JPS5961124A - Method for formation of thin film - Google Patents

Method for formation of thin film

Info

Publication number
JPS5961124A
JPS5961124A JP17202282A JP17202282A JPS5961124A JP S5961124 A JPS5961124 A JP S5961124A JP 17202282 A JP17202282 A JP 17202282A JP 17202282 A JP17202282 A JP 17202282A JP S5961124 A JPS5961124 A JP S5961124A
Authority
JP
Japan
Prior art keywords
substrate
silicon dioxide
film
thin film
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17202282A
Other languages
Japanese (ja)
Other versions
JPH0456447B2 (en
Inventor
Takashi Ito
隆司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17202282A priority Critical patent/JPS5961124A/en
Publication of JPS5961124A publication Critical patent/JPS5961124A/en
Publication of JPH0456447B2 publication Critical patent/JPH0456447B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To enable to obtain the flat surface on a substrate by a method wherein the substrate is arranged in a mixed gas atmosphere, a thin film growth reaction and an etching reaction are performed simultaneously by irradiating a beam of light, thereby enabling to lessen the unevenness of the substrate surface. CONSTITUTION:As a gas system 8, mixed gas of monosilane, oxygen and carbon tetrafluoride is used, and a substrate 3 is maintained at the temperature of 400 deg.C. Under this condition, when the above-mentioned mixed gas is introduced into a reaction chamber 1, a silicon dioxide film is grown on the substrate 3 by the reaction of SiH4+2O2 SiO2+2H2O. As the silicon dioxide film 11 has a stepping caused by a film 10, it is to be exactly formed along the stepping or in such a manner that it makes the so-called overhang. However, the CF4 contained in the mixed gas is turned to an exited state by irradiating a beam of light 9 while it is being formed, an etching is performed when the CF4 comes in contact with the silicon dioxide film and, at the same time, a silicon dioxide film 12 is formed. As the etching for the silicon dioxide film 12 is performed in the direction vertical to the substrate 3, the degree of reduction in film thickness at the stepped part is lessened, thereby enabling to reduce the stepping considerably.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、薄膜を形成しても基板表面の平坦性を維持し
たい場合に適用して好ましい薄膜形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a thin film forming method that is preferably applied when it is desired to maintain the flatness of a substrate surface even after forming a thin film.

従来技術と問題点 一般に、半導体装置を製造する際、薄膜の形成は極めて
重要な技術である。
Prior Art and Problems Generally, when manufacturing semiconductor devices, forming thin films is an extremely important technique.

その薄膜としては、金属、絶縁膜、半導体膜等があり、
それ等は種々の技法、例えば、真空蒸着法、スパッタ法
、気相成長法等を利用して作製されてきた。
The thin film includes metal, insulating film, semiconductor film, etc.
They have been fabricated using various techniques, such as vacuum evaporation, sputtering, vapor deposition, and the like.

然し乍ら、半導体集積回路装置に於いて、素子の高密化
が進むにつれて装置表面の凹凸が激しくなり、その上に
所望の精密なパターンを形成することが困難になったり
、薄膜の不連続を生したりしている。
However, in semiconductor integrated circuit devices, as the density of elements increases, the surface of the device becomes more uneven, making it difficult to form a desired precise pattern on it, and causing discontinuities in the thin film. I'm doing it.

これを解決する為、基板表面にシリコンを含む液体をス
ピン・コート法にて一様に塗布して平坦にする技術も開
発されたが、前記液体のような無機利料を使用した場合
には、清浄な薄膜を形成することは困難である。また、
気相成長法に依って成長させた薄膜を方向性があるエツ
チング液にて一部エノチングして除去し、この操作を繰
り返すことに依り表面の凹凸を緩和して平坦化すること
も行なわれているが、操作が複雑で実用的ではない。更
にまた、スパック法を用いた薄膜形成の過程で、イオン
衝撃に依る物理的なエツチング作用を利用し、成程度の
平坦化を図ることができるのも知られているが、操作に
特殊な条件を必要とするので実施することば困ゲVであ
る。
To solve this problem, a technique was developed to uniformly apply a silicon-containing liquid to the substrate surface using a spin coating method to flatten it, but when an inorganic material like the above liquid is used, , it is difficult to form a clean thin film. Also,
A thin film grown by the vapor phase growth method is partially removed by etching with a directional etching solution, and by repeating this operation, the unevenness of the surface is reduced and flattened. However, it is complicated to operate and is not practical. Furthermore, it is known that in the process of forming a thin film using the spuck method, it is possible to achieve a certain degree of flatness by utilizing the physical etching effect caused by ion bombardment, but this method requires special conditions for operation. It is difficult to implement it because it requires the following.

発明の目的 本発明は、基板表面の凹凸を緩和し、平坦な表面状態を
得ることができる薄膜形成方法を提供するもので、半導
体装置を製造する際に用いて好適である。
OBJECTS OF THE INVENTION The present invention provides a thin film forming method that can reduce unevenness on a substrate surface and obtain a flat surface condition, and is suitable for use in manufacturing semiconductor devices.

発明の構成 本発明では、気相反応に依り薄膜を成長するカス系と、
成長する該薄膜をエツチングすることが可能なガス系と
の混合ガス雰囲気に基板を配置し、光を照射して8膜成
長反応とエツチング反応とを同時に進行さセるものであ
る。
Structure of the Invention In the present invention, a scum system that grows a thin film by a gas phase reaction,
The substrate is placed in a mixed gas atmosphere with a gas system capable of etching the thin film being grown, and light is irradiated to cause the film growth reaction and the etching reaction to proceed simultaneously.

薄膜の成長は、熱エネルギの供給を受りて進行するので
、本質的には基板の凹凸に沿う成長をすることになるが
、エツチング作用は光の直進性に依り方向性を持ったも
のとなり、従って、それ等が組み合うことに依り、基板
に於りる凹凸の段差部では、谷部骨の膜のエツチング量
より膜の成長量の方が大になり、結果的に段差を解消す
るような形で膜が残ることになる。
Thin film growth progresses with the supply of thermal energy, so it essentially grows along the irregularities of the substrate, but the etching action is directional due to the straightness of the light. Therefore, due to the combination of these factors, the amount of film growth is greater than the amount of etching of the valley bone film at the uneven step portion of the substrate, and as a result, the step is eliminated. A film will remain in this form.

因に、方向性があるエツチング方法としては、従来、リ
アクティブ・イオン・工・ノチングなどの方法があるが
、それに依るエツチングでは雰囲気の圧力を10−’ 
(To r r)以下にしなければならず、この状態に
於ける薄膜の成長は難しいので実用的ではない。
Incidentally, as a directional etching method, there are conventional methods such as reactive, ion, etching, and notching.
(To r r) or less, and it is difficult to grow a thin film under this condition, so it is not practical.

本発明では、基本的に雰囲気圧力依存性はないから、薄
膜を充分に高い速度で成長させ得る条件を設定できる。
In the present invention, since there is basically no dependence on atmospheric pressure, conditions can be set that allow the thin film to grow at a sufficiently high rate.

発明の実施例 第1図は本発明を実施する装置の一実施例を表わすもの
である。
Embodiment of the Invention FIG. 1 represents an embodiment of an apparatus for carrying out the invention.

図に於いて、1は反応室、2は基板支持台、3は基板、
4は基板3を一定温度に加熱する為のヒータ、5は光透
過窓、6はガス送入管、7はガス排出管、8はガス系、
9は光をそれぞれ示している。
In the figure, 1 is a reaction chamber, 2 is a substrate support, 3 is a substrate,
4 is a heater for heating the substrate 3 to a constant temperature, 5 is a light transmission window, 6 is a gas inlet pipe, 7 is a gas discharge pipe, 8 is a gas system,
9 each represents a light.

次に、この装置を使用して二酸化シリコン膜を成長させ
る場合について説明する。
Next, the case of growing a silicon dioxide film using this apparatus will be described.

二酸化シリコン膜を成長するには、ガス系8として、モ
ノシラン(SiH+)、酸素(Q2)、四フフ化炭素(
CF4)の混合ガスを用いる。
To grow a silicon dioxide film, the gas system 8 must be monosilane (SiH+), oxygen (Q2), carbon tetrafluoride (
A mixed gas of CF4) is used.

基板3は400(”C)の温度に保持することが必要で
ある。
It is necessary to maintain the substrate 3 at a temperature of 400 ("C).

この状態で、反応室1内に前記混合ガスを導入すると、 S i H4+ 202→S i O2+ 2 H20
の反応に依って、基板3上には二酸化シリコン(Si0
2)膜が成長する。
In this state, when the mixed gas is introduced into the reaction chamber 1, S i H4+ 202→S i O2+ 2 H20
Due to the reaction, silicon dioxide (Si0
2) The film grows.

これを第2図及び第3図を参照しつつ具体的に説明する
This will be explained in detail with reference to FIGS. 2 and 3.

第2図は前記したように単純に二酸化ンリコン膜を成長
させた場合を示していて、基板3上に被膜10が形成さ
れているものとし、その上に二酸化シリコン膜11を形
成しである。
FIG. 2 shows the case where a silicon dioxide film is simply grown as described above, and it is assumed that a film 10 is formed on the substrate 3, and a silicon dioxide film 11 is formed thereon.

この場合は、被膜10に依る段差があるので、これに忠
実に沿うか、或いは、所謂オーバ・ハングするように二
酸化シリコン1ullが形成されるものである。
In this case, since there is a step caused by the film 10, the silicon dioxide 1ull is formed either faithfully along this step or so-called overhanging the step.

しかし、第1図に見られるように、成長時に光9を照射
することに依り、混合ガス中のCF4が励起状態になり
、二酸化シリコン膜と接触するとそれをエツチングする
ことになる。尚、この光のツメトン・エネルギはCF、
のC−F結合を解離するのに充分な値であることが望ま
しい。本実施例では、水銀ランプから発生する波長20
00〜2400 C人〕の光を利用してCF4を励起し
ている。
However, as seen in FIG. 1, by irradiating the light 9 during growth, CF4 in the mixed gas becomes excited, and when it comes into contact with the silicon dioxide film, it will be etched. Furthermore, the energy of this light is CF,
It is desirable that the value is sufficient to dissociate the C--F bond. In this example, the wavelength 20
CF4 is excited using light of 00 to 2400 C.

第3図は光を照射して二酸化シリコン膜12を成長させ
た状態を表わしている。
FIG. 3 shows the state in which the silicon dioxide film 12 is grown by irradiating light.

二酸化シリコン膜12の工・ノチングは基Fj、3に垂
直な方向からなされているので段差部に於ける膜厚の低
下が少なくなり、段差はかなり緩和されている。
Since the etching and notching of the silicon dioxide film 12 is carried out in a direction perpendicular to the groups Fj, 3, the decrease in film thickness at the step portion is reduced, and the step is considerably relaxed.

発明の効果 本発明に依れば、半導体装置を製造する際へ於ける薄膜
形成工程で、基板が配置された反応室に気相反応に依り
薄膜を形成するガス系及び該薄膜をエツチングすること
が可能なガス系の混合ガスを導入し、前記基板に光を照
射した状態で薄膜成長反応とエツチング反応の両方同時
に行なうことに依り、段差が少ない薄膜を形成すること
ができるので、基板表面は平坦になり、精密なパターン
を容易に形成することができ、配線の切断も生じないか
ら高集積化された半導体装置を製造する場合に有効であ
る。
Effects of the Invention According to the present invention, a gas system for forming a thin film by a gas phase reaction in a reaction chamber in which a substrate is placed, and etching the thin film in a thin film forming process in manufacturing a semiconductor device are provided. By introducing a mixed gas capable of irradiating the substrate with light and performing both the thin film growth reaction and the etching reaction simultaneously, it is possible to form a thin film with few steps. It is effective in manufacturing highly integrated semiconductor devices because it becomes flat, allows easy formation of precise patterns, and does not cause wiring to be cut.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する装置の一実施例を表わす要部
説明図、第2図及び第3図は本発明一実施例を説明する
ための工程要所に於ける半導体装置の要部切断側面図で
ある。 図に於いて、1は反応室、2ば基板支持台、3は基板、
4は基板3を一定温度に加熱する為のヒータ、5は光透
過窓、6ばガス送入管、7ばガス排出管、8はガス系、
9は光である。 特許出願人   富士通株式会社 代理人弁理士  工具 久五部
FIG. 1 is an explanatory view of the main parts of an embodiment of a device for carrying out the present invention, and FIGS. 2 and 3 are main parts of a semiconductor device at key points in the process for explaining an embodiment of the present invention. FIG. In the figure, 1 is a reaction chamber, 2 is a substrate support, 3 is a substrate,
4 is a heater for heating the substrate 3 to a constant temperature, 5 is a light transmission window, 6 is a gas inlet pipe, 7 is a gas discharge pipe, 8 is a gas system,
9 is light. Patent applicant: Fujitsu Ltd. Representative patent attorney: Tools: Kugobe

Claims (1)

【特許請求の範囲】[Claims] 基板が配置された反応室に気相反応に依り薄膜を形成す
るガス系及び該薄膜をエツチングすることが可能なガス
系の混合ガスを導入し、前記基板に光を照射した状態で
薄膜成長反応とエツチング反応の両方を同時に行なうこ
とを特徴とする薄膜形成方法。
A mixed gas of a gas that forms a thin film through a gas phase reaction and a gas that can etch the thin film is introduced into the reaction chamber in which the substrate is placed, and a thin film growth reaction is performed while the substrate is irradiated with light. A method for forming a thin film characterized by performing both an etching reaction and an etching reaction at the same time.
JP17202282A 1982-09-30 1982-09-30 Method for formation of thin film Granted JPS5961124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17202282A JPS5961124A (en) 1982-09-30 1982-09-30 Method for formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17202282A JPS5961124A (en) 1982-09-30 1982-09-30 Method for formation of thin film

Publications (2)

Publication Number Publication Date
JPS5961124A true JPS5961124A (en) 1984-04-07
JPH0456447B2 JPH0456447B2 (en) 1992-09-08

Family

ID=15934066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17202282A Granted JPS5961124A (en) 1982-09-30 1982-09-30 Method for formation of thin film

Country Status (1)

Country Link
JP (1) JPS5961124A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190421A (en) * 1984-10-11 1986-05-08 Canon Inc Formation of deposited film
EP0227839A1 (en) * 1985-07-02 1987-07-08 Semiconductor Energy Laboratory Co., Ltd. Method of forming a thin film
US5591492A (en) * 1986-04-11 1997-01-07 Canon Kabushiki Kaisha Process for forming and etching a film to effect specific crystal growth from activated species

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130369A (en) * 1974-04-01 1975-10-15
JPS50130370A (en) * 1974-04-01 1975-10-15

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130369A (en) * 1974-04-01 1975-10-15
JPS50130370A (en) * 1974-04-01 1975-10-15

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190421A (en) * 1984-10-11 1986-05-08 Canon Inc Formation of deposited film
EP0227839A1 (en) * 1985-07-02 1987-07-08 Semiconductor Energy Laboratory Co., Ltd. Method of forming a thin film
US5591492A (en) * 1986-04-11 1997-01-07 Canon Kabushiki Kaisha Process for forming and etching a film to effect specific crystal growth from activated species

Also Published As

Publication number Publication date
JPH0456447B2 (en) 1992-09-08

Similar Documents

Publication Publication Date Title
US5084130A (en) Method for depositing material on depressions
US4069094A (en) Method of manufacturing apertured aluminum oxide substrates
JPS58130517A (en) Manufacture of single crystal thin film
JPH07294700A (en) X-ray window
JPH09102625A (en) Manufacture of solar cell element
JPS5961124A (en) Method for formation of thin film
WO1992022689A1 (en) Process for making large-area single crystal diamond films
JPS63141316A (en) Low temperature dry-etching method
US6169004B1 (en) Production method for a semiconductor device
JPS59124124A (en) Manufacture of semiconductor device
JP2564748B2 (en) Plasma vapor phase reaction apparatus and plasma vapor phase reaction method
JPS6143847B2 (en)
JPH03769B2 (en)
JPH09235189A (en) Production of semiconductor single crystal thin film
JPH0410739B2 (en)
JP3080860B2 (en) Dry etching method
JPH03155621A (en) Dry etching method
JPS63124419A (en) Dry etching method
JPS61288429A (en) Vapor-phase etching method for gallium arsenide crystal
JPS60211847A (en) Forming method of insulating film
JPS6277466A (en) Formation of thin film
JPS5828853A (en) Silicon film formation
JPH076959A (en) Wafer support
JPH0611038B2 (en) Surface treatment method
JP2998336B2 (en) Method for etching compound semiconductor and method for forming semiconductor structure