JPH0456447B2 - - Google Patents

Info

Publication number
JPH0456447B2
JPH0456447B2 JP57172022A JP17202282A JPH0456447B2 JP H0456447 B2 JPH0456447 B2 JP H0456447B2 JP 57172022 A JP57172022 A JP 57172022A JP 17202282 A JP17202282 A JP 17202282A JP H0456447 B2 JPH0456447 B2 JP H0456447B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
etching
reaction
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57172022A
Other languages
Japanese (ja)
Other versions
JPS5961124A (en
Inventor
Takashi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17202282A priority Critical patent/JPS5961124A/en
Publication of JPS5961124A publication Critical patent/JPS5961124A/en
Publication of JPH0456447B2 publication Critical patent/JPH0456447B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 産業上の技術分野 本発明は、薄膜を形成しても基板表面の平坦性
を維持したい場合に適用して好ましい薄膜形成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film forming method that is preferably applied when it is desired to maintain the flatness of a substrate surface even after forming a thin film.

従来技術と問題点 一般に、半導体装置を製造する際、薄膜の形成
は極めて重要な技術である。
Prior Art and Problems Generally, when manufacturing semiconductor devices, forming thin films is an extremely important technique.

その薄膜としては、金属、絶縁膜、半導体膜等
があり、それ等は種々の技法、例えば、真空蒸着
法、スパツタ法、気相成長法等を利用して作製さ
れてきた。
Such thin films include metals, insulating films, semiconductor films, etc., and these have been produced using various techniques such as vacuum evaporation, sputtering, and vapor phase growth.

然し乍ら、半導体集積回路装置に於いて、素子
の高密化が進むにつれて装置表面の凹凸が激しく
なり、その上に所望の精密なパターンを形成する
ことが困難になつたり、薄膜の不連続を生じたり
している。
However, in semiconductor integrated circuit devices, as the density of elements increases, the surface of the device becomes more uneven, making it difficult to form a desired precise pattern thereon, and causing discontinuities in the thin film. are doing.

これを解決する為、基板表面にシリコンを含む
液体をスピン・コート法にて一様に塗布して平坦
にする技術も開発されたが、前記液体のような無
機材料を使用した場合には、清浄な薄膜を形成す
ることは困難である。また、気相成長法に依つて
成長させた薄膜を方向性があるエツチング液にて
一部エツチングして除去し、この操作を繰り返す
ことに依り表面の凹凸を緩和して平坦化すること
も行なわれているが、操作が複雑で実用的ではな
い。更にまた、スパツタ法を用いた薄膜形成の過
程で、イオン衝撃に依る物理的なエツチング作用
を利用し、或程度の平坦化を図ることができるの
も知られているが、操作に特殊な条件を必要とす
るので実施することは困難である。
To solve this problem, a technique has been developed to uniformly apply a liquid containing silicon to the substrate surface using a spin coating method to flatten it, but when an inorganic material such as the liquid is used, It is difficult to form a clean thin film. In addition, a thin film grown by vapor phase growth is partially etched using a directional etching solution, and this process is repeated to soften and flatten the surface. However, it is complicated to operate and is not practical. Furthermore, it is known that in the process of forming a thin film using the sputtering method, it is possible to achieve a certain level of planarization by utilizing the physical etching effect caused by ion bombardment, but this method requires special operating conditions. It is difficult to implement as it requires

発明の目的 本発明は、基板表面の凹凸を緩和し、平坦な表
面状態を得ることができる薄膜形成方法を提供す
るもので、半導体装置を製造する際に用いて好適
である。
OBJECTS OF THE INVENTION The present invention provides a thin film forming method that can reduce unevenness on a substrate surface and obtain a flat surface state, and is suitable for use in manufacturing semiconductor devices.

発明の構成 本発明では、気相反応に依り薄膜を成長するガ
ス系と、成長する該薄膜をエツチングすることが
可能なガス系との混合ガス雰囲気に基板を配置
し、光を照射して薄膜成長反応とエツチング反応
とを同時に進行させるものである。
Structure of the Invention In the present invention, a substrate is placed in a mixed gas atmosphere of a gas system that grows a thin film through a gas phase reaction and a gas system that is capable of etching the growing thin film, and the thin film is etched by irradiating the substrate with light. The growth reaction and the etching reaction proceed simultaneously.

薄膜の成長は、熱エネルギの供給を受けて進行
するので、本質的には基板の凹凸に沿う成長をす
ることになるが、エツチング作用は光の直進性に
依り方向性を持つたものとなり、従つて、それ等
が組み合うことに依り、基板に於ける凹凸の段差
部では、谷部分の膜のエツチング量より膜の成長
量の方が大になり、結果的に段差を解消するよう
な形で膜が残ることになる。
Thin film growth progresses in response to the supply of thermal energy, so it essentially grows along the irregularities of the substrate, but the etching action is directional due to the straightness of the light. Therefore, due to the combination of these factors, the amount of film growth at the uneven step portions of the substrate is greater than the amount of film etching at the valley portions, resulting in a shape that eliminates the step portions. A film will remain.

因に、方向性があるエツチング方法としては、
従来、リアクテイブ・イオン・エツチングなどの
方法があるが、それに依るエツチングでは雰囲気
の圧力を10-1〔Torr〕以下にしなければならず、
この状態に於ける薄膜の成長は難しいので実用的
ではない。
Incidentally, as a directional etching method,
Conventionally, there are methods such as reactive ion etching, but in order to perform etching using this method, the pressure of the atmosphere must be kept below 10 -1 [Torr].
Growing a thin film under this condition is difficult and therefore not practical.

本発明では、基本的に雰囲気圧力依存性がない
から、薄膜を充分に高い速度で成長させ得る条件
を設定できる。
In the present invention, since there is basically no dependence on atmospheric pressure, conditions can be set that allow the thin film to grow at a sufficiently high rate.

発明の実施例 第1図は本発明を実施する装置の一実施例を表
わすものである。
Embodiment of the Invention FIG. 1 represents an embodiment of an apparatus for carrying out the present invention.

図に於いて、1は反応室、2は基板支持台、3
は基板、4は基板3を一定温度に加熱する為のヒ
ータ、5は光透過窓、6はガス送入管、7はガス
排出管、8はガス系、9は光をそれぞれ示してい
る。
In the figure, 1 is a reaction chamber, 2 is a substrate support stand, and 3 is a reaction chamber.
4 indicates a substrate, 4 a heater for heating the substrate 3 to a constant temperature, 5 a light transmission window, 6 a gas inlet pipe, 7 a gas discharge pipe, 8 a gas system, and 9 a light.

次に、この装置を使用して二酸化シリコン膜を
成長させる場合について説明する。
Next, the case of growing a silicon dioxide film using this apparatus will be described.

二酸化シリコン膜を成長するには、ガス系8と
して、モノシラン(SiH4)、酸素(O2)、四フツ
化炭素(CF4)の混合ガスを用いる。
To grow a silicon dioxide film, a mixed gas of monosilane (SiH 4 ), oxygen (O 2 ), and carbon tetrafluoride (CF 4 ) is used as the gas system 8 .

基板3は400〔℃〕の温度に保持することが必要
である。
It is necessary to maintain the substrate 3 at a temperature of 400 [° C.].

この状態で、反応室1内に前記混合ガスを導入
すると、 SiO4+2O2→SiO2+2Si2O の反応に依つて、基板3上には二酸化シリコン
(SiO2)膜が成長する。
When the mixed gas is introduced into the reaction chamber 1 in this state, a silicon dioxide (SiO 2 ) film grows on the substrate 3 due to the reaction of SiO 4 +2O 2 →SiO 2 +2Si 2 O.

これを第2図及び第3図を参照しつつ具体的に
説明する。
This will be explained in detail with reference to FIGS. 2 and 3.

第2図は前記したように単純に二酸化シリコン
膜を成長させた場合を示していて、基板3上に被
膜10が形成されているものとし、その上に二酸
化シリコン膜11を形成してある。
FIG. 2 shows the case where a silicon dioxide film is simply grown as described above, and it is assumed that a film 10 is formed on the substrate 3, and a silicon dioxide film 11 is formed on the film 10.

この場合は、被膜10に依る段差があるので、
これに忠実に沿うか、或いは、所謂オーバ・ハン
グするように二酸化シリコン膜11が形成される
ものである。
In this case, since there is a step due to the coating 10,
The silicon dioxide film 11 is formed either faithfully along this line or so-called overhanging it.

しかし、第1図に見られるように、成長時に光
9を照射することに依り、混合ガス中のCF4が励
起状態になり、二酸化シリコン膜と接触するとそ
れをエツチングすることになる。尚、この光のフ
オトン・エネルギはCF4のC−F結合を解離する
のに充分な値であることが望ましい。本実施例で
は、水銀ランプから発生する波長2000〜2400〔Å〕
の光を利用してCF4を励起している。
However, as seen in FIG. 1, by irradiating the light 9 during growth, CF 4 in the mixed gas becomes excited, and when it comes into contact with the silicon dioxide film, it will be etched. Note that the photon energy of this light is preferably a value sufficient to dissociate the C--F bond of CF4 . In this example, the wavelength emitted from the mercury lamp is 2000 to 2400 [Å].
CF 4 is excited using the light of

第3図は光を照射して二酸化シリコン膜12を
成長させた状態を表わしている。
FIG. 3 shows the state in which the silicon dioxide film 12 is grown by irradiating light.

二酸化シリコン膜12のエツチングは基板3に
垂直な方向からなされているので段差部に於ける
膜厚の低下が少なくなり、段差はかなり緩和され
ている。
Since the silicon dioxide film 12 is etched in a direction perpendicular to the substrate 3, the decrease in film thickness at the step portion is reduced, and the step is considerably relaxed.

発明の効果 本発明に依れば、半導体装置を製造する際に於
ける薄膜形成工程で、基板が配置された反応室に
気相反応に依り薄膜を形成するガス系及び該薄膜
をエツチングすることが可能なガス系の混合ガス
を導入し、前記基板に光を照射した状態で薄膜成
長反応とエツチング反応の両方同時に行なうこと
に依り、段差が少ない薄膜を形成することができ
るので、基板表面は平坦になり、精密なパターン
を容易に形成することができ、配線の切断も生じ
ないから高集積化された半導体装置を製造する場
合に有効である。
Effects of the Invention According to the present invention, in a thin film forming process in manufacturing a semiconductor device, a gas system for forming a thin film by a gas phase reaction in a reaction chamber in which a substrate is placed, and etching the thin film. By introducing a mixed gas capable of irradiating the substrate with light and performing both the thin film growth reaction and the etching reaction simultaneously, it is possible to form a thin film with few steps, so that the substrate surface is It is effective in manufacturing highly integrated semiconductor devices because it becomes flat, allows easy formation of precise patterns, and does not cause wiring to be cut.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する装置の一実施例を表
わす要部説明図、第2図及び第3図は本発明一実
施例を説明するための工程要所に於ける半導体装
置の要部切断側面図である。 図に於いて、1は反応室、2は基板支持台、3
は基板、4は基板3を一定温度に加熱する為のヒ
ータ、5は光透過窓、6はガス送入管、7はガス
排出管、8はガス系、9は光である。
FIG. 1 is an explanatory view of the main parts of an embodiment of a device for carrying out the present invention, and FIGS. 2 and 3 are main parts of a semiconductor device at key points in the process for explaining an embodiment of the present invention. FIG. In the figure, 1 is a reaction chamber, 2 is a substrate support stand, and 3 is a reaction chamber.
4 is a substrate, 4 is a heater for heating the substrate 3 to a constant temperature, 5 is a light transmission window, 6 is a gas supply pipe, 7 is a gas discharge pipe, 8 is a gas system, and 9 is a light.

Claims (1)

【特許請求の範囲】[Claims] 1 表面に段差をもつ基板が配置された反応室に
気相反応に依り薄膜を形成するガス系及び該薄膜
をエツチングすることが可能なガス系の混合ガス
を導入し、前記基板主面に略垂直な方向から光を
照射した状態で薄膜成長反応とエツチング反応の
両方を同時に行なつて前記段差が低減された薄膜
を成長させることを特徴とする薄膜形成方法。
1. A mixed gas of a gas system that forms a thin film through a gas phase reaction and a gas system that is capable of etching the thin film is introduced into a reaction chamber in which a substrate with steps on the surface is placed, and approximately the main surface of the substrate is etched. A method for forming a thin film, which comprises growing a thin film with reduced steps by simultaneously performing both a thin film growth reaction and an etching reaction while irradiated with light from a vertical direction.
JP17202282A 1982-09-30 1982-09-30 Method for formation of thin film Granted JPS5961124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17202282A JPS5961124A (en) 1982-09-30 1982-09-30 Method for formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17202282A JPS5961124A (en) 1982-09-30 1982-09-30 Method for formation of thin film

Publications (2)

Publication Number Publication Date
JPS5961124A JPS5961124A (en) 1984-04-07
JPH0456447B2 true JPH0456447B2 (en) 1992-09-08

Family

ID=15934066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17202282A Granted JPS5961124A (en) 1982-09-30 1982-09-30 Method for formation of thin film

Country Status (1)

Country Link
JP (1) JPS5961124A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682616B2 (en) * 1984-10-11 1994-10-19 キヤノン株式会社 Deposited film formation method
WO1987000346A1 (en) * 1985-07-02 1987-01-15 Semiconductor Energy Laboratory Co., Ltd. Method of forming a thin film
EP0241317B1 (en) * 1986-04-11 1993-03-10 Canon Kabushiki Kaisha Process for forming deposited film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130369A (en) * 1974-04-01 1975-10-15
JPS50130370A (en) * 1974-04-01 1975-10-15

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130369A (en) * 1974-04-01 1975-10-15
JPS50130370A (en) * 1974-04-01 1975-10-15

Also Published As

Publication number Publication date
JPS5961124A (en) 1984-04-07

Similar Documents

Publication Publication Date Title
US5084130A (en) Method for depositing material on depressions
US4069094A (en) Method of manufacturing apertured aluminum oxide substrates
JPH03268429A (en) Method and equipment for formation of wiring insulation film of semiconductor device
JP3275043B2 (en) Post-treatment method of etching
US5176789A (en) Method for depositing material on depressions
US3506508A (en) Use of gas etching under vacuum pressure for purifying silicon
JPH0456447B2 (en)
JPH04233731A (en) Integrated circuit soluble oxide
JPS63141316A (en) Low temperature dry-etching method
US6169004B1 (en) Production method for a semiconductor device
JPS61228633A (en) Formation of thin film
JP3684660B2 (en) Manufacturing method of semiconductor single crystal thin film
GB2288272A (en) X-ray windows
JPS617622A (en) Manufacture of semiconductor device
JPH0210726A (en) Removal of spontaneous oxide film on surface of semiconductor substrate
JPH0410739B2 (en)
JPS63124419A (en) Dry etching method
JPH02151031A (en) Manufacture of semiconductor device
JPS6143847B2 (en)
JPS6277466A (en) Formation of thin film
JPH0611038B2 (en) Surface treatment method
JPS5511167A (en) Dry etching method
JPS5961122A (en) Manufacture of semiconductor device
JP2985294B2 (en) Wiring formation method
JPS6341014A (en) Epitaxial growth method