JPS63274734A - Low activation aluminum alloy having high electrical resistance - Google Patents

Low activation aluminum alloy having high electrical resistance

Info

Publication number
JPS63274734A
JPS63274734A JP10846987A JP10846987A JPS63274734A JP S63274734 A JPS63274734 A JP S63274734A JP 10846987 A JP10846987 A JP 10846987A JP 10846987 A JP10846987 A JP 10846987A JP S63274734 A JPS63274734 A JP S63274734A
Authority
JP
Japan
Prior art keywords
electrical resistance
alloy
aluminum alloy
low activation
high electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10846987A
Other languages
Japanese (ja)
Inventor
Koji Kamata
鎌田 耕治
Yusuke Kotani
雄介 小谷
Atsushi Kuroishi
黒石 農士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Sumitomo Electric Industries Ltd
Original Assignee
Nagoya University NUC
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Sumitomo Electric Industries Ltd filed Critical Nagoya University NUC
Priority to JP10846987A priority Critical patent/JPS63274734A/en
Publication of JPS63274734A publication Critical patent/JPS63274734A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled Al alloy by adding specific ratios of Si, Li, Mg, Cu, etc., to an Al matrix. CONSTITUTION:The compsn. of the alloy is regulated, by weight, one or two kinds among 1.0-8.0% Li, 0.5-50% Si, 0.1-5.0% Mg, 0.01-6.0% Cu and the balance consisting substantially of Al. One or more kinds among 0.05-0.20% Ti, 0.05-0.35% V, 0.05-0.3% W, 0.05-0.3% Zr and 0.001-0.02% Be are additionally incorporated into the alloy at need. In this compsn., the elements such as Si, Li, Mg, etc., are low activation elements, and at the same time, they improve the material characteristics such as electrical resistance, mechanical properties, etc. Said Al alloy is suitable as the material for structure under the environment of radioactive pollution to which a large magnetic field is applied.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は、高い電気抵抗をもち、同時に低放射化性を兼
ねそなえたアルミニウム合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to an aluminum alloy that has high electrical resistance and low activation properties.

(ロ)技術の背景 アルミニウム合金は、鉄鋼に次ぎ大きな需要のある金属
材料であり、軽量でかつ熱伝導性、耐食性、導電性、加
工性等に優れているため、航空機、自動車、電線等から
日用品、ビール罐に至るまでの広い分野で利用されてい
る。また最近では、鉄鋼材料よりも製造工程での不純物
制御が良いことから超高真空容器として注目されている
(b) Background of the technology Aluminum alloy is a metal material in the second largest demand after steel, and because it is lightweight and has excellent thermal conductivity, corrosion resistance, electrical conductivity, and workability, it is used in aircraft, automobiles, electric wires, etc. It is used in a wide variety of fields, from daily necessities to beer cans. Recently, it has also been attracting attention as an ultra-high vacuum vessel because it allows better control of impurities during the manufacturing process than steel materials.

さらに、低放射化材料という観点から高エネルギー物理
学の分野においては、加速器等の材料としても使用され
ている。
Furthermore, from the viewpoint of low activation material, it is also used as a material for accelerators in the field of high energy physics.

強度、硬度等の機械的特性に関しては、鉄鋼材料と比べ
るとかなり劣ると考えられているが、ある種のアルミ合
金では、鉄鋼材料に匹敵する高強度を持っており、また
急冷凝固法、繊維強化法、粉末冶金法等の最近の新しい
合金製造法による高強度、高耐熱合金等のような従来の
合金特性を大幅に改善した合金が開発されている。こう
いったアルミニウム合金は、通常の機能を充分に果たし
得る材料と考えられる。
Although mechanical properties such as strength and hardness are considered to be considerably inferior to steel materials, some types of aluminum alloys have high strength comparable to steel materials, and are BACKGROUND OF THE INVENTION Through recent new alloy manufacturing methods such as strengthening methods and powder metallurgy methods, alloys have been developed that have significantly improved conventional alloy properties, such as high strength and high heat resistance alloys. These aluminum alloys are considered to be materials that can sufficiently perform normal functions.

最近、アルミニウム合金の優れた低放射化性により、ア
ルミニウム合金を、核融合炉材等の放射能汚染環境下で
使用することが検討されつつある。
Recently, due to the excellent low activation property of aluminum alloys, the use of aluminum alloys in radioactively contaminated environments such as fusion reactor materials is being considered.

特に核融合を伴うプラズマ装置としては、磁場閉じ込め
式のトカマク型が有望であるが、構造が複雑であるため
、炉の遮蔽を完全にすれば保守作業等が不可能に近くな
ると考えられる。従って、核融合反応を伴うプラズマ装
置では、低放射化あるいは残留放射能の少ない材料が必
要となる。
In particular, magnetic field confinement type tokamak type plasma equipment is promising as a plasma device involving nuclear fusion, but because of its complicated structure, it is thought that maintenance work will be nearly impossible if the reactor is completely shielded. Therefore, in a plasma device involving a nuclear fusion reaction, materials with low activation or low residual radioactivity are required.

低放射化元素としては、Li、Be、 C、Mg、 A
R,Si。
Low activation elements include Li, Be, C, Mg, and A.
R, Si.

v、t’b等が存在するが、構造用材料と考えた場合、
その使用量からも工業基盤の最も確立したアルミニウム
合金が適当であると思われる。
v, t'b, etc. exist, but when considered as a structural material,
Considering the amount used, it seems that aluminum alloy, which has the most established industrial basis, is suitable.

しかし、アルミニウム合金をトカマクのような大きな電
磁場の作用する装置の材料として用いる場合、合金の電
気抵抗が非常に大きな問題となる。
However, when aluminum alloys are used as materials for devices such as tokamaks that are subject to large electromagnetic fields, the electrical resistance of the alloys becomes a very serious problem.

強い磁場における金属材料は、誘導電流を発生し、この
誘導電流は材料の導電率に比例して大きくなる。この誘
導電流は外部磁場中においては、フレミングの左手の法
則に従って力を受けるため、材料には大きな力が働く。
Metallic materials in strong magnetic fields generate induced currents that increase in proportion to the conductivity of the material. This induced current is subjected to a force according to Fleming's left-hand rule in an external magnetic field, so a large force acts on the material.

従ってこの力を小さくするには、材料の電気抵抗を高く
し、誘導電流を小さくすることが必要である。
Therefore, to reduce this force, it is necessary to increase the electrical resistance of the material and reduce the induced current.

この様な理由から、電気抵抗値がIACS値で20%下
であり、引張強さが30kg/1II112以上である
材料が必要となる。
For these reasons, a material with an electrical resistance value of 20% below the IACS value and a tensile strength of 30 kg/1II112 or more is required.

(ハ)発明の開示 本発明は、大きな磁場の作用する放射能汚染環境下にお
いて使用するアルミニウム合金を提供するものであり、
アルミ素地中に低放射化元素であり、同時に電気抵抗、
機械的性質等の材料特性を改善するSi、Li、Mg等
の元素を添加することにより高い電気抵抗と、低放射化
性をもつアルミニウム合金を開発したものである。
(C) Disclosure of the Invention The present invention provides an aluminum alloy for use in a radioactively contaminated environment where a large magnetic field acts.
It is a low activation element in the aluminum base, and at the same time has electrical resistance,
This aluminum alloy has been developed to have high electrical resistance and low activation by adding elements such as Si, Li, and Mg that improve material properties such as mechanical properties.

本発明において、添加される合金元素のうち低放射化元
素とシテハ、Si、Li、Mg、  V 、 Wカアル
t!、これらの元素はその他に、電気抵抗を下げる組織
を微細にする、機械的特性を改善する等の効果をもつ。
In the present invention, among the alloying elements added, the low activation elements and Si, Si, Li, Mg, V, and W Kaalt! In addition, these elements have the effect of reducing electrical resistance, making the structure finer, and improving mechanical properties.

Si元素は低放射化性の他に合金の熱膨張を下げる、耐
熱性を向上する等の特性をもつ。添加量は合金に要求さ
れる特性により、0.5〜50%までとする。0.5%
以下では十分な効果が発揮できないとともに、50%以
上では合金の製造が困難となり、特に加工性が著しく悪
くなる。又強度も低下する。
In addition to low activation, the Si element has properties such as lowering the thermal expansion of the alloy and improving heat resistance. The amount added is from 0.5 to 50% depending on the properties required for the alloy. 0.5%
If it is less than 50%, the sufficient effect cannot be exhibited, and if it is more than 50%, it becomes difficult to manufacture the alloy, and in particular, the workability becomes extremely poor. Moreover, the strength also decreases.

Liは低放射化性の優れた元素であるが同時に、強度、
電気抵抗を高めるのに必要不可欠の元素である。その効
果を十分発揮させるには、0.5%以上の添加が必要で
ある。これ以下では強度及び電気抵抗の要求は十分満足
できない。また8%を越える添加は合金製造上、合金の
酸化、靭性の低下による塑性加工性の著しい低下等の問
題が生じる。
Li is an excellent element with low activation property, but at the same time it has high strength and
It is an essential element to increase electrical resistance. In order to fully exhibit its effect, it is necessary to add 0.5% or more. If it is less than this, the requirements for strength and electrical resistance cannot be fully satisfied. Further, addition of more than 8% causes problems in alloy production, such as oxidation of the alloy and a significant decrease in plastic workability due to a decrease in toughness.

また、8%以上のLiを含むAj2−Li合金の粉末や
切粉は非常に活性であるため、発火粉m爆発等の危険度
が非常に高くなる。従って、Li添加量の上限は8%と
する。好ましは6%以下であり、これによって合金特性
、材料歩留は著しく向上する。
Furthermore, since the powder and chips of the Aj2-Li alloy containing 8% or more of Li are very active, the risk of ignition powder explosion etc. is extremely high. Therefore, the upper limit of the amount of Li added is set to 8%. The content is preferably 6% or less, which significantly improves alloy properties and material yield.

また、Co及び口は合金の強度と電気抵抗を高める為の
有効な元素であり、添加量はCuが0.01〜6.0%
、Mgが0.1〜5.0%である。添加量がこれより少
ない場合は特性改善の効果が小さいことは言うまでもな
く、多い場合にも勲性加工性が悪くなるため材料製造上
問題となる。これらの元素は適度の割合で同時に添加さ
れる場合より大きな効果を発揮する。
In addition, Co and copper are effective elements for increasing the strength and electrical resistance of the alloy, and the amount of Cu added is 0.01 to 6.0%.
, Mg is 0.1 to 5.0%. It goes without saying that if the amount added is less than this, the effect of improving properties will be small, and if it is more than this, the mechanical properties will deteriorate, which will cause problems in material production. These elements exhibit greater effects when added at the same time in appropriate proportions.

さらに、Ti、  V 、 Zr、 Wの各添加元素は
、電気抵抗の改善と結晶粒の微細化に寄与するものであ
リ、材料に要求される特性をさらに好ましいものとする
。これらの添加元素はUに対する固溶量が小さいため、
多すぎると金属間化合物を作り、塑性を低下させるため
、適性量の添加が必要である。
Furthermore, each of the additive elements Ti, V, Zr, and W contributes to improving electrical resistance and making crystal grains finer, thereby making the properties required of the material more favorable. Since these additive elements have a small amount of solid solution with respect to U,
If it is too large, it will create intermetallic compounds and reduce plasticity, so it is necessary to add an appropriate amount.

Zrは合金の耐熱性を改善する元素として知られており
、材料特性の改善に有効である。
Zr is known as an element that improves the heat resistance of alloys, and is effective in improving material properties.

さらに、低放射化元素であるBeの添加はMgの酸化防
止のために添加されるもので、添加量は0.001〜0
.02%が適当である。
Furthermore, Be, which is a low activation element, is added to prevent Mg from oxidizing, and the amount of Be added is 0.001 to 0.
.. 0.02% is appropriate.

上記組成をもつへβ合金は、通常のアルミ合金製造の手
法により溶解、溶湯調整、鋳造により鋳塊とし、その後
、均質化熱処理を施し、熱間及び冷間の塑性加工により
素材とし、これを溶体化処理、時効処理により目的の特
性をもつ材料とする。
The β-alloy with the above composition is made into an ingot by melting, adjusting the molten metal, and casting using the usual aluminum alloy manufacturing method, then subjected to homogenization heat treatment, and made into a raw material by hot and cold plastic working. The material is made to have the desired properties through solution treatment and aging treatment.

しかし、10%を越えるSiを含む場合または3%を越
えるLiを含むアルミニウム合金の製造においては、溶
湯の凝固時に粗大なSiの初晶析出物またはLi系の化
合物が析出し易く、これらは合金の靭性を著しく低下す
る。
However, in the production of aluminum alloys containing more than 10% Si or more than 3% Li, coarse Si primary precipitates or Li-based compounds tend to precipitate during solidification of the molten metal, and these significantly reduces toughness.

従って、この様な多量のSiまたはLiを含む合金を製
造する場合には、これらの粗大析出物を微細にする必要
がある。この為の手法としては、合金溶湯を急冷凝固す
ることが有効である。
Therefore, when producing an alloy containing such a large amount of Si or Li, it is necessary to make these coarse precipitates fine. An effective method for this purpose is to rapidly solidify the molten alloy.

凝固速度としては、102℃/ sec以上が必要であ
り、この時合金中に生ずる析出物はvei、細化され、
最も粗大化するSiの初晶析出物でさえ40μm以下と
なる。また、合金溶湯を急冷するには微粉末化すること
が有効であり、粉末合金法による合金製造の手法も用い
られる。
The solidification rate must be 102°C/sec or higher, and at this time, the precipitates formed in the alloy are fined,
Even the coarsest Si primary crystal precipitates are 40 μm or less. Further, in order to rapidly cool the molten alloy, it is effective to pulverize it, and a method of manufacturing the alloy by the powder alloy method is also used.

アトマイズ法によって製造された粉末は、凝固速度が速
<42メツシュ(350μm)以下のもので、102’
C/ sea以上の冷却速度をもっている。
The powder produced by the atomization method has a solidification rate of <42 mesh (350 μm) or less, and has a solidification rate of 102'
It has a cooling rate higher than C/sea.

通常用いる粉末は、ガスアトマイズ法にょる42メツシ
ュ以下のものか、メカニカルアロイング、ボールミルに
より析出物を40μm以下に調整したもので、これらの
粉末は直接罐につめるか、または機械加圧により成形し
たものを、250〜550℃に加熱した後押出加工によ
り素材とする。
The powders usually used are ones with a mesh size of 42 or less by gas atomization, or those whose precipitates are adjusted to 40 μm or less by mechanical alloying or ball milling, and these powders are packed directly into cans or molded by mechanical pressure. The material is heated to 250 to 550°C and then extruded into a raw material.

好ましくは粉末または粉末成形体を10−’mm Hg
Preferably the powder or powder compact is heated to 10-'mm Hg
.

200℃〜500℃程度の条件下で真空脱ガスする。Vacuum degassing is performed under conditions of approximately 200°C to 500°C.

これにより粉末に吸着している水分、ガス等を十分除く
ことができる。得られた材料は、各種溶体化、時効処理
により目的の特性を付与した材料とする。
This allows moisture, gas, etc. adsorbed on the powder to be sufficiently removed. The obtained material is a material that has been given desired characteristics through various solution treatments and aging treatments.

以上の様な手法により製造したアルミニウム合金は、高
い電気抵抗をもち、かつ低放射化材料であり、核融合炉
等の大きな磁場のかかる放射能汚染環境下で、使用され
る材料として有効に利用され得る。
Aluminum alloys manufactured using the methods described above have high electrical resistance and are low activation materials, and can be effectively used as materials in radioactively contaminated environments with large magnetic fields such as in nuclear fusion reactors. can be done.

実施例 表−1に示す合組戊のアルミニウム合金を種々の方法に
より製造した。I/Mは通常の溶解鋳造による製法であ
り、Arまたはtleの不活性ガス中において溶解し、
表1に示す組成に調整した後、インゴットを作成し、こ
れを熱間圧延、冷間圧延したものを約500℃の溶体化
処理し、150〜200℃で時効を施した。P/Mは不
活性雰囲気中でアトマイズした粉末42メツシュ以下の
ものを、罐につめ脱ガスした後、400〜450℃に加
熱し、熱間押出しを行った後、溶体化、時効処理を行っ
たもの。
EXAMPLE The aluminum alloys shown in Table 1 were manufactured by various methods. I/M is a manufacturing method using normal melting and casting, and is melted in an inert gas of Ar or TL.
After adjusting the composition to the composition shown in Table 1, an ingot was prepared, which was hot-rolled and cold-rolled, followed by solution treatment at about 500°C and aging at 150-200°C. P/M is a powder of 42 mesh or less that has been atomized in an inert atmosphere, packed in a can, degassed, heated to 400-450℃, hot extruded, and then subjected to solution treatment and aging treatment. Something.

M/Aは不活性雰囲気中でAβ−Li−Cu−Mg系の
粉末に微細Si粉末を添加して、メカニカルアロイング
した粉末を罐につめ、脱ガスしたのちP/Mと同じ手順
により押出材とし、熱処理を施したものである。
In M/A, fine Si powder is added to Aβ-Li-Cu-Mg powder in an inert atmosphere, the mechanically alloyed powder is packed in a can, degassed, and then extruded using the same procedure as P/M. It is made of wood and subjected to heat treatment.

以上の方法により得られた材料の電気抵抗と引張強さを
示す。また、これらの合金の放射化性の評価としてD−
T反応後、1力月経過した時の残留放射能レベルにより
行った。目安として10−2mrem/hr(人間にほ
とんど影響を及ぼさないレベル)以下の時○印、これ以
下の時X印とした。
The electrical resistance and tensile strength of the material obtained by the above method are shown below. In addition, as an evaluation of the radioactivity of these alloys, D-
The residual radioactivity level was determined one month after the T reaction. As a guideline, when it is less than 10-2 mrem/hr (a level that has almost no effect on humans), it is marked with an ○, and when it is less than this, it is marked with an X.

表−1に示すように、本発明によるアルミニウム合金は
すべて放射化性が良好であるとともに、引張強さが35
kg/ mn”以上あり、また、電気型導度はlAc5
%の値で19以下と、大きな磁場がかかる放射能汚染環
境下における構造用材料として良好な特性をもっている
As shown in Table 1, all the aluminum alloys according to the present invention have good radioactivity and a tensile strength of 35
kg/mn” or more, and the electrical conductivity is lAc5.
With a value of 19 or less in terms of %, it has good properties as a structural material in a radioactively contaminated environment where a large magnetic field is applied.

Claims (4)

【特許請求の範囲】[Claims] (1)合金元素として重量比で、1.0〜8.0%のL
iと0.5〜50%のSiとを含み、かつ0.1〜5.
0%のMgと0.01〜6.0%のCuのうち1種又は
2種を含み、残部が実質的にAlよりなることを特徴と
する電気抵抗の高いことを特徴とする電気抵抗の高い低
放射化アルミ合金。
(1) 1.0 to 8.0% L as an alloying element by weight
i and 0.5 to 50% Si, and 0.1 to 5%.
An electrically resistive material characterized by high electrical resistance, containing one or two of 0% Mg and 0.01 to 6.0% Cu, and the remainder being substantially Al. Highly low activation aluminum alloy.
(2)合金元素として重量比で、1.0〜8.0%のL
iと0.5〜50%のSiとを含み、かつ0.1〜5.
0%のMgと0.01〜6.0%のCuのうち1種又は
2種を含み、さらに、0.05〜0.20%のTi、0
.05〜0.35%のV、0.05〜0.3%のW、0
.05〜0.3%のZr、0.001〜0.02%のB
eの群から選ばれた1種または2種以上を含み、残部が
実質的にAlよりなることを特徴とする電気抵抗の高い
低放射化アルミ合金。
(2) 1.0 to 8.0% L as an alloying element by weight
i and 0.5 to 50% Si, and 0.1 to 5%.
Contains one or two of 0% Mg and 0.01 to 6.0% Cu, and further contains 0.05 to 0.20% Ti, 0
.. 05-0.35% V, 0.05-0.3% W, 0
.. 05-0.3% Zr, 0.001-0.02% B
An aluminum alloy with high electrical resistance and low activation, characterized in that it contains one or more selected from the group e., and the remainder consists essentially of Al.
(3)特許請求の範囲第(1)項または第(2)項にお
いて、10^2℃/sec以上の冷却速度で凝固されて
いることを特徴とする電気抵抗の高い低放射化アルミ合
金。
(3) A low-activation aluminum alloy with high electrical resistance, characterized in that it is solidified at a cooling rate of 10^2°C/sec or more according to claim (1) or (2).
(4)特許請求の範囲第(1)項または第(2)項にお
いて、凝固速度が10^2℃/sec以上の急冷粉末又
は40メッシュの粒度のアトマイズ粉末又は析出物の粒
子径が40μm以下に調整された粉末を原料として熱間
塑性加工によって得られたことを特徴とする電気抵抗の
高い低放射化アルミ合金。
(4) In claim (1) or (2), a quenched powder with a solidification rate of 10^2°C/sec or more, an atomized powder with a particle size of 40 mesh, or a precipitate with a particle size of 40 μm or less An aluminum alloy with high electrical resistance and low activation, which is obtained by hot plastic processing using powder prepared as raw material.
JP10846987A 1987-04-30 1987-04-30 Low activation aluminum alloy having high electrical resistance Pending JPS63274734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10846987A JPS63274734A (en) 1987-04-30 1987-04-30 Low activation aluminum alloy having high electrical resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10846987A JPS63274734A (en) 1987-04-30 1987-04-30 Low activation aluminum alloy having high electrical resistance

Publications (1)

Publication Number Publication Date
JPS63274734A true JPS63274734A (en) 1988-11-11

Family

ID=14485546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10846987A Pending JPS63274734A (en) 1987-04-30 1987-04-30 Low activation aluminum alloy having high electrical resistance

Country Status (1)

Country Link
JP (1) JPS63274734A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118848A (en) * 1982-12-27 1984-07-09 Sumitomo Light Metal Ind Ltd Structural aluminum alloy having improved electric resistance
JPS60215731A (en) * 1984-04-11 1985-10-29 Furukawa Alum Co Ltd Aluminum alloy for nuclear fusion device
JPS62270742A (en) * 1986-05-16 1987-11-25 Sumitomo Electric Ind Ltd Aluminum alloy and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118848A (en) * 1982-12-27 1984-07-09 Sumitomo Light Metal Ind Ltd Structural aluminum alloy having improved electric resistance
JPS60215731A (en) * 1984-04-11 1985-10-29 Furukawa Alum Co Ltd Aluminum alloy for nuclear fusion device
JPS62270742A (en) * 1986-05-16 1987-11-25 Sumitomo Electric Ind Ltd Aluminum alloy and its production

Similar Documents

Publication Publication Date Title
EP0219628B1 (en) Rapidly solidified high strength, corrosion resistant magnesium base metal alloys
US4851192A (en) Aluminum alloy for structures with high electrical resistivity
JPH0344135B2 (en)
KR102273787B1 (en) Complex copper alloy comprising high entropy alloy and method for manufacturing the same
CN111996411B (en) High-strength high-conductivity copper alloy material and preparation method and application thereof
Nie et al. Advanced aluminum alloys containing rare-earth erbium
US7694713B2 (en) Reinforced aluminum alloy and its process of manufacture
AU757115B2 (en) Copper base alloy casting, and methods for producing casting and forging employing copper base alloy casting
US5882442A (en) Iron modified phosphor-bronze
EP0533780B1 (en) Method for forging rapidly solidified magnesium base metal alloy billet
US3156560A (en) Ductile niobium and tantalum alloys
CN109136634B (en) High-performance copper alloy material and preparation method thereof
JPS6214207B2 (en)
JPS63274734A (en) Low activation aluminum alloy having high electrical resistance
CN108220731A (en) A kind of multicomponent heat-resistant magnesium alloy and preparation method thereof
US3640779A (en) High-conductivity copper alloys
Troxell GlidCop dispersion strengthened copper, potential application in fusion power generators
JP3407054B2 (en) Copper alloy with excellent heat resistance, strength and conductivity
JPS62270742A (en) Aluminum alloy and its production
US2961359A (en) Hydrided lithium-magnesium alloys and method
JPS6122022B2 (en)
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPH0356295B2 (en)
US3107998A (en) Copper-zirconium-arsenic alloys
JPS6157380B2 (en)