JPS60217635A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60217635A
JPS60217635A JP7433984A JP7433984A JPS60217635A JP S60217635 A JPS60217635 A JP S60217635A JP 7433984 A JP7433984 A JP 7433984A JP 7433984 A JP7433984 A JP 7433984A JP S60217635 A JPS60217635 A JP S60217635A
Authority
JP
Japan
Prior art keywords
nozzle
substrate
gas
oxygen
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7433984A
Other languages
Japanese (ja)
Inventor
Hiromi Sakurai
桜井 弘美
Koji Eguchi
江口 剛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7433984A priority Critical patent/JPS60217635A/en
Publication of JPS60217635A publication Critical patent/JPS60217635A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable to perform an Si etching at low cost and in a short period using a small quantity of oxygen and hydrogen by a method wherein a focussed ion beam of oxygen is made to irradiate using a composite nozzle having a plurality of nozzles, and the supply of H2 gas and the suction of excess gas are performed simultaneously. CONSTITUTION:A composite nozzle 4 is very small in size, and its overall diameter is approximately 1,000Angstrom . The nozzle 4a arranged on the inner-most side has a vacuum atmosphere of 10<-5>-10<-6>Torr or thereabout, a focussed ion beam of oxygen and a laser beam for heating are introduced from said nozzle 4a, and the implantation of oxygen into Si and the formation of SiO2 are performed. Then, a small quantity of H2 is sent in from the nozzle 4b located outside the nozzle 4a, and SiO gas is generated. Said SiO and H2 gases are brought into an extra- high vacuum atmosphere from the nozzle 4c located outside the nozzle 4b, and the diffusion of gas to the circumference is prevented. Besides, inert gas such as Ar which will be used to prevent mixture of the atmospheric air is introduced from the nozzle 4d located outside the nozzle 4c, and the atmospheric air and the inert gas are sucked in from the nozzle 4e which is arranged outside the nozzle 4d.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置のSiエツチングをマスクやレジス
トなしで行なうようにした半導体装置の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device in which Si etching of the semiconductor device is performed without a mask or resist.

〔従来技術〕[Prior art]

従来Siを基板とする半導体装置は、Siエツチングの
際にパターン設計されたマスクを用い、レジストパター
ンを形成し、これをマスクにしてドライエツチングでシ
リコンを除去する方法が用いられていた。例えば、Si
エツチングを行なうガスとしてはCF4 +02が用い
られ、プラズマによりネ 発生した弗素ラジカルF とSiが反応してStがエツ
チングされる。さらにこの方法を改良した方法として、
最近イオン注入法とプラズマエツチングを組み合わせた
方法が提案されている。
Conventionally, in semiconductor devices using Si as a substrate, a method has been used in which a resist pattern is formed using a pattern-designed mask during Si etching, and silicon is removed by dry etching using this as a mask. For example, Si
CF4+02 is used as the etching gas, and fluorine radicals F generated by the plasma react with Si, thereby etching St. As a further improvement of this method,
Recently, a method combining ion implantation and plasma etching has been proposed.

例えば第1図(・)に示すように、写真製版−で得られ
たレジストパターン2をマスクに基板1に矢印Aで示す
ようにイオン注入を行なうと、選択的にイオン注入され
た領域3が形成される。次に同図(b)に示すように、
レジストを除去し、さらに同図(C1の矢印Bで示すよ
うに反応性イオンエツチングを行なうと、イオン注入さ
れた領域3は反応原子又は分子と不揮発性物質3°を形
成し、イオン注入されない基板と反応原子又は分子とは
揮発性物質を形成する。ここで矢印Cは揮発性物質が揮
発していく様子を示している。この例ではエツチングの
際にマスク用レジストが不要になっただけのことで、写
真製版工程が従来同様心嚢である。
For example, as shown in FIG. 1 (), when ions are implanted into a substrate 1 as shown by arrow A using a resist pattern 2 obtained by photolithography as a mask, selectively ion-implanted regions 3 It is formed. Next, as shown in the same figure (b),
When the resist is removed and reactive ion etching is performed as shown by arrow B in the same figure (C1), the ion-implanted region 3 forms a non-volatile material 3° with the reactive atoms or molecules, and the ion-implanted region 3 forms a non-volatile material 3°, leaving the substrate where no ions are implanted. and the reacting atoms or molecules form a volatile substance.Here, arrow C shows how the volatile substance evaporates.In this example, the mask resist is no longer needed during etching. This means that the photoengraving process is still pericardial as in the past.

以上のように従来例では表1に示すように、・表1 多くの装置や高純度の材料が必要であった。しかもこれ
らのうちのいずれが変動してもパターン形状の分布が悪
くなり、LSI等の歩留り低下を引き起こすものである
ため、個々の装置を安定になるよう管理する必要があっ
た。
As mentioned above, in the conventional example, as shown in Table 1, many devices and high-purity materials were required. Furthermore, if any of these changes, the distribution of pattern shapes deteriorates and the yield of LSIs etc. decreases, so it is necessary to manage each device so that it is stable.

又、パターン精度を上げるにはレジストの薄層化や低反
射化あるいは高分解能を有するマスクアライナ−1高品
質マスク、材料を要し、長い工程でしかも高価な設備を
必要としていた。
Furthermore, in order to improve pattern accuracy, it is necessary to make the resist layer thinner, to reduce reflection, or to use a high-quality Mask Aligner-1 mask and materials with high resolution, which requires a long process and expensive equipment.

〔発明の概要〕[Summary of the invention]

本発明はかかる従来のSiエツチングの方法を簡便化せ
んとしてなされたもので、単一装置、即ち複数のノズル
を有する複合ノズルでもって酸素の集束イオンビーム照
射+H2ガスの供給、及び余剰ガスの吸引を同時に行な
うことにより、レジストやマスクといった高価な消耗品
を利用することなく、安価で高精度のSiエツチングを
行なうことのできる半導体装置の製造方法を提供するも
のである。
The present invention was made to simplify the conventional Si etching method, and uses a single device, that is, a composite nozzle having a plurality of nozzles, to perform focused ion beam irradiation of oxygen, supply of H2 gas, and suction of excess gas. The purpose of the present invention is to provide a method for manufacturing a semiconductor device that can perform Si etching at low cost and with high precision by simultaneously performing the following steps and without using expensive consumables such as resists and masks.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を参照して詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

5i02はH2中で800〜1200℃であればStと
反応して330ガスになることはよく知られている。
It is well known that 5i02 reacts with St at 800 to 1200°C in H2 to form 330 gas.

本発明の原理はSi基板に高温中で集束イオンビームに
より酸素イオンを打ち込んで5i02となし、これをH
2雰囲気に入れて下地Siと反応させ、SiOガスを形
成することにある。一般にエピタキシャル成長前はSt
裏表面自然にできた5i02をH2の高温処理により除
去している。この時の5i02膜厚は50〜200人程
度である。従って集束イオンビームによって形成される
5i02の厚さは50〜200人程度であれば上記原理
により除去される。
The principle of the present invention is to implant oxygen ions into a Si substrate using a focused ion beam at high temperature to form 5i02, which is then converted into H
2 atmosphere to react with the underlying Si to form SiO gas. Generally, before epitaxial growth, St
5i02 naturally formed on the back surface was removed by high temperature treatment with H2. The thickness of the 5i02 film at this time is approximately 50 to 200. Therefore, if the thickness of 5i02 formed by the focused ion beam is about 50 to 200 people, it can be removed according to the above principle.

即ち本発明方法は、Si基板の一生面の近傍に複数のノ
ズルを有する複合ノズルを配置し、その1個のノズルか
ら酸素の集束イオンビームをSi基板に照射し、他のノ
ズルからH2を供給して上述の反応を起こさせ、そして
周辺のガス流れ込みによるパターンボケを防ぐため、他
のノズルによって発生した剰余ガスを真空除去するもの
であり、しかもこれを上記複合ノズルを基板に対し移動
させながら行なうことによりSi基板に所望パターンの
溝をエツチング形成するものである。
That is, in the method of the present invention, a composite nozzle having a plurality of nozzles is arranged near the whole surface of the Si substrate, a focused ion beam of oxygen is irradiated onto the Si substrate from one nozzle, and H2 is supplied from the other nozzle. In order to cause the above-mentioned reaction to occur, and to prevent pattern blurring due to the inflow of surrounding gas, the residual gas generated by other nozzles is vacuum removed, and this is removed while the composite nozzle is moved relative to the substrate. By doing this, grooves with a desired pattern are formed in the Si substrate by etching.

そしてこの際基板を加熱する必要があるが、これは上記
複合ノズルとは全く別の加熱手段により加熱してもよく
、また上記複合ノズルの1つのノズルからレーザビーム
を照射することによって部分抽熱を行なうようにしても
よい。
At this time, it is necessary to heat the substrate, but this may be done by heating means completely different from the above-mentioned composite nozzle, or by irradiating a laser beam from one nozzle of the above-mentioned composite nozzle. You may also do this.

また上記工程は真空m中で行なう訳であるが、これを大
気中で行なう場合には、上記酸素イオンビーム照射、H
2の供給、剰余ガスの吸引。
Furthermore, the above process is carried out in a vacuum m, but when this is carried out in the atmosphere, the above-mentioned oxygen ion beam irradiation, H
2 supply, suction of surplus gas.

気を吸引することにより、上記工程を常温、大気中で行
なうことができる。
By suctioning air, the above steps can be carried out at room temperature and in the atmosphere.

第2図はこのように常温、大気中で処理を行なうことの
できる本発明の一実施例方法を示す。
FIG. 2 shows one embodiment of the method of the present invention, which allows the treatment to be carried out at room temperature and in the atmosphere.

ここで複合ノズル4は極めて小型で、全体で約1000
人の直径である。さて同図において最も内側に配置され
たノズル4aは、10 〜10 Torr程度の真空に
引かれており、このノズル4aがらは酸素の集束イオン
ビームと加熱用レーザビームが導入され、Siに酸素の
打ち込み及び5i02化を起こす。次にその外側のノズ
ル4bからH2が微量送り込まれ、SiOガスを形成す
る。SiOやH2ガスはさらにその外側のノズル4cが
ら超高真空に引き込まれ、周辺へのガス拡散を防ぐ。さ
らにその外側のノズル4dがらは外気の混入を防止する
ため不活性ガス、例えばArを導入し、その外側に配置
されたノズル4eから大気及び不活性ガスを吸引する。
Here, the composite nozzle 4 is extremely small, with a total of about 1000
It is the diameter of a person. Now, in the figure, the innermost nozzle 4a is drawn to a vacuum of about 10 to 10 Torr, and a focused oxygen ion beam and a heating laser beam are introduced into the nozzle 4a, and the oxygen is heated to the Si. Causes typing and 5i02 conversion. Next, a small amount of H2 is sent in from the nozzle 4b on the outside to form SiO gas. The SiO and H2 gases are further drawn into an ultra-high vacuum through the nozzle 4c on the outside to prevent gas diffusion to the surrounding area. Furthermore, an inert gas such as Ar is introduced into the nozzles 4d on the outside to prevent outside air from getting mixed in, and atmospheric air and inert gas are sucked through the nozzles 4e located outside of the nozzles 4d.

この方法によれば大気中でもSiエンチングが可能とな
る。またノズル径が小さいことがら装置が小型でも高真
空が達成される。さらにH2ガスは微量で済み危険性は
少ない。また周辺へのガス拡散を防止できるため公害等
の問題も解決できる。
According to this method, Si etching is possible even in the atmosphere. Furthermore, since the nozzle diameter is small, high vacuum can be achieved even if the device is small. Furthermore, the amount of H2 gas is small and there is little danger. In addition, problems such as pollution can be solved because gas diffusion to the surrounding area can be prevented.

そしてこのノズル4又は基板1を予めプログラムされた
パターン情報に応じてスキャニングする、即ち相対移動
させることにより、所望の幅、所望の深さのSiエンチ
ングが可能となる。
By scanning the nozzle 4 or the substrate 1 according to pattern information programmed in advance, that is, by relatively moving the nozzle 4 or the substrate 1, Si etching of a desired width and a desired depth becomes possible.

本発明はSiエンチングのみならず、ポリシリコンのエ
ツチングも同様の原理から行ない得るもので、この場合
本発明を用いることによりサブミクロン幅の溝堀りも可
能となる。
The present invention can perform not only Si etching but also polysilicon etching based on the same principle, and in this case, by using the present invention, trenches with a submicron width can be dug.

本発明のさらに優れた点は、Siエンチングとして異方
性エツチングができることである。これはガスの横方向
の拡散を、これを吸引する方法でi止したためである。
A further advantage of the present invention is that anisotropic etching can be performed as Si etching. This is because the lateral diffusion of gas was stopped by the method of sucking it.

従来の異方性ドライエツチングを用いると、基板温度が
上昇しエツチング速度が大幅に低下するため、深い溝堀
りが困難であったが、−力木発明では高温にすればする
程エツチング速度が速くなるため有利である。また部分
的に加熱する方法を採用することにより、接合の拡散は
喰い止められ、テーパエツチング等もコントロールでき
る。しかも加熱に要するエネルギーは、50〜200人
程度の厚さだけ高温にすればよいため、従来のレーザア
ニールエネルギーの1 /1000程度の微量であって
よい。
When conventional anisotropic dry etching was used, it was difficult to dig deep grooves because the substrate temperature rose and the etching rate decreased significantly.However, with Riki's invention, the etching rate increases as the temperature increases. This is advantageous because it is faster. Furthermore, by employing a method of heating locally, diffusion of the bond can be prevented and taper etching etc. can be controlled. Moreover, the energy required for heating only needs to be raised to a high temperature for the thickness of about 50 to 200 people, so the amount of energy required for heating may be as small as about 1/1000 of the conventional laser annealing energy.

さらに本発明では、微細加工を省エネルギーで可能にで
きた訳であり、その反面パターン作図とエツチングを行
なうためスループットに難点があると思われるが、従来
の方法による多くの工程を一気に省略し、一台の装置で
これらに相当する処理を行なうことにより充分これに対
応できている。
Furthermore, with the present invention, microfabrication has been made possible with energy savings, but on the other hand, there may be a problem with throughput since pattern drawing and etching are performed, but many steps of conventional methods can be omitted at once. This can be adequately handled by performing the corresponding processing with a single device.

しかもレジスト汚染や塗布ムラによるパターン上の欠陥
もない。さらにスルーブツトを上げる方法としてこれら
のノズルを多数個持つ装置にすることで、一つのパター
ン情報で同時に同一形状チップが得られる。この際はウ
ェハをスキャンする方が有利と考えられる。1 本発明の他の応用例としては、5i02 +5i−45
io(ガス)相当の反応を起こす物質に対し本発明によ
るノズルを適用することができ、上記と同様の効果を奏
する。
Furthermore, there are no pattern defects due to resist contamination or coating unevenness. Furthermore, as a way to increase the throughput, by using a device having a large number of these nozzles, chips of the same shape can be obtained at the same time using one piece of pattern information. In this case, it is considered more advantageous to scan the wafer. 1 Other application examples of the present invention include 5i02 +5i-45
The nozzle according to the present invention can be applied to a substance that causes a reaction equivalent to io (gas), and the same effects as described above can be obtained.

[発明の効果〕 以上のように、本発明によれば、複数のノズルを有する
複合ノズルでもって酸素の集束イオンビーム照射、H2
ガスの供給、及び剰余ガスの吸引を同時に行なうことに
より、多くの管理された材料や高価な装置を用いること
な(、微量の酸素と水素を用いて安価に短時間にSiエ
ッチジグができ、しかも公害等の問題も解決でき、テー
パエツチング等もコントロールできる効果がある。
[Effects of the Invention] As described above, according to the present invention, focused ion beam irradiation of oxygen, H2
By supplying gas and suctioning excess gas at the same time, it is possible to perform a Si etch jig at low cost and in a short time using a small amount of oxygen and hydrogen without using many controlled materials or expensive equipment. It also has the effect of solving problems such as pollution and controlling taper etching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の製造方法を工程順に示す図
、第2図は本発明の一実施例による半導体装置の製造方
法を示す図である。 l・・・St基板、4・・・複合ノズル、4a〜4e・
・・ノズル。 代理人 大岩増雄 第1図
FIG. 1 is a diagram showing a conventional method for manufacturing a semiconductor device in order of steps, and FIG. 2 is a diagram showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. l... St substrate, 4... Composite nozzle, 4a to 4e.
··nozzle. Agent Masuo Oiwa Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1) Si基板の一生面の通合に複数のノズルを有す
る複合ノズルを配置し、その1個のノズルから酸素の集
束イオンビームをSi基板に照射することと、他のノズ
ルからH2を供給することと、さらに他のノズルにより
剰余残留ガスを吸引することとを、上記ノズルを上記S
i基板に対し移動させながら同時に行なうことにより、
Si基板をエツチングすることを特徴とする半導体装置
の製造方法。
(1) A composite nozzle with multiple nozzles is placed in communication with the entire surface of the Si substrate, and one nozzle irradiates the Si substrate with a focused ion beam of oxygen, and the other nozzle supplies H2. The above-mentioned nozzle is connected to the above-mentioned S.
By simultaneously moving it to the i-board,
A method for manufacturing a semiconductor device, characterized by etching a Si substrate.
(2) 上記基板の加熱を上記複合ノズルの1つの光記
載の半導体装置の製造方法。
(2) A method for manufacturing a semiconductor device, wherein the substrate is heated using one of the composite nozzles.
(3) Si基板の一生面の近傍に複数のノズルを有す
る複合ノズルを配置し、その1個のノズルから酸素の集
束イオンビームを基板に照射することと、他のノズルか
らレーザビームを照射して基板の部分加熱を行なうこと
と、他のノズルからH2を供給することと、さらに他の
ノズルにより剰余残留ガスを吸引することと、上述の各
ノズルの全体を取り囲む他のノズルにより不活性ガスを
流すことと、上述の各ノズル全体をとり囲むさらに他の
ノズルにより不活性ガス及び大気を吸引することとを、
上記ノズルを上記Si基板に対し移動させながら同時に
常温、大気中で行なうことにより、Si基板をエツチン
グすることを特徴とする半導体装置の製造方法。
(3) A composite nozzle with multiple nozzles is placed near the whole surface of the Si substrate, and one nozzle irradiates the substrate with a focused oxygen ion beam, and the other nozzle irradiates the substrate with a laser beam. supplying H2 from another nozzle, suctioning the remaining residual gas through another nozzle, and supplying inert gas with another nozzle that completely surrounds each of the above-mentioned nozzles. and drawing inert gas and atmospheric air through further nozzles surrounding each of the above-mentioned nozzles,
A method for manufacturing a semiconductor device, characterized in that the Si substrate is etched by moving the nozzle relative to the Si substrate and simultaneously etching the Si substrate at room temperature in the atmosphere.
JP7433984A 1984-04-12 1984-04-12 Manufacture of semiconductor device Pending JPS60217635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7433984A JPS60217635A (en) 1984-04-12 1984-04-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7433984A JPS60217635A (en) 1984-04-12 1984-04-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60217635A true JPS60217635A (en) 1985-10-31

Family

ID=13544259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7433984A Pending JPS60217635A (en) 1984-04-12 1984-04-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60217635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435913A (en) * 1987-07-31 1989-02-07 Hitachi Ltd Method and device for correcting defect of device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435913A (en) * 1987-07-31 1989-02-07 Hitachi Ltd Method and device for correcting defect of device

Similar Documents

Publication Publication Date Title
US4393127A (en) Structure with a silicon body having through openings
US4919749A (en) Method for making high resolution silicon shadow masks
JPS6217850B2 (en)
JP3900901B2 (en) Mask, method for manufacturing the same, and method for manufacturing a semiconductor device
JPS6276521A (en) Etching method using electron beam
JPS60217635A (en) Manufacture of semiconductor device
JPH05216216A (en) Formation of stencil mask
JP3183883B2 (en) Pattern formation method
US6169004B1 (en) Production method for a semiconductor device
JPS6351641A (en) Fine pattern formation of single crystal or polycrystalline si film
JPS5812341B2 (en) Dry etching method
JPS62285355A (en) Ion implanter
JPS63124528A (en) Device for manufacturing semiconductor
US5874352A (en) Method of producing MIS transistors having a gate electrode of matched conductivity type
JP2883918B2 (en) Compound semiconductor pattern formation method
JPH0242715A (en) Pattern formation
JPH0361335B2 (en)
JPH0469421B2 (en)
JP3132963B2 (en) Method of forming silicon oxide film
JPS6197912A (en) Cvd equipment
JPS5961124A (en) Method for formation of thin film
JPH01321629A (en) Formation of thin film
JPH01290770A (en) Film formation by optical cvd method
JPS59119849A (en) Manufacture of semiconductor device
JPS60216564A (en) Manufacture of semiconductor ic