.

H*Ow +CHaOHHCHO+ 2HiO−(1)
NAD枦)H・・・(2) FMNH2+RCHO+ Oz岬pν!−4五と二y→
h F十FMN 十RCOOH+H20・・・(4) (B) H202+C2H50HcH3CHO+2H20−(5
)NAD(PIH・(6) 細菌ルシフェラーゼ P F’MNH2+RCHO+Ohl+FMN+RCOOH
十H20川(8) (式中、RCHOは炭素原子数8〜14の直鎖アルデヒ
ドを示し、RCOOHは該アルデヒドから酸化反応によ
り生成する対応するカルボン酸を示す。) すなわち本発#1(A)ではまず過酸化水素にメタノー
ルの存在下、カタラーゼを作用させ、ポルムアルデヒド
を生成する。生成したホルムアルデヒドに水およびNA
D又はNADPの存在下、ホルムアルデヒドデヒドロゲ
ナーゼを作用させ、NADNオキシドレダクターゼ又は
NADPH−FMNオキシドレダクターゼまたはジアホ
ラーゼを作用させ、FMNH2を生成する。生成したF
MNHsは炭素原子WI8〜14の直鎖アルデヒドおよ
び酸素の存在下、細菌ルシフェラーゼを作用させて発光
させる。次いで発光活性を常法に従い測定する。
H*Ow +CHaOHHCHO+ 2HiO-(1)
NAD枦)H...(2) FMNH2+RCHO+ Oz Misaki pν! -45 and 2y→
h F1FMN 10RCOOH+H20...(4) (B) H202+C2H50HcH3CHO+2H20-(5
) NAD(PIH・(6) Bacterial luciferase P F'MNH2+RCHO+Ohl+FMN+RCOOH
10H20 River (8) (In the formula, RCHO represents a linear aldehyde having 8 to 14 carbon atoms, and RCOOH represents the corresponding carboxylic acid produced from the aldehyde by an oxidation reaction.) That is, the present invention #1 (A ), first, hydrogen peroxide is reacted with catalase in the presence of methanol to produce pomaldehyde. Water and NA are added to the formaldehyde produced.
In the presence of D or NADP, formaldehyde dehydrogenase is allowed to act, and NADN oxidoreductase or NADPH-FMN oxidoreductase or diaphorase is made to act to produce FMNH2. The generated F
MNHs act on bacterial luciferase to emit light in the presence of a linear aldehyde with carbon atoms WI8 to 14 and oxygen. Next, luminescent activity is measured according to a conventional method.

本発明(B)ではまず過酸化水素にエタノールの存在下
、カタラーゼを作用させ、アセトアルデヒドを生成する
。生成したアセトアルデヒドに水およびNAD又はNA
DPの存在下、アルデヒドデヒドロゲナーゼを作用させ
、NADH又はNADPHを生成する。生成したNAD
H又はNADPHにFMNの存在下、NADH−FMN
オキシドレダクターゼ又はNADPH−FMNオキシド
レダクターゼを作用させ、F M N H2を生成する
。生成したF M N Hmは炭素原子数8〜14の直
鎖アルデヒドおよび酸素の存在下、細菌ルシフェラーゼ
を作用させて発光させる。次いで発光活性は常法に従い
、例えば発光測定装置を用いてその発光ピーク値を測定
する。
In the present invention (B), first, catalase is allowed to act on hydrogen peroxide in the presence of ethanol to produce acetaldehyde. Add water and NAD or NA to the acetaldehyde produced.
In the presence of DP, aldehyde dehydrogenase is activated to produce NADH or NADPH. generated NAD
In the presence of FMN in H or NADPH, NADH-FMN
Oxidoreductase or NADPH-FMN oxidoreductase is activated to generate FMN H2. The generated F M N Hm is activated by bacterial luciferase in the presence of a linear aldehyde having 8 to 14 carbon atoms and oxygen to emit light. Next, the luminescence activity is determined by a conventional method, for example, by measuring the luminescence peak value using a luminescence measuring device.

本発明における過酸化水素を含有する試料とは、過酸化
水素そのもの、又は生体試料、例えば血液ピルビン酸、
乳酸、グリセロール、アミノ酸等から生成した過酸化水
素を含む試料をいう。
In the present invention, the sample containing hydrogen peroxide refers to hydrogen peroxide itself, or a biological sample such as blood pyruvate,
A sample containing hydrogen peroxide produced from lactic acid, glycerol, amino acids, etc.

本発明において使用するアルキルアルコールとしては、
メタノール、エタノール、プロパツール等の炭素原子数
1〜3のアルキルアルコールがある。通常0.1〜IO
Mの濃度である。
The alkyl alcohol used in the present invention includes:
Examples include alkyl alcohols having 1 to 3 carbon atoms, such as methanol, ethanol, and propatool. Usually 0.1~IO
This is the concentration of M.

本発明において使用するカタラーゼとしては動物肝臓、
腎臓、赤血球、微生物由来のものがある。
The catalase used in the present invention includes animal liver,
There are those derived from kidneys, red blood cells, and microorganisms.

本発明において使用するNADとは、ニコチンアミドア
デニンジヌクレオチドの略語であり、その使用濃度は通
常0.1〜10mMである。
NAD used in the present invention is an abbreviation for nicotinamide adenine dinucleotide, and its concentration is usually 0.1 to 10 mM.

本発明において使用するNADPとは、ニコチンアミド
アデニンジヌクレオチドフォスフェートの略語であり、
その使用濃度は通常0.1〜10mMである。
NADP used in the present invention is an abbreviation for nicotinamide adenine dinucleotide phosphate,
The concentration used is usually 0.1-10mM.

本発明において使用するホルムアルデヒドデヒドロゲナ
ーゼとしては、ウシ肝臓、酵母、細菌シュードモナス由
来のものがあり、通常、終濃度が100〜1単位/−で
ある。
Formaldehyde dehydrogenases used in the present invention include those derived from bovine liver, yeast, and bacteria Pseudomonas, and usually have a final concentration of 100 to 1 unit/-.

本発明において使用するアルデヒドデヒドロゲナーゼ、
としては動物肝臓および酵母由来のものが選ばれ、NA
D、NADPに対して特異性をもつものが望ましい。使
用する濃度は通常、終濃度が100〜1単位/−である
Aldehyde dehydrogenase used in the present invention,
Those derived from animal liver and yeast are selected as
D. It is desirable to have specificity for NADP. The concentration used is usually a final concentration of 100 to 1 unit/-.

本発明において使用するFMNとは、フラビンモノヌク
レオチドの略語であり、使用する濃度は通常濃度1−1
0μMである。
FMN used in the present invention is an abbreviation for flavin mononucleotide, and the concentration used is usually 1-1.
It is 0 μM.

本発明において使用するNhD)t−FMNオキシドレ
ダクターゼとは、発光細菌ビブリオ−ハーベイより得ら
れるもので、NADHとFMNに対し高い特異性を有し
ている。該酵素はJablonskiとDeluca 
(Biochem 、 162932−2936.19
77)およびWatanabaとHastlngs (
MOl、C@11゜Blochem 、 44.181
−187.1e 82)により精製することができる。
The NhD)t-FMN oxidoreductase used in the present invention is obtained from the luminescent bacterium Vibrio harveyi and has high specificity for NADH and FMN. The enzyme was developed by Jablonski and Deluca.
(Biochem, 162932-2936.19
77) and Watanaba and Hastlngs (
MOL, C@11°Blochem, 44.181
-187.1e 82).

その使用量は通常10−0゜001単位/−である。The amount used is usually 10-0°001 units/-.

本発明において使用するN、ADPH−FMN4キシド
レダクターゼとは同じく発光細菌ビブリオ−ハーベイよ
り得られるもので、製法は上記文献に記載される方法に
従う。その使用量は通常10〜0.001単位/−であ
る。
The N,ADPH-FMN4 oxidoreductase used in the present invention is also obtained from the luminescent bacterium Vibrio harveyi, and the production method follows the method described in the above-mentioned literature. The amount used is usually 10 to 0.001 units/-.

本発明において使用する炭素原子数8〜14の直鎖アル
デヒドとしては・例えばオクチルアルデヒド、ノニルア
ルデヒド、デシルアルデヒド、ウンデシルアルデヒド、
ドデシルアルデヒド、トリデシルアルデヒド、テトラデ
シルアルデヒドなどがある。
Examples of linear aldehydes having 8 to 14 carbon atoms used in the present invention include octylaldehyde, nonylaldehyde, decylaldehyde, undecylaldehyde,
Examples include dodecylaldehyde, tridecylaldehyde, and tetradecylaldehyde.

本発明において使用する細菌ルシフェラーゼは発光細菌
ビブリオ−ハーベイ、フォトバクテリウム−フィシャラ
イ、フォトバクテリウム−7オスフオレウム、フォトバ
クテリウムーレイオ〆ナシの菌体より得られる粗酵素を
精製して用いることができる。使用する濃度範囲として
は通常100〜5μf/−である0 本発明において使用するジアホラーゼとしては大腸菌、
酵母、動勢臓器より得られるものがある。
The bacterial luciferase used in the present invention can be used by purifying the crude enzyme obtained from the cells of the luminescent bacteria Vibrio harveyi, Photobacterium fischalei, Photobacterium 7 osphorium, and Photobacterium leiosperum. . The concentration range used is usually 100 to 5 μf/-. The diaphorase used in the present invention includes Escherichia coli,
Some are obtained from yeast and motile organs.

使用濃度範囲としては通常、終濃度10〜1単位/−で
ある。
The concentration range used is usually a final concentration of 10 to 1 unit/-.

本発明において緩衝液としてはpH6,5〜8.0の範
囲のものを使用する。特に0.05〜0.2Mのリン酸
緩衝液又はグツドバッフ1−類が好ましい。ジアホラー
ゼを使用するとき、ピロリン酸緩衝液を用いることも可
能である。
In the present invention, the buffer used has a pH in the range of 6.5 to 8.0. In particular, 0.05 to 0.2M phosphate buffer or Gudbuff 1- is preferred. When using diaphorase, it is also possible to use a pyrophosphate buffer.

本発明方法は4つの酵素反応を一段階で、又は二段階以
上に分けて行なってもよい。例えば前記本発明方法(4
)では反応式(1)〜(4)を一段階で行なってもよい
し、反応式(1)、(2)と反応式(3)、(4)を分
けて二段階で行なってもよい。
In the method of the present invention, the four enzymatic reactions may be carried out in one step or divided into two or more steps. For example, the method of the present invention (4)
), reaction formulas (1) to (4) may be performed in one step, or reaction formulas (1) and (2) and reaction formulas (3) and (4) may be separated and performed in two steps. .

発光強度の測定法としては通常の方法に従う。A conventional method is used to measure the luminescence intensity.

例えば反応開始試薬として過酸化水素を反応系に最終的
に加えて反応を開始させ、その発光強度をルミフォトメ
ーターTD4000(ラボ・サイエンス社製)を用いて
、発光強度の増加(速度)の変化を時間に対して読取る
方法がある。また別法として発光強度のピークを記録し
てもよい。
For example, hydrogen peroxide is finally added to the reaction system as a reaction initiation reagent to start the reaction, and the luminescence intensity is measured using a Lumiphotometer TD4000 (manufactured by Labo Science) to determine the change in the increase (rate) of the luminescence intensity. There is a way to read against time. Alternatively, the peak of luminescence intensity may be recorded.

(発明の効果) 本発明では細菌ルシフェラーゼを利用して過酸化水素を
血中物質の妨害を受けることなく、安定的に定量するこ
とができる。特に過酸化水素濃度10’Mの低濃度まで
測定可能であり、化学発光法より高感度である。しかも
中性附近で危険のない薬剤を使用して過酸化水素を測定
することができる。また本発明方法では、過酸化水素と
同時にNADH又はNADPHも同じ系で定量できる。
(Effects of the Invention) In the present invention, hydrogen peroxide can be stably quantified using bacterial luciferase without being interfered with by blood substances. In particular, it is possible to measure hydrogen peroxide concentrations as low as 10'M, and is more sensitive than the chemiluminescence method. Moreover, hydrogen peroxide can be measured using near-neutral and non-hazardous chemicals. Furthermore, in the method of the present invention, NADH or NADPH can be determined simultaneously with hydrogen peroxide using the same system.

すなわちNADH又はNADPHを従来の吸光法や蛍光
法ではなし得なかった高感度に測定することができる。
That is, NADH or NADPH can be measured with a high sensitivity that could not be achieved by conventional absorption methods or fluorescence methods.

(実施例) 次に本発明を実施例により詳細に説明する。(Example) Next, the present invention will be explained in detail with reference to examples.

実施例1 反応における試薬の終濃度が以下の通りである次の試薬
を調製した。
Example 1 The following reagents were prepared in which the final concentrations of the reagents in the reaction were as follows.

1000単位/−カタラーゼ 0・6M メタノール 0.3単位/lnt ホルムアルデヒドデヒドロゲナー
ゼ 0.01164単位/sg NADH−1MNオキシド
レダクターゼ 300μM NAD 2.5μM FMN o、002% デシルアルデヒド(*1)96.5μt
/−ルシフェラーゼ 0.1 M リン酸緩衝液(pH7,0)(*1)0.
1Mリン酸緩衝液100−に0.02%デシルアルデヒ
ドおよび溶解剤として0.5%牛血清、0.05%トリ
トン1−100を添加して調製した。
1000 units/- Catalase 0.6M Methanol 0.3 units/lnt Formaldehyde dehydrogenase 0.01164 units/sg NADH-1MN oxidoreductase 300 μM NAD 2.5 μM FMN o, 002% Decylaldehyde (*1) 96.5 μt
/-Luciferase 0.1 M phosphate buffer (pH 7.0) (*1) 0.
It was prepared by adding 0.02% decylaldehyde and 0.5% bovine serum and 0.05% Triton 1-100 as solubilizers to 1M phosphate buffer 1-100.

上記試薬0.9−に濃度既知の過酸化水素0.1−を添
加し、23℃、60秒、反応させて発光させ、ルミ7オ
トメーターTI)4000(ラボ・サイエンス社製)に
て発光強度を測定した。第1図に発光強度の増加を時間
当りの最大勾配(発光速度の微分に相当)として過酸化
水素濃度に対してプロットした。
Add 0.1- of hydrogen peroxide with a known concentration to the above reagent 0.9-, react at 23°C for 60 seconds to emit light, and use Lumi7 Otometer TI) 4000 (manufactured by Labo Science) to emit light. The strength was measured. In FIG. 1, the increase in luminescence intensity is plotted against the hydrogen peroxide concentration as the maximum slope per hour (corresponding to the differential of the luminescence rate).

第1図から明らかなように、過酸化水素濃度lO−″〜
10−’ Mの低濃度において、発光強度は直!1!関
係をもって定量される。
As is clear from Figure 1, the hydrogen peroxide concentration lO-''~
At a low concentration of 10-'M, the emission intensity is direct! 1! quantified in relation to

参考例1 細菌ルシフェラーゼが化学発光法(ルミノール−ベルオ
キシダ!−ゼ系)に比べて、血清の影響を受けにくいこ
とを示す。
Reference Example 1 This shows that bacterial luciferase is less affected by serum than the chemiluminescent method (luminol-peroxidase system).

(1)反応における試薬の終濃度が以下の通りである次
の試薬を調製した。
(1) The following reagents were prepared in which the final concentrations of the reagents in the reaction were as follows.

11.64ミリ単位/−NADH−1MNオキシドレダ
クターゼ 96.5μV/−細菌ルシフェラーゼ 0.002% デシルアルデヒド 2.5μM FMN OoIM リン酸緩衝液(pH7,0)上記試薬に種々
の濃度に稀釈した管理血清を添加し、次いで2.5X1
0−’MNADHを添加して発光強度を測定した。その
結果を第2図に示す。
11.64 milliunits/-NADH-1MN oxidoreductase 96.5 μV/-bacterial luciferase 0.002% Decylaldehyde 2.5 μM FMN OoIM Phosphate buffer (pH 7,0) Control serum diluted to various concentrations in the above reagents and then 2.5X1
0-'MNADH was added and the luminescence intensity was measured. The results are shown in FIG.

第211から明らかなように、細菌ルシフェラーゼによ
るNADH測定系では血清の影響を濃度1/100容ま
で受けない。
As is clear from No. 211, the NADH measurement system using bacterial luciferase is not affected by serum up to a concentration of 1/100 volume.

(2) ルミノール化学発光における反応試薬の終濃度
が以下の通りである次の試薬を調製した。
(2) The following reagents were prepared in which the final concentrations of reaction reagents in luminol chemiluminescence were as follows.

2X10 ’M ルミノール 化学発光/−ペルオキシダーゼ 0.1 M ホf)酸緩衝液(PH8,0)上記試薬に
種々の濃度に稀釈した管理血清および終濃度10−’ 
M過酸化水素を添加して、発光強度を測定した。その結
果を第3図に示す。
2X10'M Luminol Chemiluminescence/-Peroxidase 0.1 M Hof) Acid Buffer (PH8,0) Control serum diluted to various concentrations in the above reagents and final concentration 10'
M hydrogen peroxide was added and the luminescence intensity was measured. The results are shown in FIG.

第3図から明らかなように、ルミノール−ベルオキシダ
 ゼ系では血清の影響を強く受ける。
As is clear from Figure 3, the luminol-peroxidase system is strongly influenced by serum.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は過酸化水素濃度(M)と発光強度増加の時間当
りの最大勾配(発光強度Io)との関係を示す。 第3図は添加した血清稀釈倍率とルミノール−ペルオキ
シダーゼ系による化学発光強度との関係を示す。 第1図 過酸L−y’i傳(M) 第2@ fELう青 (イト靭)
FIG. 1 shows the relationship between the hydrogen peroxide concentration (M) and the maximum slope of luminescence intensity increase per time (luminescence intensity Io). FIG. 3 shows the relationship between the dilution ratio of added serum and the chemiluminescence intensity due to the luminol-peroxidase system. Figure 1 Peroxyacid L-y'iden (M) 2nd @ fEL blue (it tough)

Claims (1)

【特許請求の範囲】[Claims] (1)過酸化水素を含有する試料にアルキルアルコール
の存在下、カタラーゼを作用させ、(11)生成するア
ルデヒドに水およびNAD又はNADPの存在下、ホル
ムアルデヒドデヒドロゲナーゼ又はアルデヒドデヒドロ
ゲナーゼを作用させ、(li+ )生成するNADH又
はNADPHにFMNの存在下、NADH−FMNオキ
シドレダリターゼ、NADP)(−FMNオキシドレダ
リターゼ又はジアホラーゼを作用させ、(1v)生成す
るF M N H2に炭素原子数8〜14の直鎖アルデ
ヒドおよび酸素の存在下、細菌ルシフェラーゼを作用さ
せ、(V)生成する発光活性を測定することにより、試
料中の過酸化水素を定量することを特徴とする細菌ルシ
フェラーゼによる過酸化水素の定量法。
(1) Catalase is applied to a sample containing hydrogen peroxide in the presence of an alkyl alcohol, (11) formaldehyde dehydrogenase or aldehyde dehydrogenase is applied to the generated aldehyde in the presence of water and NAD or NADP, and (li+) NADH-FMN oxidoredalitase, NADP) (-FMN oxidoredalitase, NADP) (-FMN oxidoredalitase or diaphorase is allowed to act on the generated NADH or NADPH in the presence of FMN, and (1v) the generated F M N H2 has 8 to 14 carbon atoms. Hydrogen peroxide by bacterial luciferase is quantified by causing bacterial luciferase to act in the presence of a linear aldehyde and oxygen, and (V) measuring the luminescent activity produced. Quantitative method.
JP7476684A 1984-04-12 1984-04-12 Quantitative determination of hydrogen peroxide by bacterial luciferase Granted JPS60218070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7476684A JPS60218070A (en) 1984-04-12 1984-04-12 Quantitative determination of hydrogen peroxide by bacterial luciferase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7476684A JPS60218070A (en) 1984-04-12 1984-04-12 Quantitative determination of hydrogen peroxide by bacterial luciferase

Publications (2)

Publication Number Publication Date
JPS60218070A true JPS60218070A (en) 1985-10-31
JPH0365959B2 JPH0365959B2 (en) 1991-10-15

Family

ID=13556727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7476684A Granted JPS60218070A (en) 1984-04-12 1984-04-12 Quantitative determination of hydrogen peroxide by bacterial luciferase

Country Status (1)

Country Link
JP (1) JPS60218070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0386691A2 (en) * 1989-03-08 1990-09-12 Toyo Boseki Kabushiki Kaisha DNA probe detection method with bacterial luciferase system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0386691A2 (en) * 1989-03-08 1990-09-12 Toyo Boseki Kabushiki Kaisha DNA probe detection method with bacterial luciferase system

Also Published As

Publication number Publication date
JPH0365959B2 (en) 1991-10-15

Similar Documents

Publication Publication Date Title
KR920001449B1 (en) Process for the colorimetric determination of an analyte by means of enzymetic oxidation
EP0124909B1 (en) Process for determining reduced form coenzymes
Jablonski et al. Properties and uses of immobilized light-emitting enzyme systems from Beneckea harveyi.
Kudo et al. A NADH-dependent fiber-optic biosensor for ethanol determination with a UV-LED excitation system
RU2149182C1 (en) Biosensor for detection of nitrate or nitrite ions and methods of detection of nitrate or/and nitrate ions
MX2007002224A (en) Method for determining the concentration of analytes in samples by direct mediation of enzymes.
JP2005118014A (en) Method of analysis and reagent used for the same
Coulet et al. Chemiluminescence and photobiosensors
JPS60218070A (en) Quantitative determination of hydrogen peroxide by bacterial luciferase
JPH03502281A (en) How to measure bilirubin in solution
JPH0220239B2 (en)
JP3710166B2 (en) Method for measuring D-sorbitol and kit for measuring the same
SE449004B (en) BIOLUMINISCENCE DETERMINATION OF NADH AND / OR NADPH
JP2000262297A (en) Measurement of substance using enzyme-immobilized electrode
JP2658113B2 (en) Determination of hydrogen peroxide by luciferase from luminescent bacteria
JPS63248397A (en) Method for determining d-mannose
JP2004024254A (en) Method for simply measuring myoinositol
JP2003502671A (en) Chemiluminescent redox assay for quantifying analytes in biological samples
JP2001078797A (en) Reagent for eliminating glucose and/or glucono-1,5- lactone
Arnold Fiber optic biosensing probes for biomedically important compounds
JPH02100699A (en) Measurement of organism sample
JPH066070B2 (en) Method for quantifying NADH or NADPH by chemiluminescence method
Coulet et al. Immobilized biological compounds in bio-and chemiluminescence assays
JPH03285697A (en) Method for testing chemoluminescence
JPS60164498A (en) Test specimen for detecting alcohol