JPH0210726A - Removal of spontaneous oxide film on surface of semiconductor substrate - Google Patents

Removal of spontaneous oxide film on surface of semiconductor substrate

Info

Publication number
JPH0210726A
JPH0210726A JP16209288A JP16209288A JPH0210726A JP H0210726 A JPH0210726 A JP H0210726A JP 16209288 A JP16209288 A JP 16209288A JP 16209288 A JP16209288 A JP 16209288A JP H0210726 A JPH0210726 A JP H0210726A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
gas
semiconductor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16209288A
Other languages
Japanese (ja)
Other versions
JP2640828B2 (en
Inventor
Shigeji Sugino
林志 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63162092A priority Critical patent/JP2640828B2/en
Publication of JPH0210726A publication Critical patent/JPH0210726A/en
Application granted granted Critical
Publication of JP2640828B2 publication Critical patent/JP2640828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To remove a spontaneous oxide film on the surface of a substrate without damaging a semiconductor and reducing the characteristic of the semiconductor by performing etching by exposing the semiconductor substrate to a decompressed atmosphere of carbon-momoxide-gas-added chlorine gas for a certain time. CONSTITUTION:A silicon substrate 4 is placed on a mount 3 installed in the chamber 2 of a reaction apparatus 1 and the mount 3 is heated whilst the pressure in the chamber 2 is reduced. Cl2 gas and CO gas are introduced into the chamber 2 and ultraviolet rays are applied to the substrate 4 from light sources 6 vertically. This state is maintained for a certain time. This converts Cl2 into radical Cl with ultraviolet rays and separates O of the SiO2 film on the substrate 4 to turn it into radical O. CO gas in the chamber 2 captures radical O separated from the surface of the substrate 4 by Cl to form CO2. Si of the substrate 4 reacts to Cl to become SiCl4 and vaporized to perform etching. This enables removing a spontaneous oxide film on the surface of the substrate without damaging a semiconductor and reducing the characteristic of the semiconductor.

Description

【発明の詳細な説明】 〔概要〕 半導体基板表面の自然酸化膜の除去方法に関し、半導体
に損傷や特性の劣化を与えることなく自然酸化膜を除去
することを目的とし、 半導体基板の光エッチングにおいて、一酸化炭素、一酸
化窒素又は不飽和化合物ガスのいずれかを塩素ガスに加
えた減圧雰囲気中に半導体基板を一定時間置いてエツチ
ングを行い、該半導体基板上に形成された自然酸化膜を
除去することを特徴とする半導体基板表面の自然酸化膜
の除去方法から構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for removing a natural oxide film on the surface of a semiconductor substrate, the purpose is to remove the natural oxide film without damaging the semiconductor or deteriorating its characteristics. , etching is performed by placing the semiconductor substrate in a reduced pressure atmosphere in which carbon monoxide, nitrogen monoxide, or unsaturated compound gas is added to chlorine gas for a certain period of time, and removing the natural oxide film formed on the semiconductor substrate. The invention consists of a method for removing a natural oxide film on the surface of a semiconductor substrate, characterized in that:

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体基板の処理に関するもので、さらに詳
しくは半導体基板表面の自然酸化膜の除去方法に関する
The present invention relates to processing of semiconductor substrates, and more particularly to a method for removing a natural oxide film on the surface of a semiconductor substrate.

〔従来の技術〕[Conventional technology]

半導体表面、特にシリコン表面に形成された自熱酸化膜
を乾式(ドライエツチング)で除去する方法として、従
来は水素ガス、フッ素系ガス及び塩素ガスのそれぞれの
雰囲気中で行っていた。
Conventionally, dry etching has been used to remove autothermal oxide films formed on semiconductor surfaces, particularly silicon surfaces, in atmospheres of hydrogen gas, fluorine gas, and chlorine gas.

水素ガスを用いる方法では、還元H2雰囲気中で、約1
000°Cの高温にさらすことにより、自然酸化膜を除
去するようにしているが、この方法ではウェハを直接高
温にさらすため、熱拡散によりウェハ内の不純物濃度分
布の鋭さがぼやけ、しかも高温によって半導体回路構造
にストレスや損傷を与えることが問題となっている。
In the method using hydrogen gas, approximately 1
The native oxide film is removed by exposing the wafer to a high temperature of 000°C, but since this method directly exposes the wafer to high temperature, the sharpness of the impurity concentration distribution within the wafer becomes blurred due to thermal diffusion. Stress and damage to semiconductor circuit structures have become a problem.

これに対してフッ素系ガスを用いる方法では、低温下で
自然酸化膜を除去することができるが、この方法では、
除去すべき表面の自然酸化膜のみならず、ゲート材や素
子分離用の熱酸化膜をもエンチングしてしまう。さらに
は、反応室が石英の場合に、この石英をもエツチングし
てしまい、塵が発生するといった不都合がある。
On the other hand, a method using fluorine-based gas can remove the natural oxide film at low temperatures, but with this method,
This etches not only the natural oxide film on the surface that should be removed, but also the gate material and the thermal oxide film for element isolation. Furthermore, when the reaction chamber is made of quartz, this quartz is also etched, resulting in the generation of dust.

また、塩素ガスを用いる方法でも、低温下で自然酸化膜
を除去することができ、しかもこの方法では石英をエツ
チングすることはないが、この方法によれば自然酸化膜
は完全に除去されずに半導体基板表面上に残留し、シリ
コン基板だけが表面から次第にエツチングされるという
現象が生じる。
In addition, a method using chlorine gas can also remove the natural oxide film at low temperatures, and although this method does not etch the quartz, the natural oxide film is not completely removed. A phenomenon occurs in which the silicon substrate remains on the surface of the semiconductor substrate and only the silicon substrate is gradually etched from the surface.

自然酸化膜が残留する原理については明確ではないが、
第5図に示すように、自然酸化膜が一瞬、気相に脱離す
るが、電気陰性度の関係で再び基板表面に付着、結合す
る一方、塩素(C1)とシリコン(Si)が結合して、
S i C1,となって基板から抜は出るためと考えら
れる。
Although the principle behind the residual natural oxide film is not clear,
As shown in Figure 5, the natural oxide film momentarily desorbs into the gas phase, but due to electronegativity, it attaches and bonds to the substrate surface again, while chlorine (C1) and silicon (Si) bond together. hand,
This is thought to be due to the fact that S i C1 is formed and the wire is removed from the board.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、従来技術では、半導体基板表面に形成され
た自然酸化膜の除去に伴い、半導体が損傷を受けて特性
が劣化したり、自然酸化膜を充分除去することができな
いという問題がある。
As described above, in the conventional technology, there are problems in that the semiconductor is damaged and its characteristics deteriorate due to the removal of the natural oxide film formed on the surface of the semiconductor substrate, and the natural oxide film cannot be removed sufficiently.

本発明は、このような問題に鑑みてなされたものであっ
て、半導体に損傷や特性の劣化を与えることなく自然酸
化膜を確実に除去することを目的とする。
The present invention has been made in view of such problems, and an object of the present invention is to reliably remove the natural oxide film without damaging the semiconductor or deteriorating its characteristics.

(1M題を解決するための手段) 上記した課題は、半導体裁板の光エン’/−ングにおい
て、一酸化炭素、一酸化窒素又は不飽和化合物ガスを塩
素ガスに加えた減圧雰囲気中に該半導体基板を一定時間
置いてエツチングを行い、該半導体基板上に形成された
自然酸化11りを除去することを特徴とする半導体ノ、
(板表面の自然酸化膜の除去方法によって解決する。
(Means for Solving the 1M Problem) The above-mentioned problem is solved when carbon monoxide, nitrogen monoxide, or unsaturated compound gas is added to chlorine gas in a reduced pressure atmosphere in the photo-engineering of semiconductor cutting boards. A semiconductor device characterized in that a semiconductor substrate is left for a certain period of time and then etched to remove natural oxide 11 formed on the semiconductor substrate.
(This problem can be solved by removing the natural oxide film on the surface of the board.

〔作用〕[Effect]

本発明は、このような方法を用いるため、減圧雰囲気中
で光エネルギーを受けて活性化した塩素ガスCe”によ
り半導体基板表面〜ヒの酸素ラジカル09を基板表面か
ら脱離さゼ、かつ、減圧雰囲気中のCO,No等とこの
酸素ラジカルOIとを反応さ一1!:、CO+O” →
Cot 、NO+O” −N08等に変化させることに
より、!、(仮からpH脱した酸素ラジカルO0をその
表面に残留さ・U゛ることなく完全に除去することが可
能になる。
Since the present invention uses such a method, the oxygen radicals 09 on the semiconductor substrate surface are desorbed from the substrate surface by chlorine gas Ce" activated by receiving light energy in a reduced pressure atmosphere. React CO, No, etc. inside with this oxygen radical OI 1!:, CO+O” →
By changing it to Cot, NO+O"-N08, etc., it becomes possible to completely remove the oxygen radicals O0, which have been temporarily pH-eliminated, without remaining on the surface.

〔実施例〕〔Example〕

(a)第1の実施例 第1図は、本発明の実施例に用いる装置の概要図であり
、反応装置lの石英チャンバ2内に設けたR置台3の上
にシリコン基板4を置き、チャンバ2内を真空ポンプP
で引いて減圧しながら、載置台3をヒータ5で加熱する
一方、塩素ガス(C12)と一酸化炭素ガス(CO)を
チャンバ2内へ流し、光[6から出た紫外光をチャンバ
2上部に透過させてシリコン基板4に照射するように構
成されている。
(a) First Embodiment FIG. 1 is a schematic diagram of an apparatus used in an embodiment of the present invention, in which a silicon substrate 4 is placed on an R stand 3 provided in a quartz chamber 2 of a reaction apparatus 1, Vacuum pump P inside chamber 2
While heating the mounting table 3 with the heater 5 while reducing the pressure by pulling the pressure with It is configured to transmit the light and irradiate it onto the silicon substrate 4.

この反応装置1内において、塩素(Cffi* )は紫
外光下でラジカルC1′となり、基板4上のSiO□膜
4aの酸素を離脱させる。また、チャンバ2内の一酸化
炭素ガス(CO)は、C11により基板表面から遊離し
た酸素ラジカルO0を捕らえて二酸化炭素(COりとな
る。この場合、わずかに基板4のシリコンが離脱する。
In this reactor 1, chlorine (Cffi*) becomes a radical C1' under ultraviolet light, and removes oxygen from the SiO□ film 4a on the substrate 4. Further, the carbon monoxide gas (CO) in the chamber 2 captures the oxygen radicals O0 liberated from the substrate surface by C11 and becomes carbon dioxide (CO). In this case, a small amount of silicon from the substrate 4 is released.

さらに上記した実施例を具体的に説明すると、チャンバ
2内を10〜2Q丁orrに減圧し、載置台3を100
〜500℃に加熱し、チャンバ2内に高純度の塩素ガス
を10〜100cc/sinの流量で加え、同時に一酸
化炭素ガスを0.1〜20 cc/2m1nの流量で流
す。この状態において、200〜400nmの波長の紫
外光をlO〜1001111/e11”の強度で基板に
垂直に照射する。この状態を1〜2分間保持する。
Further, to specifically explain the above-described embodiment, the pressure inside the chamber 2 is reduced to 10 to 2Q orr, and the mounting table 3 is
It is heated to ~500° C., and high-purity chlorine gas is added into the chamber 2 at a flow rate of 10 to 100 cc/sin, and at the same time, carbon monoxide gas is flowed at a flow rate of 0.1 to 20 cc/2 m1n. In this state, the substrate is perpendicularly irradiated with ultraviolet light having a wavelength of 200 to 400 nm at an intensity of 10 to 1001111/e11''. This state is maintained for 1 to 2 minutes.

第2図(a)〜(c)は、以上の条件におけるシリコン
基板表面の状態の変化の様子を示した断面図であって、
上記した方法によると、塩素ガスは紫外光下で塩素ラジ
カルC10となり(第2図(a))、これがシリコン基
板4表面に自然酸化膜(SiOx膜)4aを形成してい
るOを表面から脱離させて酸素ラジカルO′″とし、次
に−fll化炭素(CO)と反応してCO□となるため
に(第2図(b))、脱離した酸素ラジカルOLが再び
シリコン基板4表面に戻ることがなくなる。基板4の表
面から酸素0′″が脱離した後は、シリコン基板4のシ
リコン(Si)がcj!”と反応して5tCl、となっ
て気化し、エツチングされてい(ことになる。
FIGS. 2(a) to 2(c) are cross-sectional views showing changes in the state of the silicon substrate surface under the above conditions,
According to the method described above, chlorine gas becomes chlorine radical C10 under ultraviolet light (Fig. 2 (a)), which removes O forming a natural oxide film (SiOx film) 4a on the surface of the silicon substrate 4 from the surface. The released oxygen radicals OL return to the surface of the silicon substrate 4 because they are separated to form oxygen radicals O′″ and then react with -flyl carbon (CO) to form CO□ (Fig. 2 (b)). After oxygen 0'' is desorbed from the surface of the substrate 4, the silicon (Si) of the silicon substrate 4 becomes cj! ” reacts to form 5tCl, vaporizes, and is etched.

第3図は、オージェ電子エネルギーに対するシリコン基
板表面のスペクトルを示す特性図で、本発明の処理を行
ってエツチングを行った場合(第3図(a))は、従来
の塩素のみの場合(同図(b))と比較すると、SiO
*#4aに由来する波形が完全に消失することが、実験
的に確認された。
Figure 3 is a characteristic diagram showing the spectrum of the silicon substrate surface with respect to Auger electron energy. Compared to figure (b)), SiO
*It was experimentally confirmed that the waveform originating from #4a completely disappeared.

第4図は、光・時間に対するエツチングの深さで、従来
のような塩素ガス(C12)のみの場合は一定の割合で
深くなる。これは、第5図に示すように一旦遊離した酸
素ラジカル01は電気陰性度の関係で再び表面でSIと
結合するためであると考えられる。
FIG. 4 shows the depth of etching with respect to light and time, and in the case of conventional etching using only chlorine gas (C12), the depth increases at a constant rate. This is considered to be because, as shown in FIG. 5, the oxygen radicals 01 once liberated combine with SI again on the surface due to electronegativity.

これに対し、ClよにCOを加えた場合は、光時間軸上
T、の点まではエツチングが低速で進行し、その後急速
に進行する(第4図実線り。これは、TLの点までは基
板4表面の自然酸化膜がエツチングされ、それ以降は基
板4のSiがエツチングされるためと考えられる。
On the other hand, when CO is added to Cl, etching progresses slowly until point T on the optical time axis, and then rapidly (solid line in Figure 4). This is thought to be because the natural oxide film on the surface of the substrate 4 is etched, and thereafter the Si on the substrate 4 is etched.

(b)第2の実施例 本発明の第2実施例は、第1実施例と同じ条件の下で、
塩素ガスと一酸化炭素ガスを加えた減圧雰囲気中でシリ
コン基板4表面上の自然酸化膜4aを除去するものであ
るが、第1の実施例との相違点は、塩素ガスと一酸化炭
素ガス(CO)を同時に加えて1〜5分経過後、一酸化
炭素ガスの供給を先に止める一方、塩素ガスをしばらく
送り続けるようにするものである。
(b) Second Example A second example of the present invention is performed under the same conditions as the first example.
The natural oxide film 4a on the surface of the silicon substrate 4 is removed in a reduced pressure atmosphere containing chlorine gas and carbon monoxide gas, but the difference from the first embodiment is that chlorine gas and carbon monoxide gas are added. (CO) is simultaneously added and after 1 to 5 minutes have elapsed, the supply of carbon monoxide gas is first stopped, while chlorine gas is continued to be supplied for a while.

このようにすると、シリコン基板4表面上に吸着して残
っている一酸化炭素(CO)を完全に除去することがで
き、この実施例によれば、基板表面がより良好な状態と
なる。
In this way, carbon monoxide (CO) adsorbed and remaining on the surface of the silicon substrate 4 can be completely removed, and according to this embodiment, the substrate surface is in a better condition.

(c)その他の実施例 以上は、一酸化炭素のみ説明したが、一酸化窒素(NO
)や不飽和酸素化合物ガスを用いても同様の結果が得ら
れる。
(c) Other Examples In the above, only carbon monoxide was explained, but nitrogen monoxide (NO
) or unsaturated oxygen compound gas can also be used to obtain similar results.

この場合、一酸化窒素(NO)は基板4表面の0と結合
して、二酸化窒素(No□)となり、SiO,114a
を除去することができる。
In this case, nitric oxide (NO) combines with 0 on the surface of the substrate 4 to become nitrogen dioxide (No□), and SiO, 114a
can be removed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、半導体基板の光エッチン
グにおいて、一酸化炭素、二酸化炭素又は不飽和酸素化
合物ガスを塩素ガスの減圧雰囲気中に加えたので、塩素
ラジカルにより離脱した半導体基板表面の酸素ラジカル
が捉えられて二酸化炭素等となり、基板表面上の自然酸
化膜を完全に除去することができ、しかも、半導体に損
傷や特性の劣化を与えることがない。
As described above, in the photo-etching of a semiconductor substrate, the present invention adds carbon monoxide, carbon dioxide, or unsaturated oxygen compound gas to a reduced pressure atmosphere of chlorine gas, so that the surface of the semiconductor substrate is removed by chlorine radicals. Oxygen radicals are captured and turned into carbon dioxide, etc., and the natural oxide film on the substrate surface can be completely removed, without damaging the semiconductor or deteriorating its characteristics.

また、このような工程の最後に塩素のみを加えた減圧雰
囲気中で光エッチングを行えば、基板表面がより良好な
状態となる。
Moreover, if photo-etching is performed in a reduced pressure atmosphere containing only chlorine at the end of such a process, the substrate surface will be in a better condition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に用いる装置の一例を示す概要図、 第2図は、本発明により半導体基板表面の変化を示す基
板断面図、 第3図は、本発明と従来の方法による基板表面のスペク
トル図、 第4図は、光・時間に対するエツチング深さの特性図、 第5図は、従来の方法による基板表面の状態を示す断面
図である。 (符号の説明) l・・・反応装置、 2・・・チャンバ、 4・・・基板、 4a・・・Sin、膜、 5・・・ヒータ、 6・・・光源。
FIG. 1 is a schematic diagram showing an example of an apparatus used in the present invention, FIG. 2 is a cross-sectional view of a semiconductor substrate showing changes in the surface of a semiconductor substrate according to the present invention, and FIG. 3 is a diagram showing a substrate surface according to the present invention and a conventional method. FIG. 4 is a characteristic diagram of etching depth versus light and time. FIG. 5 is a sectional view showing the state of the substrate surface according to the conventional method. (Explanation of symbols) 1...Reactor, 2...Chamber, 4...Substrate, 4a...Sin, film, 5...Heater, 6...Light source.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の光エッチングにおいて、一酸化炭素
、一酸化窒素又は不飽和化合物ガスのいずれかを塩素ガ
スに加えた減圧雰囲気中に半導体基板を一定時間置いて
エッチングを行い、該半導体基板上に形成された自然酸
化膜を除去することを特徴とする半導体基板表面の自然
酸化膜の除去方法。
(1) In photo-etching of a semiconductor substrate, etching is performed by placing the semiconductor substrate in a reduced-pressure atmosphere in which carbon monoxide, nitrogen monoxide, or unsaturated compound gas is added to chlorine gas for a certain period of time. 1. A method for removing a natural oxide film on the surface of a semiconductor substrate, the method comprising removing a natural oxide film formed on the surface of a semiconductor substrate.
(2)半導体基板の光エッチングにおいて、一酸化炭素
、一酸化窒素又は不飽和化合物ガスのいずれかを塩素ガ
スに加えた減圧雰囲気中に半導体基板を一定時間置いて
エッチングを行い、最後に、前記減圧雰囲気を塩素ガス
のみの減圧雰囲気として、該半導体基板上に形成された
自然酸化膜を除去することを特徴とする半導体基板表面
の自然酸化膜の除去方法。
(2) In photo-etching a semiconductor substrate, etching is performed by placing the semiconductor substrate in a reduced-pressure atmosphere in which carbon monoxide, nitrogen monoxide, or unsaturated compound gas is added to chlorine gas for a certain period of time, and finally, etching is performed as described above. A method for removing a natural oxide film on the surface of a semiconductor substrate, the method comprising removing the natural oxide film formed on the semiconductor substrate by using a reduced pressure atmosphere containing only chlorine gas.
JP63162092A 1988-06-28 1988-06-28 Method for removing native oxide film on semiconductor substrate surface Expired - Lifetime JP2640828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63162092A JP2640828B2 (en) 1988-06-28 1988-06-28 Method for removing native oxide film on semiconductor substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63162092A JP2640828B2 (en) 1988-06-28 1988-06-28 Method for removing native oxide film on semiconductor substrate surface

Publications (2)

Publication Number Publication Date
JPH0210726A true JPH0210726A (en) 1990-01-16
JP2640828B2 JP2640828B2 (en) 1997-08-13

Family

ID=15747922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63162092A Expired - Lifetime JP2640828B2 (en) 1988-06-28 1988-06-28 Method for removing native oxide film on semiconductor substrate surface

Country Status (1)

Country Link
JP (1) JP2640828B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022084A1 (en) * 1991-05-21 1992-12-10 Advantage Production Technology, Inc. Organic preclean for improving vapor phase wafer etch uniformity
US5302236A (en) * 1990-10-19 1994-04-12 Tokyo Electron Limited Method of etching object to be processed including oxide or nitride portion
JP2006175765A (en) * 2004-12-24 2006-07-06 Ricoh Printing Systems Ltd Method of anodic bonding of silicon member, method of manufacturing inkjet head by using the same, inkjet head, and inkjet recorder using the same
JP2010278468A (en) * 2010-08-17 2010-12-09 Tokyo Electron Ltd Method of processing workpiece, processing apparatus, thin film forming method, thin film forming apparatus, and program
WO2023250363A1 (en) * 2022-06-21 2023-12-28 Nutech Ventures Titanium alloy powder reconditioning for 3d additive manufacturing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622622A (en) * 1985-06-28 1987-01-08 Nec Corp Surface treatment method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622622A (en) * 1985-06-28 1987-01-08 Nec Corp Surface treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302236A (en) * 1990-10-19 1994-04-12 Tokyo Electron Limited Method of etching object to be processed including oxide or nitride portion
WO1992022084A1 (en) * 1991-05-21 1992-12-10 Advantage Production Technology, Inc. Organic preclean for improving vapor phase wafer etch uniformity
JP2006175765A (en) * 2004-12-24 2006-07-06 Ricoh Printing Systems Ltd Method of anodic bonding of silicon member, method of manufacturing inkjet head by using the same, inkjet head, and inkjet recorder using the same
JP4654458B2 (en) * 2004-12-24 2011-03-23 リコープリンティングシステムズ株式会社 Silicon member anodic bonding method, ink jet head manufacturing method using the same, ink jet head and ink jet recording apparatus using the same
JP2010278468A (en) * 2010-08-17 2010-12-09 Tokyo Electron Ltd Method of processing workpiece, processing apparatus, thin film forming method, thin film forming apparatus, and program
WO2023250363A1 (en) * 2022-06-21 2023-12-28 Nutech Ventures Titanium alloy powder reconditioning for 3d additive manufacturing

Also Published As

Publication number Publication date
JP2640828B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
JP3084497B2 (en) Method for etching SiO2 film
JPS59100539A (en) Method for producing semiconductor device
KR940016544A (en) Manufacturing Method of Semiconductor Substrate and Manufacturing Method of Solid State Imaging Device
EP2348524B1 (en) Method for recovering pattern on silicon substrate
JPH0210726A (en) Removal of spontaneous oxide film on surface of semiconductor substrate
JPS6012779B2 (en) Manufacturing method of semiconductor device
JPH0496226A (en) Manufacture of semiconductor device
US10586783B2 (en) Method for direct bonding of III-V semiconductor substrates with a radical oxide layer
TW200308018A (en) Method for oxidizing a silicon wafer at low-temperature and apparatus for the same
JPH0478005B2 (en)
JP2011192764A (en) Method of removing film, and device for film removal
JPH01200628A (en) Dry etching
JP2950785B2 (en) Dry etching method for oxide film
JP2595935B2 (en) Surface cleaning method
US20070240826A1 (en) Gas supply device and apparatus for gas etching or cleaning substrates
JP2871460B2 (en) Silicon etching method
JP2558273B2 (en) Surface cleaning method
JPH0410739B2 (en)
JP7397206B2 (en) How to clean semiconductor manufacturing equipment
JPS61160939A (en) Method of dry removal of si surface damage after dry etching
JPS61240635A (en) Dry etching method
JPH0521403A (en) Manufacture of semiconductor device
JPH0456447B2 (en)
JPS5961123A (en) Manufacture of semiconductor device
JPS63160324A (en) Molecular beam epitaxial crystal growth