JPH0738380B2 - Surface treatment method - Google Patents

Surface treatment method

Info

Publication number
JPH0738380B2
JPH0738380B2 JP60141740A JP14174085A JPH0738380B2 JP H0738380 B2 JPH0738380 B2 JP H0738380B2 JP 60141740 A JP60141740 A JP 60141740A JP 14174085 A JP14174085 A JP 14174085A JP H0738380 B2 JPH0738380 B2 JP H0738380B2
Authority
JP
Japan
Prior art keywords
ozone
surface treatment
ultraviolet light
present
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60141740A
Other languages
Japanese (ja)
Other versions
JPS622622A (en
Inventor
英治 井川
幸令 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60141740A priority Critical patent/JPH0738380B2/en
Publication of JPS622622A publication Critical patent/JPS622622A/en
Publication of JPH0738380B2 publication Critical patent/JPH0738380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子デバイス製造プロセス等に用いる表面処
理方法に関するものである。
TECHNICAL FIELD The present invention relates to a surface treatment method used in an electronic device manufacturing process and the like.

(従来の技術) 従来、反応性スパッタエッチングでSiO2をエッチングし
た後、下地Si層上に炭素やハロゲン原子を含んだ層が形
成される。さらにレジストマスクを用いる場合には、レ
ジスト中に含まれる炭素原子がスパッタされSi表面上に
テフロン膜のようなものが形成されてしまう。
(Prior Art) Conventionally, after etching SiO 2 by reactive sputter etching, a layer containing carbon or halogen atoms is formed on the underlying Si layer. Further, when a resist mask is used, carbon atoms contained in the resist are sputtered and a Teflon film-like material is formed on the Si surface.

(発明が解決しようとする問題点) これらの表面層を除去する方法としては一般に知られて
いる方法としてまず、表面層をSiのウェットエッチング
液によりエッチングする方法がある。この場合、エッチ
ングの再現性やエッチングレイトの制御性がきわめて悪
い。一方、酸化によって除去する方法がある。950℃程
度で酸化速度の大きなウェット酸化により、200〜300Å
酸化する。すると、炭素原子やフッ素原子は酸化中に除
去される。形成された厚さ200〜300Åの酸化膜をフッ酸
等で除去すれば清浄なSi表面が得られる。(井川英治
他、第30回応用物理学会関係連合講演会、P310、6a−V
−10)しかし、酸化プロセスは高温プロセスであるので
あらかじめ設計した不純物分布等を変化させてしまう可
能性があり、完全な表面処理方法ではない。一方、炭素
を含まないガスを用いてドライエッチングによりSi表面
層を除去できるが、イオン入射による物理的損傷はさけ
ることができず、又、不純物原子も一部Si中に残るとい
う欠点を有していた。
(Problems to be Solved by the Invention) As a method for removing these surface layers, a generally known method is to first etch the surface layer with a wet etching solution of Si. In this case, reproducibility of etching and controllability of etching rate are extremely poor. On the other hand, there is a method of removing it by oxidation. 200 ~ 300Å by wet oxidation with high oxidation rate at about 950 ℃
Oxidize. Then, carbon atoms and fluorine atoms are removed during the oxidation. A clean Si surface can be obtained by removing the formed oxide film having a thickness of 200 to 300Å with hydrofluoric acid or the like. (Eiji Ikawa et al., 30th Joint Lecture Meeting on Applied Physics, P310, 6a-V
-10) However, since the oxidation process is a high temperature process, it may change the predesigned impurity distribution, etc., and is not a perfect surface treatment method. On the other hand, although the Si surface layer can be removed by dry etching using a gas containing no carbon, it has the drawback that physical damage due to ion injection cannot be avoided and that some impurity atoms remain in Si. Was there.

本発明の目的は、これらの従来の欠点を除去せしめて、
Si基板の表面処理において、Si基板を低温でかつ、制御
性よく損傷層をエッチング除去し、かつ、反応性ガス分
子や原子もSi基板上に残さない処理方法を提供すること
にある。
The object of the present invention is to eliminate these conventional drawbacks,
It is an object of the present invention to provide a method for treating the surface of a Si substrate, in which the damaged layer is etched away with good controllability at a low temperature, and reactive gas molecules and atoms are not left on the Si substrate.

(問題点を解決するための手段) 上記目的を達成するために、本発明は、真空排気可能な
チャンバー内にSi基板を置き、Cl2又はF2と同時にオゾ
ン発生器から発生させたオゾンを導入し、紫外線光源を
試料に照射するようにしたものである。
(Means for Solving Problems) In order to achieve the above object, the present invention places a Si substrate in a chamber that can be evacuated, and collects ozone generated from an ozone generator at the same time as Cl 2 or F 2. The sample is introduced and the sample is irradiated with an ultraviolet light source.

(作用) 本発明は、上述の構成を取ることにより、従来技術の問
題点を解決した。まずCl2又はF2をオゾンと同時に真空
排気しながら真空チャンバーに流し込む。Si基板はドラ
イエッチングされそのあと表面は不純物原子を含んだSi
層となっている。この真空チャンバーに設けられた石英
等の紫外光を透過する窓を通し、紫外光を照射する。Cl
2は約300nm近くの波長をよく吸収しClラジカルに分解す
る。これはSiを反応しSiCl2やSiCl4を形成し、エッチン
グする。しかし、ドライエッチングされた表面には40〜
50%近く200Å程度にわたり炭素原子が存在し、これに
対してはClラジカルが反応し、一部CCl4を形成し、炭素
原子をエッチングするが、十分とはいえない。一方オゾ
ンは250nm程度の光をよく吸収し、酸素原子に分解す
る。これは炭素原子と反応し、COやCO2を形成し、エッ
チングする。このように、オゾンとCl2を同時に導入
し、紫外光で分解することにより効率よく表面層をエッ
チングできる。
(Operation) The present invention has solved the problems of the prior art by adopting the above configuration. First, Cl 2 or F 2 is poured into a vacuum chamber while simultaneously evacuating ozone. The Si substrate was dry-etched, and then the surface was Si containing impurity atoms.
It is a layer. Ultraviolet light is irradiated through a window such as quartz provided in this vacuum chamber that transmits ultraviolet light. Cl
2 well absorbs wavelengths near 300 nm and decomposes into Cl radicals. This reacts with Si to form SiCl 2 or SiCl 4 , which is then etched. However, the dry-etched surface has 40 ~
There are carbon atoms over about 200 Å near 50%, and Cl radicals react with this, forming part of CCl 4 and etching carbon atoms, but this is not sufficient. On the other hand, ozone absorbs light of about 250 nm and decomposes into oxygen atoms. It reacts with carbon atoms to form CO and CO 2 and etches. Thus, the surface layer can be efficiently etched by simultaneously introducing ozone and Cl 2 and decomposing it with ultraviolet light.

(実施例) 以下に、本発明の実施例を示す。まず第1図のIMAスペ
クトルに示すようにエッチングされたSi表面層にはエッ
チングガス中に含まれていた炭素やフッ素原子が含まれ
ている。
(Example) Below, the Example of this invention is shown. First, as shown in the IMA spectrum of FIG. 1, the etched Si surface layer contains carbon and fluorine atoms contained in the etching gas.

第2図に本発明に用いた装置の概略図を示し、これを用
いて本発明の実施例を説明する。真空チャンバー21上に
は石英窓24が設けられ又、2つのガス導入口26と27があ
り、それぞれからCl2又はF2とオゾンを流すことが可能
で、又それは、ロータリーポンプ22で排気される。第1
図に示したようにエッチング等のプロセスで炭素やフッ
素原子で表面が汚染された試料23は石英まど24の直下に
置かれる。ここで用いた条件はCl21.5LSM、オゾン1〜
2%のもの150SCCMを流し、紫外線25は800mW/cm2の照射
強度である。すると、Cl2、オゾンはそれぞれ紫外光を
吸収し、Clラジカルや酸素原子を発生し、表面汚染のあ
るSiと反応し、SiCl2、SiCl4、CO2、CO等になり表面層
をエッチングする。本条件ではCl2だけの場合10Torrの
圧力で約1000Å/minでエッチングされるのでO2とオゾン
の混合ガスを約150SCCM同時に流すとエッチレイトは、
約500Å/minであった。実際に汚染を受けている部分はS
i表面下約150〜200Åであるので約50sec間紫外光を照射
した。第3図は本発明を用いた表面処理後のSi表面のIM
Aスペクトルである。このスペクトルからは、炭素やフ
ッ素原子は観測されず清浄なSi表面が得られた。
FIG. 2 shows a schematic view of an apparatus used in the present invention, and the embodiment of the present invention will be described using this. A quartz window 24 is provided on the vacuum chamber 21, and there are two gas inlets 26 and 27, through which Cl 2 or F 2 and ozone can flow, respectively, which is exhausted by a rotary pump 22. It First
As shown in the figure, the sample 23 whose surface is contaminated with carbon or fluorine atoms by a process such as etching is placed directly under the quartz furnace 24. The conditions used here are Cl 2 1.5 LSM, ozone 1-
A 150% SCCM of 2% is passed, and the ultraviolet ray 25 has an irradiation intensity of 800 mW / cm 2 . Then, Cl 2 and ozone each absorb ultraviolet light, generate Cl radicals and oxygen atoms, react with Si with surface contamination, and become SiCl 2 , SiCl 4 , CO 2 , CO, etc. to etch the surface layer. . Under these conditions, only Cl 2 etches at a pressure of 10 Torr at about 1000 Å / min, so if a mixed gas of O 2 and ozone is flowed at about 150 SCCM at the same time, the etch rate will be
It was about 500Å / min. The part that is actually polluted is S
i Since it was about 150 to 200Å below the surface, it was irradiated with ultraviolet light for about 50 seconds. FIG. 3 shows the IM of the Si surface after the surface treatment using the present invention.
This is the A spectrum. From this spectrum, carbon and fluorine atoms were not observed, and a clean Si surface was obtained.

本発明の実施例はCl2を用い、又、石英窓を用いている
がガスはF2でも、又窓はサファイアでも可能であった。
In the examples of the present invention, Cl 2 was used, and a quartz window was used, but the gas could be F 2 and the window could be sapphire.

(発明の効果) 本発明の方法では、Si表面にはなんら物理的損傷は与え
ずしかも紫外光は200nm以上のもの波長を用いているの
で試料に対する悪響はなんら観測されなかった。しか
も、低温プロセスなのでSi中のデバイス動作に必要な不
純物分布を変化させずない。しかも約1分たらずの単時
間処理で清浄なSi表面が得られた。従ってこの表面処理
方法は、電子デバイス製造プロセス等に有効な効力を発
揮する。
(Effect of the Invention) In the method of the present invention, no physical damage was given to the Si surface, and since the ultraviolet light had a wavelength of 200 nm or more, no adverse effect on the sample was observed. Moreover, the low temperature process does not change the impurity distribution necessary for device operation in Si. Moreover, a clean Si surface was obtained by the single-hour treatment within about 1 minute. Therefore, this surface treatment method exerts an effective effect in the electronic device manufacturing process and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図、第3図はSi中の不純物分布をIMAを用いて観測
したもの。 第2図は、本発明の実施例を示す概略図である。 11,31……Siを示す。12,32……フッ素を示す。13,33…
…炭素を示す。21……真空チャンバー、22……ロータリ
ーポンプ、23……試料、24……石英窓、25……紫外光、
26,27……ガス導入口
Figures 1 and 3 show the distribution of impurities in Si observed using IMA. FIG. 2 is a schematic diagram showing an embodiment of the present invention. 11,31 …… Indicates Si. 12,32 …… Indicates fluorine. 13,33 ...
... indicates carbon. 21 ... vacuum chamber, 22 ... rotary pump, 23 ... sample, 24 ... quartz window, 25 ... ultraviolet light,
26,27 …… Gas inlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空排気可能なチャンバー内にSi基板を置
き、Cl2又はF2と同時にオゾン発生器から発生させたオ
ゾンを導入し、紫外線光源を試料に照射することを特徴
とする表面処理方法。
1. A surface treatment characterized in that a Si substrate is placed in a chamber capable of being evacuated, and ozone generated from an ozone generator is introduced at the same time as Cl 2 or F 2 and the sample is irradiated with an ultraviolet light source. Method.
JP60141740A 1985-06-28 1985-06-28 Surface treatment method Expired - Lifetime JPH0738380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60141740A JPH0738380B2 (en) 1985-06-28 1985-06-28 Surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60141740A JPH0738380B2 (en) 1985-06-28 1985-06-28 Surface treatment method

Publications (2)

Publication Number Publication Date
JPS622622A JPS622622A (en) 1987-01-08
JPH0738380B2 true JPH0738380B2 (en) 1995-04-26

Family

ID=15299099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60141740A Expired - Lifetime JPH0738380B2 (en) 1985-06-28 1985-06-28 Surface treatment method

Country Status (1)

Country Link
JP (1) JPH0738380B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2640828B2 (en) * 1988-06-28 1997-08-13 富士通株式会社 Method for removing native oxide film on semiconductor substrate surface
US4999050A (en) * 1988-08-30 1991-03-12 Sutek Corporation Dispersion strengthened materials
CN107516636A (en) * 2016-06-17 2017-12-26 上海新昇半导体科技有限公司 A kind of low-temperature epitaxy method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933830A (en) * 1982-08-20 1984-02-23 Toshiba Corp Dry etching
JPS60216558A (en) * 1984-04-12 1985-10-30 Fuji Electric Corp Res & Dev Ltd Method of surface washing

Also Published As

Publication number Publication date
JPS622622A (en) 1987-01-08

Similar Documents

Publication Publication Date Title
KR100255960B1 (en) Uv-enhanced dry stripping method of silicon nitride films
US20060137717A1 (en) Method for removing impurities grown on a phase shift mask
JPH0864559A (en) Method of deleting unnecessary substance from substrate surface
JPH0738380B2 (en) Surface treatment method
JPH01200628A (en) Dry etching
JP2640828B2 (en) Method for removing native oxide film on semiconductor substrate surface
JP2595935B2 (en) Surface cleaning method
JPH0611038B2 (en) Surface treatment method
JPS61160939A (en) Method of dry removal of si surface damage after dry etching
JPH03155621A (en) Dry etching method
JPH03133125A (en) Resist ashing
JPS6191930A (en) Cleaning method of semiconductor substrate
JP2611496B2 (en) Surface treatment method
JPH0410739B2 (en)
JPS63160324A (en) Molecular beam epitaxial crystal growth
JPS63237419A (en) Surface protection
KR100528266B1 (en) Solution for removing residual wall residue after dry etching
JPH10163178A (en) Method of removing resist
JPH0677197A (en) Surface treatment method of semiconductor
JPH09298303A (en) Manufacture of thin film transistor
JPH0654773B2 (en) Surface treatment method and apparatus used therefor
JPH042123A (en) Surface treatment
JPS5887276A (en) Treatment after dry etching
JPS59136931A (en) Manufacture of semiconductor device
JPH0658906B2 (en) Surface protection method