JPS60215731A - Aluminum alloy for nuclear fusion device - Google Patents

Aluminum alloy for nuclear fusion device

Info

Publication number
JPS60215731A
JPS60215731A JP7240284A JP7240284A JPS60215731A JP S60215731 A JPS60215731 A JP S60215731A JP 7240284 A JP7240284 A JP 7240284A JP 7240284 A JP7240284 A JP 7240284A JP S60215731 A JPS60215731 A JP S60215731A
Authority
JP
Japan
Prior art keywords
alloy
nuclear fusion
plate
fusion device
unavoidable impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7240284A
Other languages
Japanese (ja)
Inventor
Shigenori Asami
浅見 重則
Kunihiko Kishino
邦彦 岸野
Kiyoshi Matsumoto
清 松本
Tomikane Saida
斎田 富兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP7240284A priority Critical patent/JPS60215731A/en
Publication of JPS60215731A publication Critical patent/JPS60215731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide an Al alloy for a nuclear fusion device having excellent mechanical performance, weldability and electric resistance characteristic in combination by contg. Si, Mg, Cu and >=1 kinds of V and Cr respectively at prescribed ratios and consisting of the balance Al and unavoidable impurities. CONSTITUTION:An Al alloy for a nuclear fusion device contains, by weight %, 4.5-13% Si, 0.8-3.0% Mg, 0.2-1.6% Cu and further >=1 kinds of 0.05-0.3% V and 0.05-0.3% Cr and consists of the balance Al and unavoidable impurities. The content of Fe and Mn in the unavoidable impurities is preferably made as low as possible in terms of radioactivation. Mainly the plate material of the alloy of this invention can be manufactured by making a casting ingot by an ordinary method and subjecting the ingot to hot rolling, cold rolling and, if necessary, to annealing. Such plate is used after the plate is subjected in the final to a soln. heat treatment, hardening and again at an ordinary temp. The plate material has excellent mechanical performance (tensile strength, yield strength and elongation) and weldability and has >=5muOMEGA.cm electric resistance.

Description

【発明の詳細な説明】 本発明は、核融合試験装置、特にその真空容器に適した
構造用アルミニウム合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structural aluminum alloy suitable for a nuclear fusion test device, particularly a vacuum vessel thereof.

核融合反応炉は、軽水炉等の原子力エネルギーに次ぎ次
世代のエネルギー創出の手段として鋭意研究が行なわれ
ている。この核融合反応(2日干31−1=4 @e 
+n等の核融合反応で地上に太陽の状態を創造)を実現
するには、まず臨界条件(渇膚ぬIJii酊ρ プラプ
マ密麿ぬ301音低/〜3Tネルギー閉じ込め時間約1
秒)を作り出さなければならない。世界は今、この条件
の実現に向って衆知を傾注している。
Nuclear fusion reactors are being intensively researched as a means of creating next-generation energy following nuclear energy such as light water reactors. This nuclear fusion reaction (2 days dried 31-1 = 4 @e
In order to realize the condition of the sun on the ground through nuclear fusion reactions such as
seconds) must be created. The world is currently concentrating its collective wisdom on realizing this condition.

このような核融合炉の一つに、トカマク方式の炉がある
が、これは巨人なドーナツ状をしており真空容器の内部
に発生させる超高温プラズマを、周囲に設けられた巨大
な磁6(ホロイダルマグネット、トロイダルマグネット
)により、その磁力の力で閉じ込め宙に浮かして保持す
るようにしたものである。
One such nuclear fusion reactor is a tokamak type reactor, which is shaped like a giant donut and uses a huge magnetic 6 (Holoidal magnet, toroidal magnet) is used to trap and hold it in the air using its magnetic force.

ここに使用される真空容器には、従来インコネル(Ni
−Or−Fe系合金:INGO社の商標以下同様)、ス
テンレス(SLJS 304,316)等が使用されて
いる。
The vacuum container used here is conventionally made of Inconel (Ni).
-Or-Fe alloy: INGO Co., Ltd. trademark), stainless steel (SLJS 304, 316), etc. are used.

しかしながら、これらは高速中性子の照射により長寿命
の誘導放射能を生ずる様な成分元素(例えばNi、Go
、Mn、Fe)を含んでいる。従って、インコネル、ス
テンレスを真空容器に一使用した場合、D−T (2)
13 H)核融合反応により生ずる中性子によってこれ
らの成分が放射化してγ線が発生ずる。
However, these elements (e.g., Ni, Go,
, Mn, Fe). Therefore, when Inconel or stainless steel is used for a vacuum container, D-T (2)
13 H) These components are activated by neutrons generated by the nuclear fusion reaction, producing gamma rays.

結果として、その装置への研究者や作業者の接近が困難
となる。ロボットにより遠隔操作する方法もあるが、多
額の開発費と長期の研究期間を要する。そこで低放射化
材料であるアルミニウム合金材が注目され、一部溶接性
のよいJIS5052拐(A 、e ’−2,2〜2.
8wt%Mg−0,15−0,35wt%Cr合金)が
使用された実績がある。
As a result, it becomes difficult for researchers and workers to access the device. There is also a method of remote control using a robot, but this requires a large amount of development cost and a long research period. Therefore, aluminum alloy materials, which are low activation materials, have attracted attention, and some JIS5052 grades (A, e'-2, 2 to 2.
8 wt% Mg-0, 15-0, 35 wt% Cr alloys) have been used in the past.

しかし従来使用されたアルミニウム合金材にしても、多
くの改善を必要とする。即ち微量放射化成分の除去、材
料強度の上昇、溶接性の改善、電気抵抗特性等である。
However, even the conventionally used aluminum alloy materials require many improvements. That is, removal of trace amounts of activated components, increase in material strength, improvement in weldability, electrical resistance characteristics, etc.

真空容器の設計上、アルミニウム合金材に要求される特
性としては、次のとおりである。
The following properties are required of aluminum alloy materials in the design of vacuum vessels.

く1)大型構造物であるため、材料の強度が所定以上あ
ること。
1) Since it is a large structure, the strength of the material must exceed a specified level.

(例6引張強さ28Kg/ mm 2以上、耐力12 
b /#2以上を目標とする。) (2)厚板(板厚30〜50#)を曲げ加工して、構造
物とするため、材料の伸びが所定以上であること。
(Example 6 Tensile strength 28Kg/mm2 or more, Proof strength 12
Aim for b/#2 or higher. ) (2) The elongation of the material must be at least a certain level since it is made into a structure by bending a thick plate (plate thickness 30-50#).

(例、13%以上を目標とする。) (3)材料の電気抵抗が大きいこと。(For example, aim for 13% or more.) (3) The electrical resistance of the material is high.

(例。5μΩ・cm以上を目標とする。〉(4)各板を
溶接により接合して構造物とするため、溶接性が良好な
こと。
(Example: Aim for 5 μΩ・cm or more.) (4) Since each plate is joined by welding to form a structure, weldability must be good.

等である。etc.

尚真空容器用材料の電気抵抗を大きくする主な理由は、
真空容器の内部に、プラズマ電流を外部(ホロイダルマ
グネット〉がらの誘導で励起するため、真空容器の一周
抵抗値を、所定値(例えば0.1TrLΩ)以上とする
必要があるためである。
The main reason for increasing the electrical resistance of vacuum container materials is
This is because plasma current is excited inside the vacuum vessel by induction from the outside (holoidal magnet), so the one-round resistance value of the vacuum vessel needs to be equal to or higher than a predetermined value (for example, 0.1 TrLΩ).

従来、前記のニーズのすべてを満足するアルミニウム合
金材料は存在しなかった。
Hitherto, there has been no aluminum alloy material that satisfies all of the above needs.

本発明考等は、これらの要求を満足するアルミニウム合
金材料について鋭意研究の結果、本発明を完成したもの
である。
The present inventors completed the present invention as a result of intensive research into aluminum alloy materials that satisfy these requirements.

即ち、本発明は、Si 4.5〜13wt%(以下wt
%は単に%と略記する)、Mg o、8〜3.0%、C
uO02〜1.6%と、更に、V O,05〜0.3%
、Cr0.05〜0.3%の範囲内でいずれか1種又は
2種を含み、残部不可避的不純物及び八(からなる核融
合装置用アルミニウム合金である。
That is, in the present invention, Si 4.5 to 13 wt% (hereinafter wt
% is simply abbreviated as %), Mgo, 8-3.0%, C
uO2~1.6% and further VO,05~0.3%
, Cr in the range of 0.05 to 0.3%, and the remainder is unavoidable impurities.

本発明をこのように構成することにより、すぐれた機械
的性能と溶接性及び電気抵抗特性を兼ね備えたアルミニ
ウム合金材を得ることができる。
By configuring the present invention in this manner, an aluminum alloy material having excellent mechanical performance, weldability, and electrical resistance characteristics can be obtained.

次に本発明合金の合金添加元素の意義と限定理由につい
て述べる。本発明合金における主添加元素S’ z M
g、Cuは、相互に関連して強度と電気抵抗特性等に影
響する。
Next, the significance of the alloy additive elements of the alloy of the present invention and the reasons for their limitations will be described. Main additive element S' z M in the alloy of the present invention
g and Cu mutually affect strength, electrical resistance properties, etc.

Siは、材料の強度と電気抵抗を増大させるだめのもの
で、4.5・〜13%添加する。M(1、Cuが下記所
定量の場合、3iが4.5%未満ではこれらが不足し、
又13%を越えると伸びが不足し、初晶S1の出現によ
り、圧延加工性が悪くなる。
Si is added to increase the strength and electrical resistance of the material, and is added in an amount of 4.5 to 13%. M(1, when Cu is in the following specified amount, if 3i is less than 4.5%, these are insufficient,
If it exceeds 13%, elongation will be insufficient and primary crystals S1 will appear, resulting in poor rolling workability.

M(]は、材料の強度の向上をはかり、電気抵抗を大き
くするためのもので、0.8〜3.0%添加する。S 
i’= Cuが所定量の場合、MQが0.8%未満では
、強度が不足し、電気抵抗が小さくなる。
M() is added to improve the strength of the material and increase the electrical resistance, and is added in an amount of 0.8 to 3.0%.S
When i'=Cu is a predetermined amount, if MQ is less than 0.8%, the strength will be insufficient and the electrical resistance will be small.

又3.0%を越えると伸びが不足する。Moreover, if it exceeds 3.0%, elongation will be insufficient.

Cuは、材料の強度と電気抵抗を大きくするためのもの
で、0.2〜1.6%添加する。3i、M+Jが所定量
の場合、Cuが0.2%未満では、これらの特性が不足
し、1.6%を越えると伸びが不足する。
Cu is added in an amount of 0.2 to 1.6% to increase the strength and electrical resistance of the material. When 3i, M+J is a predetermined amount, if Cu is less than 0.2%, these properties are insufficient, and if it exceeds 1.6%, elongation is insufficient.

■又は/及びOrは、母材及び溶接部の結晶粒を微細に
して、強度の向上をはかるもので、各々0.05〜0.
3%の範囲内で1種又は2種を添加する。0.05%未
満では母材及び溶接部の結晶粒が粗くなり、好ましくな
い。又0,3%を越えると初晶巨大金属間化合物が生じ
やすく、伸びが不足する。
(2) or/and Or are intended to improve the strength by making the crystal grains of the base metal and the welded part finer, and are each 0.05 to 0.
One or two types are added within a range of 3%. If it is less than 0.05%, the crystal grains in the base metal and weld zone will become coarse, which is not preferable. Moreover, if it exceeds 0.3%, primary crystal giant intermetallic compounds are likely to occur, resulting in insufficient elongation.

尚、AJ中に含まれる普通の不可避的不純物(Fe 、
Mn 、Zn 、Ti 、Zr等)は、特に限定される
ものではないが、Fe 11ylnは放射化の点から極
力おさえることが望ましい。
In addition, ordinary unavoidable impurities (Fe,
Mn, Zn, Ti, Zr, etc.) are not particularly limited, but it is desirable to suppress Fe 11yln as much as possible from the viewpoint of activation.

又本発明合金、主として板材は、普通の方法で鋳塊を作
り、熱間圧延、冷間圧延、必要に応じて焼鈍して作るこ
とが出来る。これらの板は、最終的には、溶体化処理、
焼入、常温時効(丁4の状態)しχ使用される。
Further, the alloy of the present invention, mainly a plate material, can be produced by forming an ingot using a conventional method, followed by hot rolling, cold rolling, and optionally annealing. These plates are finally solution-treated,
Quenched, aged at room temperature (condition 4) and used.

このようにして作られた板は、ずぐれた機械的性能(引
張強さ、耐力、−伸び)と溶接性を為し、又電気抵抗も
5μΩ・α以上のものが得られる。
The plate made in this way has excellent mechanical performance (tensile strength, yield strength, -elongation) and weldability, and also has an electrical resistance of 5 μΩ·α or more.

なお、本発明合金は、核融合装置用として、主として板
材で用いられるが、板にかぎるものひはなく、押出形材
、棒、管のご゛とき構造材としても用いることができる
The alloy of the present invention is mainly used in plate materials for nuclear fusion devices, but it is not limited to plates, and can also be used in structural materials such as extruded shapes, rods, and tubes.

以下本発明の詳細について、実施例に基づいて説明する
The details of the present invention will be explained below based on examples.

実施例 第1表に示tA(合金を鋳造し、SO,、(厚さ)x 
180厘(巾)x180顯(長さ)の鋳塊を得た。
Examples Table 1 shows tA (alloy is cast, SO,, (thickness) x
An ingot measuring 180 mm (width) x 180 mm (length) was obtained.

A1地金は99.1%A(を使用した。The A1 bullion used was 99.1% A.

これを520℃で24時間均熱処理した後、両面を固剤
(片面3履)し、500℃に加熱後、厚さ3.5難まで
熱間圧延した。次いで、この板を370℃で2時間焼鈍
後、厚さ2.0am+まで冷間圧延した。
After soaking at 520° C. for 24 hours, both sides were hardened (3 layers per side), heated to 500° C., and then hot rolled to a thickness of 3.5 mm. This plate was then annealed at 370° C. for 2 hours and then cold rolled to a thickness of 2.0 am+.

最後にこの冷延板を525℃で1時間溶体化処理後、常
温水に水焼入した。
Finally, this cold rolled sheet was solution treated at 525° C. for 1 hour and then water quenched in room temperature water.

この板を室温で4日以上常温時効させたのち、引張試験
、電気抵抗試験に供した。これらの結果を第1表に併記
した。
After aging this plate at room temperature for 4 days or more, it was subjected to a tensile test and an electrical resistance test. These results are also listed in Table 1.

溶接試験については、上記厚さ3.5#Ill+の熱間
圧延板を上記と同一条件で溶体化、焼入、常温時効を行
なったものを使用した。その結果を第1表に記した。
For the welding test, a hot-rolled plate having a thickness of 3.5#Ill+ was solution-treated, quenched, and aged at room temperature under the same conditions as above. The results are shown in Table 1.

尚これらの試験方法は、以下の如くである。Note that these test methods are as follows.

a)引張試M:板幅方向(LTh向)に試験片を採取し
て試験した。
a) Tensile test M: A test piece was taken in the board width direction (LTh direction) and tested.

b)電気抵抗測定:板の長手方向(L方向)に試験片を
採取して試験した。
b) Electrical resistance measurement: A test piece was taken in the longitudinal direction (L direction) of the plate and tested.

C)溶接性試験:厚さ3.511111s長さ300a
e+板についてMig溶接により、つき合せ 溶接した。溶接部長さ300ag+に ついて、ビード部のクランクの 有無を目視により観察し、判定 した。なお、本発明合金、−比較 合金について、溶加材はJIS 4043 (A 、e −4,5〜6.0%Si合金)
溶接線を使用した。
C) Weldability test: Thickness 3.511111s Length 300a
The e+ plate was butt welded by MIG welding. Regarding the weld length of 300ag+, the presence or absence of a crank in the bead portion was visually observed and determined. In addition, for the present invention alloy and the comparative alloy, the filler metal was JIS 4043 (A, e-4, 5-6.0% Si alloy).
I used welding wire.

又、比較のため、市販の従来合金J I S 5052
−HI3板(厚さ2.0all、及び3.5am)につ
いても、前記と同一の試験条件〔但し溶接試験においで
は、溶加材として、J I 35356 (A 、e 
−4,5〜5.5%M(1−0,05〜0.20%Mn
 −0,05〜0.20%Cr −0,06〜0.20
%■i合金)溶接線を使用)で試験を行ない、その結果
を第1表に併記した。
Also, for comparison, commercially available conventional alloy JIS 5052
- For HI3 plates (thickness 2.0all and 3.5am), the test conditions were the same as above [However, in the welding test, J I 35356 (A, e
-4,5~5.5%M (1-0,05~0.20%Mn
-0,05~0.20%Cr -0,06~0.20
%■i alloy) using a welding wire), and the results are also listed in Table 1.

第1表から明らかな如く、本発明合金は、機械的性能の
点で、引張強さ28に9/、2以上、耐力12Kg/#
I#12以上、伸び13%以上であり、又電気抵抗はい
ずれも5.0μΩ・cm以上となり、溶接性の点でも問
題なく、Jぐれた材料であることが確認され lこ 。
As is clear from Table 1, in terms of mechanical performance, the alloy of the present invention has a tensile strength of 28 to 9/2, a yield strength of 12 kg/#
It has an I#12 or higher, an elongation of 13% or higher, and an electrical resistance of 5.0 μΩ・cm or higher in both cases, confirming that it is an excellent material with no problems in terms of weldability.

これに比し、従来合金、比較合金は、機械的性能、電気
抵抗いずれかの点で本発明合金より劣っている。
In comparison, conventional alloys and comparative alloys are inferior to the invention alloy in either mechanical performance or electrical resistance.

以上説明したように本発明合金材は、核融合試験装置、
特にその真空容器に適した種々の1ぐれた特性を有づる
ものである。
As explained above, the alloy material of the present invention can be used in nuclear fusion test equipment,
It has a variety of outstanding properties that make it particularly suitable for the vacuum vessel.

第1頁の続き 0発 明 者 斎 1) 富 兼 高砂市荒井町新砂研
究所内
Continued from page 1 0 Inventor Sai 1) Kane Tomi Shinsuna Research Institute, Arai-cho, Takasago City

Claims (1)

【特許請求の範囲】[Claims] Si 4.5〜13%、MOo、8〜3.0%、Cu 
O,2〜1.6%と、更にV O,05〜0.3%、Q
r 0.05〜0.3%の範囲内でいずれか1種又は2
種を含み、残部が不可避的不純物及びAぶよりなる核融
合装置用アルミニウム合金。
Si 4.5-13%, MOo, 8-3.0%, Cu
O, 2-1.6% and further V O, 05-0.3%, Q
r Any one or two within the range of 0.05 to 0.3%
An aluminum alloy for use in nuclear fusion devices that contains seeds and the remainder consists of inevitable impurities and aluminum.
JP7240284A 1984-04-11 1984-04-11 Aluminum alloy for nuclear fusion device Pending JPS60215731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7240284A JPS60215731A (en) 1984-04-11 1984-04-11 Aluminum alloy for nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7240284A JPS60215731A (en) 1984-04-11 1984-04-11 Aluminum alloy for nuclear fusion device

Publications (1)

Publication Number Publication Date
JPS60215731A true JPS60215731A (en) 1985-10-29

Family

ID=13488245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7240284A Pending JPS60215731A (en) 1984-04-11 1984-04-11 Aluminum alloy for nuclear fusion device

Country Status (1)

Country Link
JP (1) JPS60215731A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274734A (en) * 1987-04-30 1988-11-11 Univ Nagoya Low activation aluminum alloy having high electrical resistance
JPH0273936A (en) * 1988-09-07 1990-03-13 Kobe Steel Ltd High rigidity aluminum alloy extrusion material for structural body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514886A (en) * 1979-03-19 1980-02-01 Hitachi Ltd Manufacture of high toughness, high machinability aluminum alloy for cutting use
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
JPS57149445A (en) * 1981-03-09 1982-09-16 Showa Alum Ind Kk Aluminum alloy for parts in contact with vtr tape

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514886A (en) * 1979-03-19 1980-02-01 Hitachi Ltd Manufacture of high toughness, high machinability aluminum alloy for cutting use
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
JPS57149445A (en) * 1981-03-09 1982-09-16 Showa Alum Ind Kk Aluminum alloy for parts in contact with vtr tape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274734A (en) * 1987-04-30 1988-11-11 Univ Nagoya Low activation aluminum alloy having high electrical resistance
JPH0273936A (en) * 1988-09-07 1990-03-13 Kobe Steel Ltd High rigidity aluminum alloy extrusion material for structural body

Similar Documents

Publication Publication Date Title
US3865635A (en) Method of making tubes and similar products of a zirconium alloy
JP2983289B2 (en) Thermomechanical treatment of metallic materials
WO2021254028A1 (en) B2 nanoparticle coherent precipitation strengthened ultrahigh-strength maraging stainless steel and preparation method therefor
US20140356647A1 (en) Aluminum alloy clad material for forming
JP2019039075A (en) Aluminum alloy material, and conductive member, battery member, fastening component, spring component and structural component using the same
KR101915906B1 (en) High Entropy Alloy Based Vanadium, Chromium, Iron and Nickle
JP6858311B2 (en) Aluminum alloy material and conductive members, battery members, fastener parts, spring parts, structural parts, cabtire cables using it
CN110218948A (en) A kind of low-density high tenacity steel and preparation method thereof
CN101787471B (en) Low rare earth high strength magnesium lithium alloy and preparation method thereof
US4144059A (en) Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom
US3297497A (en) Copper base alloy
JPS60215731A (en) Aluminum alloy for nuclear fusion device
CN113667806B (en) Multistage heat treatment method for solving Gd-containing duplex stainless steel hot working cracks
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
US5425912A (en) Low expansion superalloy with improved toughness
JPS60215732A (en) Al alloy for structure suitable for nuclear fusion device
JPH02285053A (en) Maraging steel and its production
JPH0114991B2 (en)
Frost Magnesium-Lithium Alloys: A Review of Current Developments
JPS61520A (en) Manufacture of high-strength and high-ductility steel wire
JP3271499B2 (en) Method for producing high-strength corrosion-resistant Ni-based alloy sheet
CN116790940B (en) Nickel-based alloy for nuclear shielding and manufacturing method thereof
JPS6122022B2 (en)
JPH07286233A (en) Low yield ratio steel for building excellent in fire resistance and its production
JPH0236669B2 (en)