JPS6021516A - Manufacture of iron oxide magnetic thin film - Google Patents

Manufacture of iron oxide magnetic thin film

Info

Publication number
JPS6021516A
JPS6021516A JP12778683A JP12778683A JPS6021516A JP S6021516 A JPS6021516 A JP S6021516A JP 12778683 A JP12778683 A JP 12778683A JP 12778683 A JP12778683 A JP 12778683A JP S6021516 A JPS6021516 A JP S6021516A
Authority
JP
Japan
Prior art keywords
thin film
film
magnetic field
added
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12778683A
Other languages
Japanese (ja)
Inventor
Osamu Ishii
修 石井
「よし」村 文一
Bunichi Yoshimura
Iwao Hatakeyama
畠山 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12778683A priority Critical patent/JPS6021516A/en
Priority to US06/532,978 priority patent/US4544612A/en
Priority to DE19833334324 priority patent/DE3334324A1/en
Priority to NL8303258A priority patent/NL192897C/en
Publication of JPS6021516A publication Critical patent/JPS6021516A/en
Priority to US06/730,549 priority patent/US4642245A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a gamma-Fe2O3 thin film which is suitably used as a medium for magnetic disc having a high recording density by improving the squareness of hysteresis loop in the magnetizing direction. CONSTITUTION:On the occasion of obtaining a gamma-Fe2O3 thin film by forming an Fe2O3 thin film by heating O2-added alpha-Fe2O3 thin film manufactured by the reactive sputtering method in the flow of hydrogen and consequently heating it in the atmospheric ambient, a sample is magnetized by applying a magnetic field thereto during total process of oxidation under the atmospheric ambient or before or in the course of the oxidation under the atmospheric condition. The coercive force (Hc) and squareness of hysteresis loop of magnetic thin film thus obtained are remarkably improved. In case such thin film is used as a magnetic recording medium, recording density, regenerated output, repeatability and signal to noise ratio can also be improved.

Description

【発明の詳細な説明】 (技術分野) (1) 本発明は、酸化鉄磁性薄膜の製造方法、主に高記録密度
の磁気ディスク用媒体として好適に用いられるγ−Fe
20.薄膜の製造方法に関するものである。
Detailed Description of the Invention (Technical Field) (1) The present invention relates to a method for producing an iron oxide magnetic thin film, and a method for manufacturing a γ-Fe magnetic thin film, which is mainly used as a medium for high recording density magnetic disks.
20. The present invention relates to a method for manufacturing a thin film.

(従来技wi) 従来、磁気記録の高密度化を行うだめには、媒体の薄層
化や高保磁力化が図られてきた。そのだめに、従来用い
られてきたγ−Fe20.微粒子塗布媒体に代わり、ス
パッタリング法と引き続く熱処理を用いて作製したγ−
Fe20.薄膜が磁気ディスク媒体として開発されてい
る(例えばJ、 A、ppl。
(Prior art wi) Conventionally, in order to increase the density of magnetic recording, efforts have been made to make the media thinner and to increase the coercive force. To that end, the conventionally used γ-Fe20. The γ-
Fe20. Thin films have been developed as magnetic disk media (e.g. J, A, ppl.

Phys、”VOl、、tJ 、A J 、/9ffj
 、pp、Jj3t 〜2SAO参照)。このr −y
e2o、薄膜の保磁力(Ha )を増加させる羨めに、
従来は、金属元素のみの比率で数原子%以下のCOある
いはO8を添加していた(例えば、IEEE’ Tra
ns、 Nag、 ’Vo’1.MAG −/j 。
Phys,”VOl,,tJ,AJ,/9ffj
, pp, Jj3t~2SAO). This r -y
e2o, which increases the coercive force (Ha) of the thin film,
Conventionally, CO or O8 was added in an amount of only a few atomic percent of metal elements (for example, IEEE' Tra
ns, Nag, 'Vo'1. MAG-/j.

1979 、 pp、 /1119〜/33/、あるい
は特願昭!;7−/乙4Ii、i4!号参照)。
1979, pp, /1119-/33/, or Tokugansho! ;7-/Otsu4Ii, i4! (see issue).

ところで、磁気ディスク用ヘッドかべ発生する記録磁場
の水平成分の最大値(Hx)はKarlqivistl
 ノ ) の式に従い次のように算出される。
By the way, the maximum value (Hx) of the horizontal component of the recording magnetic field generated by the head wall of a magnetic disk is Karlqivistl
It is calculated as follows according to the formula:

Hx = lr Is cot−’ (”/、、 )M
S二ヘッド材料の飽和磁化 y:ヘッドと媒体の間隔 g:ヘッドギャップ長 従来、最も多く用いられたヘッド用材料であるフェライ
トの飽和磁化(Ms)を1100 GaugSNへラド
ギャップ長を0.3μmとし、媒体とヘッドとの間隔を
0.2μm1媒体の厚さをo、iμmとした場合には、
媒体の下層に達するHXは約/s000eとなる。
Hx = lr Is cot-'(''/,, )M
Saturation magnetization of S2 head material y: Distance between head and medium g: Head gap length The saturation magnetization (Ms) of ferrite, which is the most commonly used head material, is set to 1100 GaugSN, and the rad gap length is set to 0.3 μm. , when the distance between the medium and the head is 0.2 μm, and the thickness of the medium is o and i μm,
The HX reaching the lower layer of the medium is approximately /s000e.

媒体のヒステリシスループがメジャールーフトなるのに
必要な外部磁場の最小値(例えば第1図に示すヒステリ
シスループにおけるHs)が、もしtsoo Os以上
となった場合には、この媒体は上記の記録条件では飽和
せず、いわゆる未飽和記録となり、重ね書き特性や消去
特性の劣化を招いてしまう。従来、γ−Fe20.薄膜
ではHs−αHa (α=/、1−2.0 )の関係が
あり(ただし、α−Hx/Ha)、約ざ000e以上の
Haの場合にはHs 、1? /!;000eとなり、
先に述べたHXO値以上となってし捷う。す々わち、高
記録密度化のためにH,を増大させる場合においても、
そのHXの増加はできるだけ少なくする必要がある。1
〜かして、最も理想的にはα=/、Oである。
If the minimum value of the external magnetic field necessary for the hysteresis loop of the medium to become a major roof (for example, Hs in the hysteresis loop shown in Figure 1) is greater than or equal to tsoo Os, the medium will not meet the above recording conditions. In this case, saturation does not occur, resulting in so-called unsaturated recording, resulting in deterioration of overwriting characteristics and erasing characteristics. Conventionally, γ-Fe20. In a thin film, there is a relationship of Hs-αHa (α=/, 1-2.0) (α-Hx/Ha), and in the case of Ha of approximately 000e or more, Hs, 1? /! ;000e,
When the HXO value exceeds the above-mentioned value, it is rejected. That is, even when increasing H to increase recording density,
It is necessary to minimize the increase in HX. 1
Therefore, most ideally, α=/,O.

一方、ヒステリシスループの保磁力点でのIllを示す
量S’ = Hr /Ha (第1図参照)も寸だ、飽
和磁気記録における記録密度に大きく影響する。
On the other hand, the quantity S' = Hr /Ha (see Figure 1), which indicates Ill at the coercive force point of the hysteresis loop, is also important and greatly affects the recording density in saturation magnetic recording.

すなわち、ヘッドからの書き込み磁場の勾配が同一であ
っても、S7が大きい程、媒体の記録磁化の反転領域幅
aは挟くなるので、高記録密度化が達成される。従来は
、S″を向上させる目的で数原子%以下のTiやOuを
添加したS −0,77のγ−Fe20.薄膜が実用に
供されてきた。
That is, even if the gradient of the write magnetic field from the head is the same, the larger S7 is, the narrower the recording magnetization reversal region width a of the medium becomes, thereby achieving higher recording density. Conventionally, γ-Fe20. thin films of S-0.77 have been put to practical use, to which several atomic percent or less of Ti or O have been added for the purpose of improving S''.

反転領域幅aと媒体の緒特性(膜厚d、残留磁化Mr 
、保磁力Ha 、およびS 等)との関係はTa1ks
らによって解析されている( IBM J 、 Res
Inversion region width a and medium characteristics (film thickness d, residual magnetization Mr
, coercive force Ha, and S, etc.) is Ta1ks
(IBM J, Res
.

DelVellOp、 /? 、 lr 〜!;9乙(
/975)参照)。また、反転領域幅aと記録密度D5
0 (孤立波出力の半分の値まで出力が減少する記録密
度)の関係も00mBtOOkらによって明らかにされ
ている( IBMJ、 Res、 DeVf310p、
 /I 、 316〜j6コ(/974/)参照)。
DelVellOp, /? , lr~! ;9 Otsu(
/975)). In addition, the reversal area width a and the recording density D5
0 (recording density at which the output decreases to half the solitary wave output) has also been clarified by 00mBtOOk et al. (IBMJ, Res, DeVf310p,
/I, 316-j6 (see /974/)).

彼らの導出した関係式に基いて、DsoのH,あるいは
S“依存性を計算すると、S8が0./増加した場合に
D5oは約100 FRPM (Flux Rever
salPer Millimeter )増加し、He
が1000e増加した場合にもD5oは約100 FR
PM増加することが示される。ただし、これは、膜厚d
は0072μm1残留磁化Mr ハ2uOGauss、
ヘッドのギャップ長gは0、/jμm% ヘッド浮上量
は0./ μmXHaは700〜10000e SS″
はo、to −o、qsの条件範囲での計算である。D
、。が向上することは高記録密度時の再生出力が増加す
ることを意味しており、媒体から発生する雑音が一定で
あれば、信号対雑音比の向上をもたらすことは明白であ
る。
Based on the relational expression they derived, when calculating the dependence of Dso on H or S, when S8 increases by 0./increase, D5o becomes approximately 100 FRPM (Flux Rever
salPer Millimeter) increases and He
Even if increases by 1000e, D5o is approximately 100 FR
It is shown that PM increases. However, this is the film thickness d
is 0072 μm1 residual magnetization Mr ha2 uOGauss,
Head gap length g is 0, /jμm% Head flying height is 0. /μmXHa is 700~10000e SS''
is a calculation within the condition range of o, to -o, and qs. D
,. An improvement in the signal-to-noise ratio means an increase in the reproduction output at high recording density, and it is clear that this results in an improvement in the signal-to-noise ratio if the noise generated from the medium is constant.

(目 的) 以上の諸点に鑑みて、本発明の目的は、磁化方向のヒス
テリシスループの矩形性を向上させると(s ) とのできる酸化鉄磁性薄膜の製造方法を提供することに
ある。
(Objective) In view of the above points, an object of the present invention is to provide a method for manufacturing an iron oxide magnetic thin film that can improve the rectangularity of the hysteresis loop in the magnetization direction.

(発明の構成) かかる目的を達成するために、本発明では、反応スパッ
タリング法を用いて作製されたO8添加α−Fe2O,
薄膜を水素気流中で加熱してFe3O4薄膜となし、引
き続き、大気中で加熱してr −Fe2O。
(Structure of the Invention) In order to achieve the above object, the present invention provides O8-doped α-Fe2O, produced using a reactive sputtering method.
The thin film is heated in a hydrogen stream to form a Fe3O4 thin film, and then heated in air to form r -Fe2O.

薄膜を得るにあたって、大気中酸化の全行程あるいは前
もしくは大気中酸化の連中において試料に磁場を加えて
試料を磁化状態とする。
To obtain a thin film, a magnetic field is applied to the sample during the whole process of atmospheric oxidation, or before or during the process of atmospheric oxidation, so that the sample is magnetized.

(実施例) 以下に本発明をその実施例について詳細に説明する。(Example) The present invention will be described in detail below with reference to its embodiments.

実施例1 ターゲットとして99.9at、%Fe板を用い、SO
%Al” + 10%02の混合ガス雰囲気中で反応ス
パッタすることによってα−Fe205薄嘆を形成した
。ターゲットの直径は10cILとし、そのターゲット
上にO6粉末を置くことで形成膜中にO8を添加した。
Example 1 Using a 99.9at%Fe plate as a target, SO
α-Fe205 film was formed by reactive sputtering in a mixed gas atmosphere of %Al" Added.

スパッタ雰囲気圧力は1×/θ Torr 、スパツ(
6) タ電力は200 Wであった。スパッタ方式は直流マグ
ネトロン方式とした。基板は直径2/cInのアルマイ
ト被覆を施したAノ合金円板とし、この基板ディスクの
円周方向の膜厚分布を一定に保つためにスパッタ膜形成
中は101”pmで基板を回転させた。55分間スパッ
タリングを行うことで、0./7μm厚のα−Fe20
3薄膜が形成された。ここで、O8添加量は、ターゲッ
ト上に配置したOs粉末の量で調節できる。スパッタリ
ングにより形成したα−Fe203薄膜中にはo、rr
 at、%のOsが金属元素のみの比率で添加されてい
た。
The sputtering atmosphere pressure is 1×/θ Torr, sputtering (
6) The electric power was 200W. The sputtering method was a DC magnetron method. The substrate was an A alloy disk coated with alumite with a diameter of 2/cIn, and the substrate was rotated at 101"pm during sputtered film formation to keep the film thickness distribution in the circumferential direction of the substrate disk constant. By performing sputtering for 55 minutes, α-Fe20 with a thickness of 0./7 μm was
3 thin films were formed. Here, the amount of O8 added can be adjusted by adjusting the amount of Os powder placed on the target. o, rr in the α-Fe203 thin film formed by sputtering
at,% Os was added in the proportion of only the metal element.

このOBを添加したα−Fe20.薄膜を、1℃の水を
バブリングしたH2気流中で、温度2IIO℃で3時間
にわたって加熱することにより、Fe、04膜を得た。
α-Fe20 to which this OB was added. A Fe,04 film was obtained by heating the thin film at a temperature of 2IIO°C for 3 hours in a H2 stream bubbled with 1°C water.

このFe、04膜が付着したディスク基板をざ酩xzm
角に切り出した後に、以下に示す3種類の方法で酸化し
てγ−Fe20.膜を形成した。
The disk substrate to which this Fe, 04 film is attached is
After cutting into corners, γ-Fe20. A film was formed.

(1) 従来と同様に、大気中で210℃に1時間加熱
する。
(1) As before, heat at 210°C for 1 hour in the air.

(2) Fe、04膜の膜面に平行に11 koeの磁
場を加えた後に磁場を取り去り、Fe、04膜を一方向
に残留磁化の状態にしてから大気中で、2ざ0℃に1時
間加熱する。
(2) After applying a magnetic field of 11 koe parallel to the film surface of the Fe,04 film, the magnetic field was removed and the Fe,04 film was left with residual magnetization in one direction. Heat for an hour.

(3)大気中にコlj℃でq時間加熱し、Fe3O4と
γ−Fe2O,の中間酸化状態の膜を形成する。この膜
面に平行にQ koeの磁場を加えた後に、磁場を取り
去り、膜面内の一方向に残留磁化の状態としてから、再
度、大気中で、2ro℃にダ時間加熱する。
(3) Heating in the atmosphere at 1j°C for q hours to form a film in an intermediate oxidation state of Fe3O4 and γ-Fe2O. After applying a magnetic field of Q koe in parallel to the film surface, the magnetic field is removed to create a state of residual magnetization in one direction within the film surface, and then the film is heated again at 2ro° C. for a period of time in the atmosphere.

(4)大気中でrro ′CK 1時間加熱してγ−F
e203薄膜を形成した後に、膜面に平行にtlk06
の外部磁場を加える。その後、磁場を取り去り、膜面内
の一方向に残留磁化の状態としてから、再度大気中で、
2rO℃にダ時間加熱する。
(4) γ-F by heating rro 'CK in air for 1 hour
After forming the e203 thin film, tlk06 was applied parallel to the film surface.
Apply an external magnetic field of After that, the magnetic field is removed to create a state of residual magnetization in one direction within the film plane, and then the film is exposed to the atmosphere again.
Heat to 2rO<0>C for 1 hour.

(5)膜面に平行に& kOeの外部磁場を加えながら
、大気中で210℃に10分間加熱後、外部磁場を取り
去る。引き続き、大気中で、2ro℃に弘時間加熱する
(5) While applying an external magnetic field of &kOe parallel to the film surface, the film is heated to 210° C. for 10 minutes in the atmosphere, and then the external magnetic field is removed. Subsequently, the mixture is heated to 2ro° C. in the air for a period of time.

(6) 膜面に平行にIt kOeの外部磁場を加えな
がら、大気中で210℃にす時間加熱する。
(6) Heat to 210° C. in the atmosphere while applying an external magnetic field of It kOe parallel to the film surface.

酸化後の膜がγ−Fe20S相を主成分とする膜である
ことは、熱処理法(1)によって形成された膜の電子線
回折でr −Fe2O3相に特有の(2//) 、 (
コ10)。
The fact that the film after oxidation is a film mainly composed of γ-Fe20S phase can be confirmed by electron beam diffraction of the film formed by heat treatment method (1), which shows (2//), (
ko10).

(/10)等の超格子による反射ピークが検出されるこ
とで確認できる。
This can be confirmed by detecting a reflection peak due to the superlattice such as (/10).

上記の4種類の熱処理法によって形成されたr−Fe2
O,薄膜について、磁気特性を測定した結果を次の第1
表に示す。
r-Fe2 formed by the above four types of heat treatment methods
The results of measuring the magnetic properties of the O thin film are as follows:
Shown in the table.

(9) 熱処理法(1)により作製したγ−Fe2o3薄膜r(
ついては、任意方向に測定磁場を加えたが、熱処理法(
2)〜(6)の試料については、熱処理時に加えた磁場
と同一方向に測定磁場を加えた。熱処理法(2)〜(6
)の処理を施し九r −Fe2o、薄膜は、熱処理法(
1)によるγ−Fe20.薄膜に比べ、Ha 、αおよ
びs8とも全て向上し、矩形性の良好なヒステリシスル
ープが得られていることが確められた。
(9) γ-Fe2o3 thin film r (
Therefore, we applied a measurement magnetic field in an arbitrary direction, but the heat treatment method (
For samples 2) to (6), a measurement magnetic field was applied in the same direction as the magnetic field applied during heat treatment. Heat treatment methods (2) to (6)
), the thin film was prepared using a heat treatment method (
1) γ-Fe20. Compared to the thin film, Ha, α, and s8 were all improved, and it was confirmed that a hysteresis loop with good rectangularity was obtained.

実施例2 直径〃αのλat、%Co十り、rat、%Fe合金板
をターゲットとして用い、50%Ar + S0%02
算囲気中で高周波スパッタを行ない、アルマイト被覆ア
ルミニウム基板上に0.IQμm厚のα−Fe2o5薄
膜を形成した。この際KOsペレットをターゲット上に
置き、α−Fe、O,膜中に金属元素のみの比率でo、
r、i at、%およびλ、/J at8%添加した。
Example 2 Using a λat, %Co, rat, and %Fe alloy plate with a diameter of α as a target, 50%Ar + S0%02
High-frequency sputtering is performed in an ambient atmosphere to form a 0.000. An α-Fe2o5 thin film with a thickness of IQ μm was formed. At this time, a KOs pellet was placed on the target,
r, i at,% and λ,/J at8% were added.

スパッタ雰囲気圧力はI X 1O−5Torr、スパ
ッタ電力け/ kWとした。この2種類のOs添加r 
−B’e20.膜を、7℃の水をバブリングし九H2気
流中で、温度210℃で3時間にわたって加熱してFe
、04薄膜を(10) 形成した。
The sputtering atmosphere pressure was IX1O-5 Torr, and the sputtering power was kW/kW. These two types of Os addition r
-B'e20. The membrane was heated at a temperature of 210°C for 3 hours in a stream of H2 by bubbling water at 7°C to remove Fe.
, 04 thin film (10) was formed.

とのhe、O4膜について、膜面に平行にグkOeの外
部磁場を加えた後に磁場を取シ去り、ダ1き続き、大気
中で温度3QO℃で3時間にわたって加熱してr −F
a203NMを得た。比較のためK、Fe504gを残
留磁化状態とはしないで、上記と同一の酸化条件でr−
yθ20!膜を形成した。
For the O4 film, an external magnetic field of 100°C was applied parallel to the film surface, the magnetic field was removed, and the O4 film was then heated in the air at a temperature of 30°C for 3 hours to r -F.
a203NM was obtained. For comparison, 504g of K, Fe was not brought into a residual magnetization state, but r-
yθ20! A film was formed.

上に述べた2種類のr −Fe2O,膜のHa 、α、
S″の値を1g−表に示す。なお、ここでは、Os以外
にJat、%Coを添加した。
The two types of r-Fe2O mentioned above, the Ha of the film, α,
The value of S'' is shown in the 1g table. Here, Jat and %Co were added in addition to Os.

Fe、04膜で残留磁化状態とした場合のγ−1i″e
304膜については、磁化方向と平行方向に磁気特性を
測定した。両試料とも、Fe、04を磁化することによ
ってH,は約/θ%、b は/乙〜ム%増加し、αは7
7〜21%減少し、矩形性の良いヒステリシスループが
得られた。
γ-1i″e in the case of residual magnetization with Fe, 04 film
Regarding the 304 film, the magnetic properties were measured in a direction parallel to the magnetization direction. In both samples, by magnetizing Fe, 04, H increases by about /θ%, b increases by /E ~%, and α increases by 7%.
A hysteresis loop with good rectangularity and a decrease of 7 to 21% was obtained.

実施例5 ターゲットとして99.9at、%OFe板を用い、3
0%Ar+3θ%02の混合ガス写囲気中で反応スパッ
タすることによってα−Fe205薄膜を形成した。
Example 5 Using a 99.9at% OFe plate as a target, 3
An α-Fe205 thin film was formed by reactive sputtering in a mixed gas atmosphere of 0% Ar+3θ%02.

ターゲットの直径は27cmとした。ターゲット上にワ
タ、9at、%のO8粉末を置くことにより形成膜中に
DBを添加した。スパッタ雰囲気圧力はざX 10□5
Torr、スパッタ電力は/kW、スパッタ方式は高周
波マグネトロン方式とした。基板は直径2/備のアルマ
イト被覆ht合金円板となし、その円周方向の膜厚分布
を一定に保つために、スパッタ暎形成中は、/θrpm
で回転させた。3グ分間スパッタリングすることにより
、0./7μm厚のα−Fe20.薄膜が形成された。
The diameter of the target was 27 cm. DB was added into the formed film by placing cotton, 9at, % O8 powder on the target. Sputtering atmosphere pressure distance X 10□5
Torr, the sputtering power was /kW, and the sputtering method was a high frequency magnetron method. The substrate is an alumite-coated HT alloy disk with a diameter of 2/2, and in order to keep the film thickness distribution constant in the circumferential direction, the speed of /θ rpm during sputtering is
I rotated it. By sputtering for 3 minutes, 0. /7 μm thick α-Fe20. A thin film was formed.

06の添加量はターゲット上に置く0s粉末の量で制御
した。
The amount of 06 added was controlled by the amount of 0s powder placed on the target.

金属元素のみの比率でO8添加量が0.37 、0.7
0゜/、s 、 2.t at、%のα−Fe20.薄
膜を、7℃の水をバブリングしたH2気流中で、温度コ
SO℃で3時間にわたって加熱してFe、04膜へと還
元後、大気中で温度310℃でv時間にわたって加熱し
てr−Fe205薄膜を形成した。このγ〜Fe2O,
膜が付着した基板をj X j w角に切り出し、膜面
と平行に+ koeの外部磁場を加えた後に、磁場を取
り去り、す[き続き、大気中で温度200℃で1時間に
わたって加熱した。
The amount of O8 added is 0.37 and 0.7 in the ratio of metal elements only.
0°/, s, 2. t at,% α-Fe20. The thin film was reduced to a Fe,04 film by heating for 3 hours at a temperature of SO 0 C in a stream of H2 bubbled with water at 7 0 C, and then heated for v hours in air at a temperature of 310 0 C to r- A Fe205 thin film was formed. This γ~Fe2O,
The substrate on which the film was attached was cut into a j x j w angle, and an external magnetic field of + koe was applied parallel to the film surface, the magnetic field was removed, and the film was then heated in the air at a temperature of 200 °C for 1 hour. .

この再熱処理の前と後の磁気特性をO8添加量に対して
示すと、第2図のようになる。第2図かられかるように
、再熱処理後は、HOおよびS は増加し、αは減少す
る。とこで、曲線A、BおよびOは、酸化処理のままの
従半例を示し、曲線り。
The magnetic properties before and after this reheating treatment are shown in FIG. 2 with respect to the amount of O8 added. As can be seen from FIG. 2, after the reheat treatment, HO and S 2 increase, and α decreases. Here, curves A, B, and O show the secondary examples that have been oxidized and have curved lines.

EおよびFは、本発明によって酸化処理後に外部磁場を
かけてから再熱処理を行った例を示す。
E and F show examples in which reheat treatment was performed after applying an external magnetic field after oxidation treatment according to the present invention.

、警Jliかられかるよう1、に、従来用いられてきた
酸化処理のままのQo −Ou −Ti添加γ−F、e
、20.薄膜では、S 7r 0.77 テあったが、
(t31 本発明において、Os添加閂が0.37 at、%以上
の範囲ではS’20.Fe1が得られた。
, Qo -Ou -Ti-added γ-F,e with the conventional oxidation treatment as described in 1.
, 20. In the thin film, S 7r 0.77 te was obtained, but
(t31 In the present invention, S'20.Fe1 was obtained when the Os addition bar was in the range of 0.37 at.% or more.

実施例4 実施例2と同様の製造法で/、4’ at、%のOsを
含有するα−Fe20.薄膜を形成した後に、7℃の水
をバブリングしたH2気流中で、温度2夕O℃で3時間
にわたって加熱してFe3O4膜へと還元後、大気中で
温度3io℃で1時間にわたって加熱してr −Fe2
O3薄膜を形成した。とのγ−Fe205薄膜が付着し
た基板をlx1m角に切り出し、その膜面に平行にF 
koeの外部磁場を加えた後、磁場を取り去り、引き続
き、大気中で110℃から3jO℃の温度範囲で1時間
にわたり加熱した。この再熱処理の温度と磁気特性との
関係を第3図に示す。
Example 4 By the same manufacturing method as in Example 2, α-Fe20. After forming a thin film, it was heated for 3 hours at a temperature of 0°C for 2 nights in a H2 stream with water bubbled at 7°C to reduce it to a Fe3O4 film, and then heated for 1 hour at a temperature of 3io°C in the air. r-Fe2
An O3 thin film was formed. The substrate on which the γ-Fe205 thin film was attached was cut out into a square lx1 m square, and F parallel to the film surface was cut out.
After application of an external magnetic field of koe, the magnetic field was removed and subsequent heating was performed in the air at a temperature ranging from 110°C to 3jO°C for 1 hour. FIG. 3 shows the relationship between the temperature of this reheat treatment and the magnetic properties.

再熱処理温度がiro℃以上の場合に、HcおよびS 
の増加およびαの減少が起り、210℃以上ではほぼ一
定となった。
When the reheat treatment temperature is iro℃ or higher, Hc and S
increases and α decreases, and becomes almost constant above 210°C.

次に、再熱処理前に試料に加える磁場を変化させ、再熱
処理は大気中で温度−jO℃で1時間の加熱と一定にし
た場合に、試料に加える外部磁場と(/l ) 再熱処理後の磁気特性との関係を第1図に示す。
Next, we changed the magnetic field applied to the sample before reheating, and when the reheating treatment was kept constant at −jO℃ in the air for 1 hour, the external magnetic field applied to the sample and (/l) after reheating The relationship between the magnetic properties and the magnetic properties is shown in Figure 1.

ここで、外部磁場は再熱処理前のr −Fe2O,膜の
保磁力で規格化して示してあり、この値がo3以上でヒ
ステリシスループの矩形性は向上しはじめ、2.0以上
で一定値に達した。
Here, the external magnetic field is shown normalized by r -Fe2O before reheat treatment and the coercive force of the film. When this value is o3 or more, the rectangularity of the hysteresis loop begins to improve, and when it is 2.0 or more, it becomes a constant value. Reached.

以上、実施例1から実施例4に示したように、酸化熱処
理工程に試料を磁化する処理を加えることによって磁気
異方性を付与することは、従来主に用いられてきたCo
、Ti、Ou等を添加したγ−Fe20.薄膜あるいは
添加物のないr −Fe2O,薄膜においては検出され
ない現象であり、O8添加糸においてのみ顕著に認めら
れている。
As shown in Examples 1 to 4, imparting magnetic anisotropy by magnetizing the sample to the oxidation heat treatment step is a method that has been mainly used in the past for Co
, Ti, Ou, etc. added γ-Fe20. This phenomenon is not detected in thin films or r -Fe2O thin films without additives, and is markedly observed only in O8-added yarns.

また、スパッタリング条件や還元熱処理条件の影響も少
ない。すなわち、スパッタ雰囲気組成は100%0.か
ら90%Ar + 10%0□の範囲、スパッタ雰囲気
圧力はコX 10 −” J X /θ Torrの範
囲、還元熱処理は第3図に示すFe 、04形成領域の
温度範囲、で7時間以上にわたる加熱を行なうことによ
り、その後の酸化処理工程に試料を磁化する処理を加え
ることで、一定方向に磁気異方性を付与したγ−Fe2
0.薄膜を得ることができた。
Furthermore, the influence of sputtering conditions and reduction heat treatment conditions is small. That is, the sputtering atmosphere composition is 100% 0. to 90% Ar + 10% 0□, the sputtering atmosphere pressure is in the range of 0.5 - 10 -'' J By heating the sample for a long time and adding a treatment to magnetize the sample in the subsequent oxidation treatment process, γ-Fe2 with magnetic anisotropy in a certain direction is produced.
0. A thin film could be obtained.

実施例5 実施例1と同様の製造条件でFe6o4膜を形成し、そ
のFe、04膜をディスク円周方向に磁化するためから
半径方向に移動させた。
Example 5 A Fe6o4 film was formed under the same manufacturing conditions as in Example 1, and the Fe,04 film was moved in the radial direction to magnetize it in the circumferential direction of the disk.

ヘッドのコア幅は370μm、ギャップ長は。、1μm
1コイル巻数は72回とした。[速1.j m/sのと
きに浮上量o、irμmで浮上した。ヘッド材質はMn
 −Znフェライトとした。ディスクの直径/90 m
から、200 trwrの範囲を直流磁化した。そのだ
めの電流値はsOmAとした。このディスクを大気中で
温度37O℃で1時間にわたり酸化してγ−Fe20.
薄膜ディスクを作製した。
The core width of the head is 370 μm, and the gap length is. , 1μm
The number of turns per coil was 72. [Speed 1. j m/s, it floated with a flying height of o, irμm. Head material is Mn
-Zn ferrite. Disc diameter/90 m
A range of 200 trwr was magnetized with direct current. The final current value was sOmA. This disk was oxidized in air at a temperature of 370° C. for 1 hour to obtain γ-Fe20.
A thin film disk was fabricated.

このディスクの電磁変換特性を直流磁化に用いたと同一
のヘッドおよび同一のヘッド浮上量で測定した。その測
定位置は、直流磁化を施した直径/9j ssと、消磁
状態のままr −Fe、O,膜を形成した直径/ぶQv
mとの、2筒所とした。第3表に電磁変換特性の測定結
果を示す。
The electromagnetic conversion characteristics of this disk were measured using the same head and the same head flying height used for DC magnetization. The measurement positions are the diameter/9j ss with direct current magnetization and the diameter/buQv with the r -Fe, O, film formed in the demagnetized state.
There were two locations, one with m. Table 3 shows the measurement results of electromagnetic conversion characteristics.

第3表かられかるように、円周方向に磁気異方性を付与
した場合(直径/9j arm )の方が、消磁状態の
ままγ−Fe20.膜を形成した場合(直径/1018
>VC比べて記録密度(D5o)で//λFRPM(F
luxReversal Per Millimete
r ) 、孤立波再生出力で0、JI mV 、重ね書
き特性で−j dB、信号対雑音比でコ、OdB内向上
た。
As can be seen from Table 3, when magnetic anisotropy is imparted in the circumferential direction (diameter/9j arm), γ-Fe20. When a film is formed (diameter/1018
> Compared to VC, the recording density (D5o) is //λFRPM (F
luxReversal Per Millimete
r), solitary wave reproduction output: 0, JI mV, overwrite characteristics: -j dB, signal-to-noise ratio: -0 dB.

ここで、孤立波再生出力とは、記録密度が低く、gaシ
合う波形が干渉し合わない場合の出力波形の振幅であり
、D5oとは再生出力が孤立波再生出力の半分にまで減
衰する記録密度を示した。
Here, the solitary wave reproduction output is the amplitude of the output waveform when the recording density is low and the waveforms that match each other do not interfere with each other. The density was shown.

(17) 重ね書き特性とは、200 FRPMの信号を記録後、
同一トラック上に900 FRPMの信号を記録し、そ
の再生出力の周波数スペクトラムにおいて、900FR
PM成分と−00FRPM成分の比を示したものである
(17) Overwriting characteristics mean that after recording a 200 FRPM signal,
A 900 FRPM signal is recorded on the same track, and the frequency spectrum of the playback output is 900 FRPM.
It shows the ratio of PM component to -00FRPM component.

信号対雑音比とは、//30 FRPMの信号を記録し
たときの再生波形の振幅の半分の電圧と、再生出力の周
波数スペクトラムにおいて、測定系からの雑音や記録信
号出力を除外し、媒体から発生する雑音のみについて算
出した雑音電圧の実効値との比とした。
The signal-to-noise ratio is defined as the voltage that is half the amplitude of the reproduced waveform when recording a 30 FRPM signal, and the frequency spectrum of the reproduced output, excluding noise from the measurement system and recording signal output, and It was taken as the ratio to the effective value of the noise voltage calculated only for the generated noise.

比較のために、従来用いられてきた(Eo 、 Ti 
For comparison, conventionally used (Eo, Ti
.

Ou添添加−Fe20s薄膜の電磁変換特性を示すと、
λ、Oat、% 00−2.Oat、% Ti −/J
 at、% Ou添加系γ−Fe20.薄膜の場合に、
残留磁化2!;00Gauss 、α=J、0. S 
=o、7t、Ha=tso Oeの磁気特性が得られ、
膜厚0.17μmの場合に、孤立波再生出力コ、?mV
s記録密度1020 FRPM 、 油ね書き特性−J
OdB 、信号対雑音比ll3dBであった。従って、
本発明によるOs添添加−Fe20.薄膜I tt X の方は、再熱処理の前でも後でも共に、従来のoo −
Ti −Ou添加r −Fe2O,嘆息上の電磁変換特
性を示した。
The electromagnetic conversion characteristics of the O-added Fe20s thin film are shown as follows:
λ, Oat, % 00-2. Oat, % Ti −/J
at,% Ou-added system γ-Fe20. In the case of thin films,
Residual magnetization 2! ;00Gauss, α=J, 0. S
= o, 7t, Ha = tso The magnetic properties of Oe are obtained,
When the film thickness is 0.17 μm, the solitary wave reproduction output is ? mV
s Recording density 1020 FRPM, oil writing characteristics-J
OdB, the signal-to-noise ratio was 113 dB. Therefore,
Os addition according to the present invention - Fe20. The thin film I tt
Ti-Ou-added r-Fe2O showed excellent electromagnetic conversion characteristics.

(効 果) 以上説明したように、本発明では、O8を添加したFe
、04薄膜を酸化してγ−Fe20.薄膜とする工程中
に、磁気異方性を付与したい方向に外部磁場を加えるか
、または残留磁化状態とする処理を施すことによって、
磁気異方性が付与された方向の磁気特性は、保磁力(H
a)やヒステリシスループの矩形性が著しく向上する。
(Effect) As explained above, in the present invention, Fe added with O8
,04 thin film was oxidized to form γ-Fe20. During the process of forming a thin film, by applying an external magnetic field in the direction in which you want to impart magnetic anisotropy, or by applying a treatment to create a residual magnetization state,
The magnetic properties in the direction in which magnetic anisotropy is imparted are coercive force (H
a) and the rectangularity of the hysteresis loop are significantly improved.

この薄膜を磁気記録媒体として用いた場合、記録密度、
再生出力、重ね書き特性、信号対雑音比等が向上すると
いう利点がある。特に、残留磁化状態とするだけで磁気
異方性を付与できることは、磁場を加えつつ熱処理を施
す必要がないので、炉の構造が複雑に々らず、量産しや
すい利点もある。
When this thin film is used as a magnetic recording medium, the recording density,
This has the advantage of improving reproduction output, overwriting characteristics, signal-to-noise ratio, etc. In particular, the fact that magnetic anisotropy can be imparted simply by creating a residual magnetization state has the advantage that it is not necessary to perform heat treatment while applying a magnetic field, so the structure of the furnace is not complicated and mass production is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヒステリシスループの一例を示す線図、第一図
はO8添加量と磁気特性との関係を示す線図、第3図は
再熱処理温度と磁気特性との関係を示す線図、第ψ図は
保磁力で規格化した外部磁場と磁気特性との関係を示す
線図、第3図はO8添加量と還元処理湿度に対する還元
処理後の膜物質を示す線図である。 A・・・再熱処理前のaCZ B・・・再熱処理前の88、 O・・・再熱処理前のα、 D・・・再熱処理後のHa % E・・・再熱処理後のS″、 F・・・再熱処理後のα。 特許出願人 日本電信電話公社 第4図 タト音’PEtk−4 イ男(4石X表 カ 第5図 055#加f(αt1%) 手続補正書 昭和!を年 を月/j日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 特願昭!l・/コククに1号 2、発明の名称 酸化鉄磁性薄膜の製造方法 3、補正をする者 事件との関係 特許 出願人 (422)日本電信電話公社 コ ア°補″F″″′容 別紙の通り 1、 明細書第1ダ頁第ダ行目の「実施例コ」を「実施
f!6JJに訂正する。 2、同第1f頁第3行目のあとに、下記の文章を加入す
る。 「実施例6 実施例3と同様の作製法で八りat、%のOsを含有す
るα−Fe203薄膜を形成した。このα−F・203
薄膜を/”Cの水をバブリングしたH2気流中で3時間
にわたって22k”Cに加熱してFs 304膜へと還
元し、その後、大気中で310℃に9時間にわたり加熱
してγ−Fe20B薄膜を形成した。 このγ−Fe2O3膜が付着した基板をgxg篩角に切
り出した試料の膜面に平行に#KOeの外部磁場を加え
た後、磁場を取り去り、引き続き大気中で100℃に7
時間加熱した。 この再熱処理前および後のHeの室温付近での温度変化
を第6図の曲iGおよびHにそれぞれ示す。比較のため
に% Q*g aL%のCoを添加したγ−F@ 20
3薄膜のHeの温度変化も第(1) 6図に曲i$11として併記する。 q、ざat、%Co添加γ−Fe203薄膜はFeター
ゲット上にCoペレットを置くこと、およびα−Fe 
203薄膜からF・304薄膜への還元温度を30θ℃
とすること以外は、実施例3と同様の作製法で形成した
。 第6図から明らかなように、室温でほぼ同一のHaが得
られている場合であっても、08添加γ−F・203薄
膜の方が再熱処理の有無にかかわらず、co添添加−F
e2es ftk膜よりもHeの■一 温度変化が少なかった。S 、α、飽和磁化等He以外
の磁気特性の温度変化は、上述の3種類の試料とも同様
の挙動を示し、特に有意差はみられなかった。 Hcは記録密度の大小に大きな影響を及ぼす磁気特性で
あり、その温度変化はできるだけ小さいことがディスク
媒体の加熱減磁を減少させるために必要である。この観
点からも、〇−添加によりr = Fe2O3薄膜のH
eを増大させる方が、従来用いてきたCo添加よりも有
利であることがわかる。 実施例7 金属元素のみの比率(at、%)で2.30!+ −0
、!r Ru −Il、θCoを添加したα−I−F@
203膜を作製した。作製条件は実施例コに用いたコa
t、%Co添加ターゲット上にOi、Ruペレットを置
くこと以外は、実施例コと同一条件とした。 このα−Fe20a Mを/”Cの水をバブリングした
H2 気流中で3時間にわたって210℃に加熱してF
e3O4膜を得た。このFe3O4膜を基板ごとざX 
I ysm角に切り出し、+KOaの外部磁場を膜面に
平行に加えた後にこの磁場を取り去り、Fe3O4膜を
残留磁化状態としてから、大気中で30θ℃で3時間加
熱して、r −Fe2O3膜を得た。 比較のために磁場処理を施さずに大気中酸化3行なって
形成したγ−Fe2O3膜では、He = 、2jざ0
0e 、S”= 0.IQ 、 α=/、1であり、磁
場処理を加えたものはHe=λ6θ00e。 S”=0.95.α=ムダが熱処理前の磁場処理と平行
方向の磁気特性として得られた。すなわち% Oi+単
独添加と同様の磁場処理効果が、CoやRuri:iM
合鰯加した場合にも得られた。 実施例g 金属元素のみの比率(a’t、%)で0.、l Os 
十〇、kRu十へk Co添加したγ−Fe2′03膜
を作製した。本例における作製条件を第1I表に示す0 (ダ) 第ダ表 Os ” Ru # Co添添加−Fe203
基板は直径J/ cmのアルマイト被覆A1合金円板と
した。このディスクの円周方向の膜厚分布を均一化する
ために、スパッタ膜形成中は、ディスクを10rpmの
回転数で回転させた。 スパッタ膜(α−Fe203 ) Tt Fe3O4へ
と還元後、試料を基板ごとtXttm角に切り出し、膜
面に平行にQKOeの外部磁場を加えた後、磁場を取り
夫って残留磁化状態とした状態で大気中において酸化し
て形成したγ−Fe2O3膜を試料lとする。上述の磁
場処理を施さずに酸化したγ−F・203膜を試料コと
する0これら試料lおよび−の磁気特性を第5表に示す
。 第5表 O,コOs −0,!r Ru 6 /*k 
Co添加試料lについては、測定磁場は、熱処理前に加
えた4!KOeの外部磁場と平行であり、試料λについ
ては測定磁場は膜面と平行な任意の方向に加えた。試料
lでは、試料−に比較して、HeやS−%が増加し、α
が減少し、ヒステリシスループの矩形性が増加した。こ
のような効果は、08単独あるいはOg+Co複合添加
γ= Fe2O3膜でも見られたものである。 また、試料lと同様の作製法で形成した°0.コaL%
Os +OAr at、%Ru 十/、!; at、%
CO添加のγ−I−FezO3薄膜ディスクと、Feタ
ーゲット上に01片のみを置いてO1添加量をOoりa
ta%とすること以外は、全て試料lと同様の作製法を
用いて形成したy ” Fe2O3薄膜ディスクとにつ
いて、ディスク面の摩耗特性を評価した。 摩耗特性の評価は、直径コ、29 mmのMn −Zn
フェライト球を、周速/ B / secで回転してい
るディスク面に、ある一定荷重で押しつけ、1000パ
ス後にディスク面の摩耗深さを表面粗さ計で測定するこ
とにより行った。 第7図に、かかるフェライト球荷重と摩耗深さとの関係
を示す。 0 * ? a t 8%Os添加膜(曲MA)よりも
0.2ato%0園十〇、t at、%Ru十八5at
e % C。 添加膜(曲IJB)の方が、同一荷重でも約〃弧程摩耗
深さが少なく、かつ膜強度が上昇していることが第7図
よりわかる。すなわち、高記録密度化に伴なってヘッド
浮上量が減少することが予想されるが、これに伴ない、
偶発的なヘッドと媒体との間の接触の確率も増すと思わ
れる。媒体強度を増すことは、このような事故に対する
抵抗力を強めるものと考えられる。」 3、同第〃頁第夕行目の「線図である。」を「線図、第
6図はγ−Fe203薄膜のHCの温度変化を示す線図
、第7図はj + Fe2O3薄膜ディスク媒体の71
241球による摩耗深さとフェライト球荷重の関係を示
す線図である。」に訂正する。 4、同第〃頁第1/行目の「α。」を「α、」に訂正し
、同行のあとに下記を加入する。 [G・・・/、k ata%伽添加γ−!−Fe203
薄膜の再熱処理前のHe % H・・・/mk aL%O1添加γ−F・203薄膜の
再熱処理後のHa。 I ”’ 11.t&t、%Co添加γ−Fe203薄
膜のHa□J5、添附図面中、第7図および第、2図を
別紙の通り訂正し、第6図および第7図を別紙の通り加
入する。 ()O) 第7図 フェライト玲荷重(yf) IJ JIJ l :)IJ 湿温度0C)
Figure 1 is a diagram showing an example of a hysteresis loop, Figure 1 is a diagram showing the relationship between O8 addition amount and magnetic properties, Figure 3 is a diagram showing the relationship between reheat treatment temperature and magnetic properties, and Figure 3 is a diagram showing the relationship between reheat treatment temperature and magnetic properties. The ψ diagram is a diagram showing the relationship between an external magnetic field normalized by coercive force and magnetic properties, and FIG. 3 is a diagram showing the film material after reduction treatment with respect to the amount of O8 added and the humidity of reduction treatment. A: aCZ before reheat treatment B: 88 before reheat treatment, O: α before reheat treatment, D: Ha% after reheat treatment E: S″ after reheat treatment, F...α after reheat treatment. Patent applicant: Nippon Telegraph and Telephone Public Corporation Figure 4 Tatoon' PEtk-4 I-man (4 stones Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office, 2015, 2013, 2003, 2003, 2013, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 1993, 1993, 1993, 1997, 1997, 1994, 1994, 1997, 1997, 1997, 1994, 1994, 1997, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1997; Relationship with Patent Applicant (422) Nippon Telegraph and Telephone Public Corporation Core ° Supplement "F""' As shown in Attachment 1, ``Example KO'' on page 1, line d of the specification has been changed to ``implementation f! 6JJ.'' 2. Add the following sentence after the 3rd line of page 1f of the same page: ``Example 6 α-Fe203 containing 80% Os was prepared by the same method as in Example 3. A thin film was formed.This α-F・203
The thin film was heated to 22k''C for 3 hours in a stream of H2 bubbled with water at /''C to reduce it to an Fs 304 film, and then heated to 310°C for 9 hours in air to form a γ-Fe20B thin film. was formed. The substrate on which this γ-Fe2O3 film was attached was cut out to a gxg sieve angle. After applying an external magnetic field of #KOe parallel to the film surface, the magnetic field was removed, and then the temperature was kept at 100℃ in the atmosphere for 7 days.
heated for an hour. The temperature changes of He near room temperature before and after this reheating treatment are shown in curves iG and H in FIG. 6, respectively. For comparison, γ-F@20 with % Q*g aL% Co added
The temperature change of He in the three thin films is also shown in Fig. 6 as curve i$11. q, zaat, %Co-added γ-Fe203 thin film is made by placing a Co pellet on the Fe target, and α-Fe
The reduction temperature from 203 thin film to F・304 thin film was set to 30θ℃.
It was formed by the same manufacturing method as in Example 3 except for the following. As is clear from Fig. 6, even when almost the same Ha is obtained at room temperature, the 08-doped γ-F 203 thin film is superior to the co-doped -F 203 thin film regardless of whether reheat treatment is performed.
1) The temperature change of He was smaller than that of the e2es ftk film. Regarding temperature changes in magnetic properties other than He, such as S, α, and saturation magnetization, the three types of samples described above exhibited similar behavior, and no significant differences were observed. Hc is a magnetic property that has a large effect on the recording density, and it is necessary to keep its temperature change as small as possible in order to reduce heating demagnetization of the disk medium. From this point of view, by addition of 〇-, r = H of Fe2O3 thin film.
It can be seen that increasing e is more advantageous than the conventionally used addition of Co. Example 7 The ratio (at, %) of only metal elements is 2.30! + -0
,! r Ru -Il, α-I-F@ with θCo added
203 membrane was produced. The manufacturing conditions are the core a used in Example A.
The conditions were the same as in Example 1, except that the Oi and Ru pellets were placed on the Co-added target. This α-Fe20a M was heated to 210°C for 3 hours in a H2 gas stream bubbled with water of /''C to F
An e3O4 film was obtained. This Fe3O4 film is
After applying an external magnetic field of +KOa parallel to the film surface, this magnetic field is removed to bring the Fe3O4 film into a residual magnetized state, and then heated in the atmosphere at 30θ°C for 3 hours to form an r -Fe2O3 film. Obtained. For comparison, in a γ-Fe2O3 film formed by performing three oxidations in the atmosphere without applying magnetic field treatment, He = , 2j and 0.
0e, S"=0.IQ, α=/, 1, and after magnetic field treatment He=λ6θ00e. S"=0.95. α=waste was obtained as the magnetic property in the direction parallel to the magnetic field treatment before heat treatment. In other words, the same magnetic field treatment effect as when adding %Oi+ alone is obtained when Co or Ruri:iM
It was also obtained when combined with sardines. Example g The ratio of only metal elements (a't, %) is 0. , l Os
10. A γ-Fe2'03 film in which kCo was added to kRu10 was fabricated. The manufacturing conditions in this example are shown in Table 1I.
The substrate was an alumite-coated A1 alloy disk with a diameter of J/cm. In order to equalize the film thickness distribution in the circumferential direction of this disk, the disk was rotated at a rotation speed of 10 rpm during sputtered film formation. After reducing the sputtered film (α-Fe203) to Tt Fe3O4, the sample was cut into a tXttm square along with the substrate, and after applying an external magnetic field of QKOe parallel to the film surface, the magnetic field was removed to create a residual magnetization state. Sample 1 is a γ-Fe2O3 film formed by oxidation in the atmosphere. Table 5 shows the magnetic properties of these samples 1 and 1, in which sample 7 is a γ-F.203 film oxidized without the above-described magnetic field treatment. Table 5 O, ko Os -0,! r Ru 6 /*k
For Co-added sample 1, the measurement magnetic field was 4! applied before heat treatment. The measurement magnetic field was parallel to the external magnetic field of KOe, and for sample λ, the measurement magnetic field was applied in an arbitrary direction parallel to the film surface. In sample l, compared to sample -, He and S-% increase, and α
decreased, and the rectangularity of the hysteresis loop increased. Such an effect was also observed in the 08 film alone or in the Og+Co composite addition γ=Fe2O3 film. In addition, °0. core aL%
Os +OAr at, %Ru 10/,! ;at,%
By placing only the 01 piece on the CO-added γ-I-FezO3 thin film disk and the Fe target, the amount of O1 added was reduced to a
The abrasion characteristics of the disk surface were evaluated for the y'' Fe2O3 thin film disk, which was formed using the same manufacturing method as Sample 1, except that the y'' Fe2O3 thin film disk had a diameter of 29 mm. Mn-Zn
A ferrite ball was pressed against a disk surface rotating at a circumferential speed of /B/sec under a certain constant load, and after 1000 passes, the wear depth of the disk surface was measured using a surface roughness meter. FIG. 7 shows the relationship between the ferrite ball load and the wear depth. 0*? a t 0.2ato%0 0.0, t at, %Ru185at than the 8%Os-added film (song MA)
e%C. It can be seen from FIG. 7 that the additive film (curve IJB) has a wear depth that is approximately 100% smaller and has an increased film strength even under the same load. In other words, it is expected that the flying height of the head will decrease as recording density increases;
The probability of accidental head-to-media contact would also increase. Increasing the strength of the media is believed to increase its resistance to such accidents. 3. On the evening line of the same page, "Diagram." 71 of disk media
FIG. 3 is a diagram showing the relationship between the wear depth due to the No. 241 ball and the ferrite ball load. ” is corrected. 4. Correct "α." in the first line of the same page to "α," and add the following after the same. [G.../, k ata % 佽 addition γ-! -Fe203
He before reheating of thin film % H.../mka aL% Ha after reheating of O1-added γ-F・203 thin film. I '''11.t&t, %Co added γ-Fe203 thin film Ha ()O) Fig. 7 Ferrite load (yf) IJ JIJ l:)IJ Humidity temperature 0C)

Claims (1)

【特許請求の範囲】 1) Osを添加したFe3O4を主成分とする薄膜を
酸化する工程を経て、γ−Fe20.を主成分とする薄
膜を形成する酸化鉄磁性薄膜の製造方法において、酸化
処理前または酸化処理中に、前記Osを添加したFe、
04を主成分とする薄膜に対して、外部磁場を加えるこ
とを特徴とする酸化鉄磁性薄膜の製造方法。 2) Osを添加したFe3O4を主成分とする薄膜を
酸化する工程を経て、r−Fe205を主成分とする薄
膜を形成する酸化鉄磁性薄膜の製造方法において、酸化
処理後に、前記O8を添加した特徴とする酸化鉄磁性薄
膜の製造方法。
[Claims] 1) γ-Fe20. In the method for manufacturing an iron oxide magnetic thin film, which forms a thin film mainly composed of Fe to which Os is added, before or during the oxidation treatment,
1. A method for producing an iron oxide magnetic thin film, which comprises applying an external magnetic field to a thin film containing 04 as the main component. 2) In a method for producing an iron oxide magnetic thin film in which a thin film mainly composed of r-Fe205 is formed through a step of oxidizing a thin film mainly composed of Fe3O4 to which Os is added, O8 is added after the oxidation treatment. A method for producing a characteristic iron oxide magnetic thin film.
JP12778683A 1982-09-22 1983-07-15 Manufacture of iron oxide magnetic thin film Pending JPS6021516A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12778683A JPS6021516A (en) 1983-07-15 1983-07-15 Manufacture of iron oxide magnetic thin film
US06/532,978 US4544612A (en) 1982-09-22 1983-09-16 Iron oxide magnetic film and process for fabrication thereof
DE19833334324 DE3334324A1 (en) 1982-09-22 1983-09-22 IRON OXIDE MAGNETIC FILM AND METHOD FOR THE PRODUCTION THEREOF
NL8303258A NL192897C (en) 1982-09-22 1983-09-22 Gamma-Fe2O3 magnetic film for magnetic recording medium, and method for its manufacture.
US06/730,549 US4642245A (en) 1982-09-22 1985-05-06 Iron oxide magnetic film and process for fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12778683A JPS6021516A (en) 1983-07-15 1983-07-15 Manufacture of iron oxide magnetic thin film

Publications (1)

Publication Number Publication Date
JPS6021516A true JPS6021516A (en) 1985-02-02

Family

ID=14968642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12778683A Pending JPS6021516A (en) 1982-09-22 1983-07-15 Manufacture of iron oxide magnetic thin film

Country Status (1)

Country Link
JP (1) JPS6021516A (en)

Similar Documents

Publication Publication Date Title
US4232071A (en) Method of producing magnetic thin film
Yoshii et al. High density recording characteristics of sputtered γ‐Fe2O3 thin‐film disks
JPS6115308A (en) Photomagnetic recording material
US4544612A (en) Iron oxide magnetic film and process for fabrication thereof
US4544591A (en) Perpendicular magnetic recording medium
Tagami et al. A new preparation method for γ-Fe 2 O 3 thin film recording media through direct sputtering of Fe 3 O 4 thin films
JPS6021516A (en) Manufacture of iron oxide magnetic thin film
US4609593A (en) Magnetic recording medium
Jeanniot et al. A transition‐metal–rare‐earth alloy for perpendicular magnetic recording
JP2964596B2 (en) Manufacturing method of magnetic recording medium
JPS6126131B2 (en)
JP3386270B2 (en) Magnetic head and magnetic recording device
AKAMATSU et al. Recording properties of Co-O films prepared by reactive vacuum evaporation
JP3069135B2 (en) Method for manufacturing magneto-optical recording medium
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JP2824998B2 (en) Magnetic film
JPH0254645B2 (en)
JPS6224852B2 (en)
Nakagawa et al. Magnetic properties and recording characteristics of sputtered double-layer γ-Fe 2 O 3 disks
KR930004331B1 (en) Optical magnetic recording materials
JPS6173206A (en) Magnetic recording and reproducing system
JPH01130319A (en) Magnetic recording medium and its production
JP2002117519A (en) Magnetic recording medium and magnetic storage device
Naoe et al. Recording characteristics of semi-hard Mn-Zn ferrite sputtered disks
JPS6398823A (en) Magnetic recording medium and its production