JPS61160939A - Method of dry removal of si surface damage after dry etching - Google Patents

Method of dry removal of si surface damage after dry etching

Info

Publication number
JPS61160939A
JPS61160939A JP163585A JP163585A JPS61160939A JP S61160939 A JPS61160939 A JP S61160939A JP 163585 A JP163585 A JP 163585A JP 163585 A JP163585 A JP 163585A JP S61160939 A JPS61160939 A JP S61160939A
Authority
JP
Japan
Prior art keywords
gas
irradiation
etching
atoms
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP163585A
Other languages
Japanese (ja)
Inventor
Nahomi Aoto
青砥 なほみ
Eiji Igawa
英治 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP163585A priority Critical patent/JPS61160939A/en
Publication of JPS61160939A publication Critical patent/JPS61160939A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain the method much effective in damage removal by a low- temperature process by a method wherein ion beam etching is carried out in an atmosphere of chlorine gas or fluorine gas, and one or more of heating, UV photo irradiation, and IR photo irradiation are carried out in an atmosphere of oxygen gas. CONSTITUTION:A sample 21 after dry etching with a halogenated carbon series gas is installed in an ion beam etching device and etched by Ar<+> ion beam irradiation at an acceleration voltage of 0.1-1kV and a current density of 0.01-10mA/cm<2> in an atmosphere of 1X10<-2>-1X10<-5>Torr chlorine gas or fluorine gas, thus removing the Si surface layer containing carbon atoms. Next, the Si substrate 21 is heated in an atmospher of 1X10<-3>-100Torr oxygen to 100-500 deg.C, or two or more of irradiation with UV light 215, irradiation with IR light 218, heating-UV photo irradiation-IR photo irradiation are carried out at the same time. Chlorine atoms and fluorine atoms are adsorbed to the Si surface during the etching process, but are substituted with oxygen atoms on heating, etc. in an oxygen gas, and the Si surface halogenated layer changes into a thin oxide layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子デバイス製造プロセスに用いる、Siのド
ライエツチング損傷除去方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for removing Si dry etching damage used in an electronic device manufacturing process.

(従来技術とその問題点) 従来のハロゲン化炭素系ガスによるドライエツチング後
のSi表面の損傷除去方法としては、Si表面を950
℃、H2: 0! =1 : 1で200X程度熱酸化
し、その後希釈したフッ酸で酸化膜を除去する、などの
方法が行われている。(井用英治他、第30回応用物理
学関係連合講演会講演予稿集p 310.6 a −V
−10)。しかしながらこのような方法においては、ド
ライエツチングによる損傷は除去できるものの、Sj基
板を高温に加熱する方法であるために、基板に注入した
不純物のプロファイルが変化して設計通シの不純物分布
が得られない。高温加熱によって新九に結晶欠陥が発生
する可能性がある、などの欠点があった。
(Prior art and its problems) As a conventional method for removing damage from the Si surface after dry etching with a halogenated carbon gas, the Si surface is
℃, H2: 0! A method has been used in which the oxide film is thermally oxidized at about 200X with =1:1 and then the oxide film is removed with diluted hydrofluoric acid. (Eiji Iyo et al., Proceedings of the 30th Applied Physics Association Conference, p 310.6 a-V
-10). However, although this method can remove damage caused by dry etching, since the SJ substrate is heated to a high temperature, the profile of the impurities implanted into the substrate changes and the impurity distribution consistent with the design cannot be obtained. do not have. Shinku had drawbacks such as the possibility of crystal defects occurring due to high-temperature heating.

第1図はハロゲン化炭素ガスによるドライエツチング後
のSi表面に対し損傷除去処理を施した後のSiの注入
不純物のプロファイルをSIMSによって測定した結果
を示したものである。11は損傷除去処理を施す前のB
の分布を示すプロファイル、12は従来方法による損傷
除去処理を施した後のBの分布を示すプロファイルで、
従来方法による損傷除去処理によってBの分布が変化し
てしまっていることがわかる。これは、従来方法が高温
加熱を伴うプロセスであるためである。また、従来法で
は酸化膜除去の際に希釈7ツ酸に浸すという湿式の方法
を取っているため、プロセスの総乾式化を妨げるもので
あった。
FIG. 1 shows the results of measurement by SIMS of the profile of implanted impurities in Si after damage removal treatment was performed on the Si surface after dry etching with halogenated carbon gas. 11 is B before damage removal treatment
12 is a profile showing the distribution of B after damage removal processing by the conventional method,
It can be seen that the distribution of B has changed due to the damage removal process using the conventional method. This is because the conventional method involves high temperature heating. In addition, the conventional method uses a wet method of immersing the material in diluted diluted acid when removing the oxide film, which prevents the process from becoming completely dry.

(発明の目的) 本発明は、このような従来の欠点を除去せしめて、ハロ
ゲン化炭素系ガスによるドライエツチング後Siの損傷
除去において、低温のプロセスでかつ十分な損傷除去効
果のある損傷除去を乾式で行う方法を提供することを目
的とする。
(Object of the Invention) The present invention eliminates such conventional drawbacks and provides damage removal that is a low temperature process and has sufficient damage removal effect in removing damage from Si after dry etching with a halogenated carbon gas. The purpose is to provide a dry method.

(発明の構成) 本発明では、ハロゲン化炭素系ガスによるドライエツチ
ング後のSi基板に、塩素ガス雰囲気中またはフッ素ガ
ス雰囲気中でイオンビーム・エツチングを施す。次に同
84基板を酸素ガス雰囲気中で、加熱、またはUV光照
射、またはIR光照射、または加熱・UV光照射・IR
光照射のうち2つ以上を同時に行う。この方法によシ、
ドライエツチングによるSi表面の損傷を除去すること
ができる。
(Structure of the Invention) In the present invention, a Si substrate that has been dry etched with a halogenated carbon gas is subjected to ion beam etching in a chlorine gas atmosphere or a fluorine gas atmosphere. Next, the same 84 substrate is heated, UV light irradiated, or IR light irradiated in an oxygen gas atmosphere, or heated, UV light irradiated, and IR light irradiated.
Two or more of the light irradiations are performed simultaneously. By this method,
Damage to the Si surface caused by dry etching can be removed.

(構成の詳細な説明) 本発明は、上述の方法を取ることによシ、従来技術の問
題点を解決した。本発明では、まずハロゲン化炭素系ガ
スでドライエツチングした後の試料をイオンビームエツ
チング装置内に設置し、IX 10−” Torr 〜
I X 10−’ Torrの塩素ガス雰囲気中または
フッ素ガス中で加速電圧0. I K V〜1kvSi
it流密度0.01 mA / cd 〜10 mA 
/ tyl(のAr+イオンビームを照射してイオンビ
ームエツチングを施す。ハロゲン化炭素系ガスでドライ
エツチングするとSi表面には表面層内に多くの炭素原
子が浅くたたき込まれる。このSi表面層の炭素原子は
Si表面損傷の原因となるため取り除く必要があり、本
発明では上述の06雰囲気中またはF。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by taking the above-described method. In the present invention, first, a sample that has been dry etched with a halogenated carbon gas is placed in an ion beam etching apparatus, and the sample is heated at IX 10-" Torr ~
The accelerating voltage is 0. IKV~1kvSi
It current density 0.01 mA/cd~10 mA
Ion beam etching is performed by irradiating an Ar + ion beam of / tyl (.Dry etching with a halogenated carbon gas causes many carbon atoms to be shallowly implanted into the surface layer of the Si surface.The carbon in this Si surface layer Atoms must be removed because they cause damage to the Si surface, and in the present invention, atoms are removed in the above-mentioned 06 atmosphere or F.

雰囲気中のイオンビームエツチング過程でSi表面の炭
素原子を含む層を取り除いている。
The layer containing carbon atoms on the Si surface is removed by an ion beam etching process in an atmosphere.

次にI X 10−” Torr 〜100 Torr
の酸素ガス雰囲気中で別基板を100℃〜500℃に加
熱、または試料にUV光を照射、またはIR光を照射、
または加熱・UV光照射・IR光照射のうち2つ以上を
同時に行う。上述の塩素ガス雰囲気またはフッ素ガス雰
囲気中のイオンビームエツチングの過程でSi表面には
塩素原子またはフッ素原子が吸着しておシ、このままで
はSi表面損傷の原因となるが、これらめ)・ロゲン原
子は酸素ガス中の試料加熱、UV光照射、IIL光照射
によって酸素原子に置換され、Si表面のハロゲン化し
た層は薄い酸化層に変わる。加熱及びIR光照射はSi
表面温度を上昇させるため、UV光照射はハロゲン原子
のUV光吸収によってその脱離を促進させるためのもの
である。この酸化後のSi表面層内にも塩素原子または
フッ素原子が多少残留しているが、Si表面損傷の原因
となるほどではない。
Then I X 10-” Torr ~100 Torr
Heating another substrate to 100°C to 500°C in an oxygen gas atmosphere, or irradiating the sample with UV light or IR light,
Alternatively, two or more of heating, UV light irradiation, and IR light irradiation are performed simultaneously. In the process of ion beam etching in the above-mentioned chlorine gas atmosphere or fluorine gas atmosphere, chlorine atoms or fluorine atoms are adsorbed on the Si surface, which causes damage to the Si surface if left as is. is replaced by oxygen atoms by heating the sample in oxygen gas, UV light irradiation, and IIL light irradiation, and the halogenated layer on the Si surface turns into a thin oxide layer. Heating and IR light irradiation are performed on Si
In order to increase the surface temperature, the UV light irradiation is for promoting the desorption of halogen atoms through UV light absorption. Although some chlorine atoms or fluorine atoms remain in the Si surface layer after this oxidation, they are not large enough to cause damage to the Si surface.

以上に述べた方法によシ、ハロゲン化炭素系ガス中のド
ライエツチング後のSi表面から表面損傷の原因となる
炭素原子を低温のプロセスで取シ除き、またこのプロセ
ス中で吸着するハロゲン原子も低温のプロセスで減少さ
せることができ、ノ10ゲン化炭素系ガス中のドライエ
ツチング後のSi表面の低温プロセスによる損傷除去を
乾式で行うことが可能となる。
By the method described above, carbon atoms that cause surface damage are removed from the Si surface after dry etching in a halogenated carbon-based gas in a low-temperature process, and halogen atoms adsorbed during this process are also removed. This can be reduced by a low-temperature process, and it becomes possible to dry-remove the damage caused by the low-temperature process on the Si surface after dry etching in a 10-carbon gas.

(実施例) 以下本発明の実施例について図面を参照して詳細に説明
する。第2図に本発明の実施例を示す。
(Example) Examples of the present invention will be described in detail below with reference to the drawings. FIG. 2 shows an embodiment of the present invention.

まず、第2図(−のように、Si基板21が設置されて
いるチャンバー22内にガス導入管23から塩素ガスま
たはフッ素ガス24を導入する。ガス分圧はパルプ25
によってI X 10  Torr〜I X10  T
orrの適当な値に調節する。このSi基板21に対し
、イオン源26から出たAr+イオンビーム27を照射
する。イオン源26から出すAr+イオンビーム27は
、加速電圧0.1kV〜1 kV。
First, as shown in FIG.
by I X 10 Torr ~ I X10 T
Adjust the orr to an appropriate value. This Si substrate 21 is irradiated with an Ar + ion beam 27 emitted from an ion source 26 . The Ar+ ion beam 27 emitted from the ion source 26 has an acceleration voltage of 0.1 kV to 1 kV.

電流密度0.01 mA/ ai〜10 mA/ aA
の適当な値に調整する。ガス流量及びイオン源の加速電
圧、電流密度の設定は、これらの条件とエツチング速度
との関係を示した第3図を参照して、)10ゲン化炭素
系ガス中のドライエツチングで形成された炭素原子を含
むSi表面層が、イオンビームエッチングで完全に除去
される条件を決めるものとする。
Current density 0.01 mA/ai~10 mA/aA
Adjust to an appropriate value. For setting the gas flow rate, accelerating voltage of the ion source, and current density, refer to Figure 3, which shows the relationship between these conditions and the etching rate. The conditions under which the Si surface layer containing carbon atoms is completely removed by ion beam etching shall be determined.

第3図(a)はAr十加速電圧1 kV 、 (b)は
0.5kV。
Figure 3 (a) shows Ar acceleration voltage 1 kV, (b) shows 0.5 kV.

(c)は0.2kVの場合のエツチング速度の電流密度
及び塩素分圧依存性を示したものである。例えば、CF
、、H,混合ガスでエツチングした後のSi表面の場合
には厚さ約2つOKの炭素原子を含む表面層が形成され
ているため、塩素ガス分圧I X 10−’Torr中
で加速電圧1 kL電電流密度1五Ar+イオンビーム
で10秒間のエツチングを行うことによシ、炭素原子を
含む表面層を除去することができる。フッ素ガスを用い
る場合には、エツチング速度は同じ分圧で塩素の約1.
5倍となる。
(c) shows the dependence of etching rate on current density and chlorine partial pressure at 0.2 kV. For example, C.F.
,,H, In the case of the Si surface after etching with a mixed gas, a surface layer containing approximately two carbon atoms is formed, so that it is accelerated in a chlorine gas partial pressure of I x 10-'Torr. The surface layer containing carbon atoms can be removed by etching for 10 seconds with a voltage of 1 kL current density of 15 Ar + ion beam. When using fluorine gas, the etching rate is about 1.5 mm faster than that of chlorine at the same partial pressure.
It becomes 5 times.

次に、第2図(b)のように、パルプ25を閉じて塩素
ガスまたはフッ素ガスを止め、これをポンプ28で排気
した後、ガス導入管29から酸素ガス210を導入する
。酸素ガス分圧はパルプ211によってI X 1 0
’rorr 〜1 0 0 Torr  の適当な値に
調整する。Si基板2工をヒーター212によりて10
0℃〜500℃に加熱し、噛合によってはUV光透過窓
213を通してUV光源214からUV光215をSt
基板21に照射する。また、場合によってはIR光透過
窓216を通してI几光源217からIR光218をS
i基板21に照射する。加熱・UV光照射・IR光照射
のうち2つ以上を同時に行ってもよいことは言うまでも
ない。
Next, as shown in FIG. 2(b), the pulp 25 is closed to stop the chlorine gas or fluorine gas, which is exhausted by the pump 28, and then oxygen gas 210 is introduced from the gas introduction pipe 29. Oxygen gas partial pressure is I X 10 by pulp 211
'rorr to an appropriate value of 100 Torr. Heater 212 heats 2 Si substrates for 10 minutes.
St.
The substrate 21 is irradiated. In some cases, the IR light 218 may be transmitted from the I-light source 217 through the IR light transmission window 216.
The i-substrate 21 is irradiated. It goes without saying that two or more of heating, UV light irradiation, and IR light irradiation may be performed simultaneously.

この酸素雰囲気中の加熱及びUV光照射及びより光照射
によF) 、Si表面に吸着してい九ノ・ロゲン原子の
多くが酸素原子に置換される。
By this heating in an oxygen atmosphere, UV light irradiation, and further light irradiation, most of the nine-rogen atoms adsorbed on the Si surface are replaced with oxygen atoms.

(発明の効果) 第4図は、Si基板表面のXPSスペクトルのピーク強
度を示したものである。横軸には、処理前、従来の方法
による処理後、本発明の方法による処理後(塩素ガス雰
囲気中のイオンビームエツチングを用い、加熱時にはU
V光照射を併用した場合)を示している。41はC4ピ
ーク面積のSi1pビ一ク面積に対する比を示したもの
で、Si表面の炭素量を示すC8ピークの大きさは処理
前に比べ、従来の方法による処理後、本発明の方法によ
る処理後ともに減少している。
(Effects of the Invention) FIG. 4 shows the peak intensity of the XPS spectrum of the surface of the Si substrate. The horizontal axis shows before treatment, after treatment by the conventional method, and after treatment by the method of the present invention (ion beam etching in a chlorine gas atmosphere, U during heating).
(when V-light irradiation is used in combination). 41 shows the ratio of the C4 peak area to the Si1p peak area, and the size of the C8 peak, which indicates the amount of carbon on the Si surface, was greater after treatment by the conventional method and by the method of the present invention than before treatment. It is decreasing after that.

従来の方法による処理後、本発明の方法による処理後と
も、その8≦表面を厚さ約5000 !酸化した後に酸
化膜を除去しセコ・エッチを施してエッチビットを観察
する表面損傷観察法によれば、処理後のSi表面には損
傷を示すエッチビットはほとんど現れない。
After treatment by the conventional method and by the method of the present invention, the thickness of the surface is 8≦about 5000! According to a surface damage observation method in which the oxide film is removed after oxidation, secco etching is performed, and etch bits are observed, almost no etch bits indicating damage appear on the Si surface after processing.

第1図13は、ハロゲン化炭素系ガスでドライエツチン
グした後のSi基板を本発明の方法を用いて処理した後
の、注入不純物Bのプロファイルを、8IM8によって
測定した結果を示したものである。従来の方法を用いて
処理した後のプロファイルである12に比べ、処理前の
プロファイルからの変化は圧倒的に少ない。
FIG. 13 shows the results of measuring the profile of the implanted impurity B using the 8IM8 after dry etching a Si substrate with a halogenated carbon gas and treating it using the method of the present invention. . Compared to profile 12, which is the profile after processing using the conventional method, the change from the profile before processing is overwhelmingly small.

以上詳細に述べた通り、本発明によれば、注入不純物プ
ロファイルを変化させない低温で、ノーロダン化炭素系
ガスによるドライエツチング後のSi表面の損傷を乾式
で除去することができる。
As described in detail above, according to the present invention, damage to the Si surface after dry etching with a no-rodunized carbon-based gas can be removed by a dry method at a low temperature without changing the implanted impurity profile.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は注入不純物プロファイルの従来方法及び本発明
の方法による変化を示す図。 第2図は本発明の詳細な説明する図。 第3図は塩素分圧及びイオン加速電圧をパラメータとし
たイオンビーム電流密度の変化にょる工、チングレート
の変化を示す図。 第4図はXP8ビークの従来方法及び本発明の方法によ
る変化を示す図。
FIG. 1 is a diagram showing changes in the implanted impurity profile according to the conventional method and the method of the present invention. FIG. 2 is a diagram illustrating the present invention in detail. FIG. 3 is a diagram showing changes in processing rate due to changes in ion beam current density using chlorine partial pressure and ion acceleration voltage as parameters. FIG. 4 is a diagram showing changes in the XP8 peak according to the conventional method and the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  ハロゲン化炭素系のガスでドライエッチングした後の
Si基板を、塩素ガス雰囲気中またはフッ素ガス雰囲気
中でイオンビームエッチングした後、酸素ガス雰囲気中
で、加熱、またはUV光照射、またはIR光照射加熱・
UV光照射・IR光照射のうち2つ以上の組み合せを行
うことを特徴とするドライエッチング後Si表面損傷の
乾式による除去方法。
A Si substrate that has been dry etched with a halogenated carbon gas is subjected to ion beam etching in a chlorine gas atmosphere or a fluorine gas atmosphere, and then heated or heated by UV light irradiation or IR light irradiation in an oxygen gas atmosphere.・
A dry method for removing Si surface damage after dry etching, characterized by performing a combination of two or more of UV light irradiation and IR light irradiation.
JP163585A 1985-01-09 1985-01-09 Method of dry removal of si surface damage after dry etching Pending JPS61160939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP163585A JPS61160939A (en) 1985-01-09 1985-01-09 Method of dry removal of si surface damage after dry etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP163585A JPS61160939A (en) 1985-01-09 1985-01-09 Method of dry removal of si surface damage after dry etching

Publications (1)

Publication Number Publication Date
JPS61160939A true JPS61160939A (en) 1986-07-21

Family

ID=11506986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP163585A Pending JPS61160939A (en) 1985-01-09 1985-01-09 Method of dry removal of si surface damage after dry etching

Country Status (1)

Country Link
JP (1) JPS61160939A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293618A (en) * 1988-05-23 1989-11-27 Mitsubishi Electric Corp Plasma etching device
JPH04229621A (en) * 1990-07-09 1992-08-19 Mitsubishi Electric Corp Method of processing surface of semiconductor substrate
EP0932192A1 (en) * 1995-02-03 1999-07-28 Matsushita Electronics Corporation Etching of a platinum electrode
US5976328A (en) * 1996-01-26 1999-11-02 Hitachi, Ltd. Pattern forming method using charged particle beam process and charged particle beam processing system
CN102549721A (en) * 2009-10-27 2012-07-04 朗姆研究公司 Method and apparatus of halogen removal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293618A (en) * 1988-05-23 1989-11-27 Mitsubishi Electric Corp Plasma etching device
JPH04229621A (en) * 1990-07-09 1992-08-19 Mitsubishi Electric Corp Method of processing surface of semiconductor substrate
EP0932192A1 (en) * 1995-02-03 1999-07-28 Matsushita Electronics Corporation Etching of a platinum electrode
US5976328A (en) * 1996-01-26 1999-11-02 Hitachi, Ltd. Pattern forming method using charged particle beam process and charged particle beam processing system
US6344115B1 (en) 1996-01-26 2002-02-05 Hitachi, Ltd. Pattern forming method using charged particle beam process and charged particle beam processing system
CN102549721A (en) * 2009-10-27 2012-07-04 朗姆研究公司 Method and apparatus of halogen removal
JP2013509003A (en) * 2009-10-27 2013-03-07 ラム リサーチ コーポレーション Method and apparatus for halogen removal

Similar Documents

Publication Publication Date Title
KR100391840B1 (en) Method and apparatus for forming an insulating film on the surface of a semiconductor substrate
JPS61270830A (en) Surface cleaning method
Kaneko et al. Low Temperature Silicon Surface Cleaning by HF Etching/Ultraviolet Ozone Cleaning (HF/UVOC) Method (II)–in situ UVOC
JPS61160939A (en) Method of dry removal of si surface damage after dry etching
KR970003671A (en) Silicon Wafer Processing Method
JPH06509056A (en) Generation of clean well-aligned CdTe surfaces using laser ablation
JPH03116727A (en) Manufacture of semiconductor device
JPH01200628A (en) Dry etching
US6083354A (en) Treatment method for diamonds
JPS58101429A (en) Dry etching method
JPS6286731A (en) Laser beam irradiation si surface treating device
JPS61160938A (en) Damage removal for si substrate after dry etching
JPS62139335A (en) Surface cleaning process
JPH0656846B2 (en) Method for treating semiconductor substrate
JPH05229896A (en) Production of conductive diamond
JPH065559A (en) Ozone plasma treatment
JP2681112B2 (en) Method for manufacturing silicon substrate for semiconductor device
JPH0738380B2 (en) Surface treatment method
JPH0644562B2 (en) Surface cleaning method
JPS63228620A (en) Surface cleaning method
JPS6175528A (en) Si surface processing by irradiation of multiple laser beam
JPH0611038B2 (en) Surface treatment method
JP2611496B2 (en) Surface treatment method
JP2558765B2 (en) Method for manufacturing semiconductor device
JPH0624197B2 (en) Surface protection method