JPS60214018A - Positioning controller - Google Patents

Positioning controller

Info

Publication number
JPS60214018A
JPS60214018A JP6943384A JP6943384A JPS60214018A JP S60214018 A JPS60214018 A JP S60214018A JP 6943384 A JP6943384 A JP 6943384A JP 6943384 A JP6943384 A JP 6943384A JP S60214018 A JPS60214018 A JP S60214018A
Authority
JP
Japan
Prior art keywords
reduction ratio
speed
signal
speed reduction
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6943384A
Other languages
Japanese (ja)
Inventor
Kanehisa Yamamoto
兼久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6943384A priority Critical patent/JPS60214018A/en
Publication of JPS60214018A publication Critical patent/JPS60214018A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/14Control of position or direction using feedback using an analogue comparing device
    • G05D3/1445Control of position or direction using feedback using an analogue comparing device with a plurality of loops

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To stabilize a positioning speed by correcting the difference signals between position signals on the basis of the rate of the reference speed reduction ratio of the moving part of an industrial robot and an actual speed reduction ratio. CONSTITUTION:A signal from a position detector E is added AD1 to a command position signal from a control part C to obtain a speed command signal. This signal is added AD2 to an actual detected speed signal to drive a motor M through an amplifer so that the difference is eliminated, thereby rotating the fulcrum RJ of a robot arm to a specific position. For the purpose, a storage part 1 for storing the speed reduction ratio of an actual speed reduction ratio at every fine rotational angle position within the movable range of said fulcrum RJ and the reference speed reduction ratio and a correcting circuit 2 which multiplied the speed signal from the adder AD1 by the speed reduction ratio read out according to the rotational position of the fulcrum RJ are provided. Consequently, a speed command signal to the motor M is large where the actual speed reduction ratio is large and stable speed control is performed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、例えば日ボットの制御装置の位置決めを行
なう位置決め制御装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a positioning control device for positioning, for example, a control device of a Japanese bot.

〔従来技術〕[Prior art]

従来、ロボットの制御装置の位置決め制御装置として、
特公昭5B−43220%公報に開示されるものがある
Conventionally, as a positioning control device for a robot control device,
There is one disclosed in Japanese Patent Publication No. 5B-43220%.

これを第1図で説明すると、図において、(a)は 。This will be explained using FIG. 1. In the figure, (a) is.

ステップ状の指令位置信号を出力するコントロール部、
帖)けモー′りs (Gl)はこのモーフ卸の回転を減
速する周知の歯車式の減速機、(RJ)はこの減速機(
G1)で駆動されるロボットアームの支点、(T)はモ
ータ偏)に連結されたタコジェネレータ等の速度検出器
、(ト))は支点(RJ)に連結され、支点(RJ )
の位置を検出して検出位置信号を出力するエンコーダ等
の位置検出器、(ADI)はコントロール部(0)から
の指令位置信号と位置検出器(鱒からの検出位置信号と
を比較してその差信号を速度指令信号として出力する加
算器、(ADII)は加算器(ADI)からの減速指令
信号と速度検出器(T)の検出速度信号とを比較してそ
の差は号を出力する加算器、(AMP )はこの加算器
(ADII)からの差信号が零になるようにモーター)
を駆動する増幅器である。
A control unit that outputs a step-like command position signal,
(Gl) is a well-known gear type reducer that decelerates the rotation of this morph wholesaler, (RJ) is this reducer (
G1) is the fulcrum of the robot arm driven by G1), (T) is a speed detector such as a tacho generator connected to the motor (T), and (G1) is connected to the fulcrum (RJ);
A position detector such as an encoder (ADI) that detects the position of the trout and outputs a detected position signal compares the command position signal from the control unit (0) with the detected position signal from the position detector (trout). The adder (ADII) outputs the difference signal as a speed command signal, and the (ADII) is an adder that compares the deceleration command signal from the adder (ADI) and the detected speed signal of the speed detector (T), and outputs the difference as a signal. (AMP) is a motor so that the difference signal from this adder (ADII) becomes zero)
This is an amplifier that drives the .

次に動作について説明する。まず、コントロール部(c
lからの指令位置信号Vcは、位置検出器(ト))から
の検出位置信号が加算器(ADl)にて加算されるため
、加算器(ADI)は両者の差は号を速度指令は号とし
て出力する。この速度指令は号は加算器(AD2)にて
実際の検出速度信号と加算され、その差信号は、それが
零になるように増幅器(AMP) VCよりモータ(ロ
)が駆動され、ロボットのアームの支点(RJ)は減速
機(()l)を介して駆動され、所定位置まで回動され
る。ところで、位置検出器(K)は、支点(RJ)VC
連結され7ているため、アーム自体の位置が確実に検出
さね、その検出位置信号が加算器(ADl)VCフィー
ドバックされる。この場合、歯車式の減速機(()l)
は常に一定の減速比であるため、支点(RJ’)を駆動
するモーター)への出力信号は常に一定の定数のもとて
速度制御されることになる。つまり、ロボットのアーム
の位置が刻々変化した場合においても、常に一定の定数
が速度指令信号に与えられる。
Next, the operation will be explained. First, the control section (c
The command position signal Vc from l is added to the detected position signal from the position detector (g) in an adder (ADl), so the adder (ADI) calculates the difference between the two and the speed command. Output as . This speed command is added to the actual detected speed signal in an adder (AD2), and the difference signal is used to drive the motor (b) from the amplifier (AMP) VC so that it becomes zero. The fulcrum (RJ) of the arm is driven via a reduction gear (()l) and rotated to a predetermined position. By the way, the position detector (K) is located at the fulcrum (RJ) VC
Since they are connected together, the position of the arm itself cannot be reliably detected, and the detected position signal is fed back to the adder (ADl) VC. In this case, a gear type reducer (()l)
Since the speed reduction ratio is always constant, the output signal to the motor (driving the fulcrum (RJ')) is always controlled in speed based on a constant constant. In other words, even if the position of the robot arm changes moment by moment, a constant constant is always given to the speed command signal.

ところが、減速機構として第゛2図に示すものを用いた
場合VCは、次の不具合が生じる。息下、第2図につい
て説明する。図において、(G2)かボールねじからな
る減速機構であり、モータ(M)によって駆動されるね
じ棒(Gza)とこのねじ棒(Gza)の回転により移
動するナツト部(G21))と、このナツト部(G2b
)とアームの支点(R,T)とを連結するリンク(G2
C)とを有している。
However, when the deceleration mechanism shown in FIG. 2 is used in the VC, the following problems occur. Next, let me explain about Figure 2. In the figure, (G2) is a speed reduction mechanism consisting of a ball screw, which includes a threaded rod (Gza) driven by a motor (M), a nut portion (G21) that moves by the rotation of this threaded rod (Gza), and this Nut part (G2b
) and the fulcrum of the arm (R, T) (G2
C).

このような減速機構を有したものについては、特願昭5
8−212901号にて詳述しているので説明を省略す
る。ここで、減速機構(G2)の減速比を検討してみる
と、第3図に示すように、ナツト部(G2t))のねじ
棒(Gza) VC対する移動量はねじ棒(GQa)の
回転回数に比例するが、ナツト部(Ggb)けリンク(
G2c)の円運動の軌跡上を移動するため、ナツト部(
Gsb)の移#itH同じであっても、円運動の軌跡J
:、VCおけるナツト部(G2b)の位置AとBによっ
て、移動角度が01と02とで示されるように両者に差
が生じることになる。つまり、ナツト部(Gab)の移
動位置に応じて減速機構(G2)の減速比が変化する。
For devices with such a speed reduction mechanism, a patent application filed in 1973
8-212901, so the explanation will be omitted. Now, when considering the reduction ratio of the reduction mechanism (G2), as shown in Fig. 3, the amount of movement of the nut part (G2t) with respect to the threaded rod (Gza) VC is determined by the rotation of the threaded rod (GQa). It is proportional to the number of times, but the nut part (Ggb) and the link (
In order to move on the trajectory of circular motion of G2c), the nut part (
Gsb) Even if the movement #itH is the same, the trajectory of circular motion J
:, Depending on the positions A and B of the nut part (G2b) in the VC, there will be a difference in the movement angle between them, as shown by 01 and 02. That is, the reduction ratio of the reduction mechanism (G2) changes depending on the movement position of the nut portion (Gab).

この結果、加算器(AD、)の出力する速度指令は号が
ナツト部(G ab )の位置によって変化して位置決
め速度が菱化し、速度制御が不安定となる欠点があった
@ 〔発明の概要〕 この発明は、かかる欠点を改善する目的でなされたもの
で、減速機構を介し駆#源より駆動される移動部、及び
この移動部への位置指令信号と上記移動部の実際の位置
は号とを比較し、その差信号により上記移動部を所定位
置に移動制御する制御部とを設け、上記移動部の移動位
置に応じて上記減速機構の減速比が変化するものにおい
て、上2記移紡部の可能範囲における基準の減速比に対
するL記移動部の移動位置における実際の減速比との比
率によって上記差信号を補正する補正手段を備えること
により、位置決め速度の安定化を計ることができる位置
決め制御装置を提案するものである。
As a result, the number of the speed command output from the adder (AD) changes depending on the position of the nut (G ab ), resulting in a diamond positioning speed, which has the disadvantage of making speed control unstable. Summary] This invention was made with the aim of improving the above drawbacks, and includes a moving part driven by a drive source via a speed reduction mechanism, a position command signal to this moving part, and an actual position of the moving part. and a control section that controls the movement of the moving section to a predetermined position based on the difference signal, and the reduction ratio of the speed reduction mechanism changes according to the moving position of the moving section, The positioning speed can be stabilized by providing a correction means that corrects the difference signal based on the ratio of the actual reduction ratio at the moving position of the moving section L to the standard reduction ratio in the possible range of the transferring section. This paper proposes a positioning control device that can

〔発明の実施例〕[Embodiments of the invention]

第4図はこの発明の一実施例を示すブロック図であり、
il+はアームの支点(R,T)の可動範囲における微
小回転角度位置毎の実際の減速比と、上記可動範囲にお
ける基準の減速比との減速比率を記憶する記憶部、(2
)は上記支点(RJ)の回転位111Vc応じて随時に
上記記憶部flllc記憶された減速比率(以下KBj
と記す)を記憶部filから読み出して加算器(ADI
)からの速度指令信号[KBjを乗じて出力する補正回
路である。その他の符号の説明は従来装置と同様につき
省略する。
FIG. 4 is a block diagram showing an embodiment of the present invention,
il+ is a storage unit (2) that stores the actual reduction ratio for each minute rotation angle position in the movable range of the fulcrum (R, T) of the arm and the reference reduction ratio in the movable range;
) is the deceleration ratio (hereinafter KBj
) is read from the storage section fil and the adder (ADI
) is a correction circuit that multiplies the speed command signal [KBj and outputs the result. Descriptions of other symbols are omitted as they are the same as in the conventional device.

上記のように構成されたものでは、コントロール部(0
)の指令位置信号は位置検出器(E)からの検出位置は
号と加算器(ADI)において加算され、その差信号が
速度指令@号として出方される。ここで、位置検出器(
1からの検出位置は号によって、支点(RJ)の位置に
対応した信号が記憶部に入方されるため、その位flt
tc対応したKBjが補正回路(2)に出力され、この
KBjは速度指令1言号に乗算されるため、支点(RJ
)の位置における実際の減速比と基準の減速比との差異
が補正され、支点(RJ)は安定した速度で回動される
In the device configured as above, the control section (0
) is added to the detected position from the position detector (E) in an adder (ADI), and the difference signal is output as the speed command @. Here, the position detector (
The detection position from 1 depends on the number, and a signal corresponding to the position of the fulcrum (RJ) is input to the storage unit, so the flt
KBj corresponding to tc is output to the correction circuit (2), and this KBj is multiplied by one speed command word, so the fulcrum (RJ
) The difference between the actual reduction ratio and the reference reduction ratio at the position is corrected, and the fulcrum (RJ) is rotated at a stable speed.

つまり、支点(RJ)の可動範囲の減速比の基準値より
も、実際の減速比が大きい位置では、KBjけlより大
となり、逆に小さい位置ではlより小となる。従って、
実際の減速比が大きい位置でけモータ(M)への速度指
令旧号が大となり、逆に減速比が小さい位置でけモーフ
眞)への速度指令が小となり、減速機構(G2)を介し
て駆動されるアームの位置決め速度は一定となり、安定
して速度制御される。
That is, at a position where the actual speed reduction ratio is larger than the reference value of the speed reduction ratio in the movable range of the fulcrum (RJ), it is larger than KBj Kl, and conversely, at a smaller position, it is smaller than l. Therefore,
At a position where the actual reduction ratio is large, the speed command to the motor (M) becomes large, and conversely, at a position where the reduction ratio is small, the speed command to the motor (M) becomes small, and the speed command to the motor (M) becomes small at a position where the actual reduction ratio is small. The positioning speed of the arm driven by the arm is constant, and the speed is stably controlled.

なお、KBjViその計算式が高速演算可能な如く単純
であれば、記憶部は必ずしも必須のものではなく、KB
jを随時演算処理して決定してもよい。
Note that if the calculation formula for KBjVi is simple enough to allow high-speed calculation, the storage section is not necessarily essential;
j may be determined by arithmetic processing at any time.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、減速機構を介し駆動源より
駆動される移動部、及びこの移動部への位置指令信号と
L記移幼部の実際の位置は号とを比較し、その差信号に
より上記移動部を所定位置π移動制御する制御部上を設
け、上記移動部の移動位置に応じて上記減速機構の減速
比が変化するものにおいて、E記移幼部の可能範囲にお
ける基準の減速比に対する゛上記移動部の移動部−にお
ける実際の減速比との比率によって上記差信号を補正す
る補正手段を備えたので、移動部の位置による減速比の
変化が確実に補正され、位置決め速度が安定し、位置決
め動作の連応性の向上を計ることができる効果がある。
As described above, the present invention compares a moving part driven by a drive source via a speed reduction mechanism, and a position command signal to this moving part with the actual position of the moving part marked L, and the difference therebetween. A controller is provided for controlling the movement of the moving part to a predetermined position π by a signal, and the reduction ratio of the speed reduction mechanism changes according to the moving position of the moving part, and the standard in the possible range of the moving part E is Since the correction means is provided for correcting the difference signal according to the ratio of the actual reduction ratio in the moving part of the moving part to the reduction ratio, changes in the reduction ratio due to the position of the moving part are reliably corrected, and the positioning speed is This has the effect of stabilizing the positioning and improving the coordination of positioning operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置のブロック図、第2図は従来装置の他
の例を示すブロック図、第3図は第2図の動作を示す動
作説明図、第4図はこの発明の一実織例を示すブロック
図である。 図中、+11は記憶部、(2)は補正回路、(clはコ
ントロール部、(ADl) (AD2)は加算器、眞)
けモータ、(G2)は減速機構、(T)V!速度検出器
、(K)は位置検出器、(AMP)は速度増幅器、(R
J)は支点である。 なお、図中、同一符号は同−又は相当部分を示す。 代理人 大台増雄 第1図 第2図 第3図 第4図
Fig. 1 is a block diagram of a conventional device, Fig. 2 is a block diagram showing another example of the conventional device, Fig. 3 is an operation explanatory diagram showing the operation of Fig. 2, and Fig. 4 is an example of an actual structure of the present invention. FIG. 2 is a block diagram illustrating an example. In the figure, +11 is a storage unit, (2) is a correction circuit, (cl is a control unit, (ADl) (AD2) is an adder, true)
ke motor, (G2) is the reduction mechanism, (T)V! Speed detector, (K) is position detector, (AMP) is speed amplifier, (R
J) is the fulcrum. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Masuo OdaiFigure 1Figure 2Figure 3Figure 4

Claims (1)

【特許請求の範囲】[Claims] 減速機構を介し駆動源より駆動される移動部、及びこの
移動部への位置指令茗号と上記移動部の実際の位置@号
とを比較し、その差信号により上記移動部を所定位置に
移動制御する制御部とを設け、ト記移動部の移動位置v
c這じて上記減速機構の減速比が変化するものにおいて
、上記移動部の可能範囲における基準の減速比に対する
上記移動部の移動位置における実際の減速比との比率に
よって上記差信号を補正する補正手段を備えた位置決め
制御装置。
The moving part is driven by a drive source via a deceleration mechanism, and the position command to this moving part is compared with the actual position of the moving part, and the moving part is moved to a predetermined position based on the difference signal. A control unit is provided to control the moving position v of the moving unit.
In the case where the reduction ratio of the reduction mechanism changes over time, the difference signal is corrected based on the ratio of the actual reduction ratio at the movement position of the movement part to the reference reduction ratio in the possible range of the movement part. A positioning control device comprising means.
JP6943384A 1984-04-06 1984-04-06 Positioning controller Pending JPS60214018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6943384A JPS60214018A (en) 1984-04-06 1984-04-06 Positioning controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6943384A JPS60214018A (en) 1984-04-06 1984-04-06 Positioning controller

Publications (1)

Publication Number Publication Date
JPS60214018A true JPS60214018A (en) 1985-10-26

Family

ID=13402493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6943384A Pending JPS60214018A (en) 1984-04-06 1984-04-06 Positioning controller

Country Status (1)

Country Link
JP (1) JPS60214018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121010A (en) * 1988-10-31 1990-05-08 Mutoh Ind Ltd Automatic gain adjusting method for servomechanism of automatic drafting machine, and the like
EP0737844A2 (en) * 1995-04-11 1996-10-16 Canon Kabushiki Kaisha Alignment apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121010A (en) * 1988-10-31 1990-05-08 Mutoh Ind Ltd Automatic gain adjusting method for servomechanism of automatic drafting machine, and the like
EP0737844A2 (en) * 1995-04-11 1996-10-16 Canon Kabushiki Kaisha Alignment apparatus and method
EP0737844A3 (en) * 1995-04-11 1997-08-06 Canon Kk Alignment apparatus and method

Similar Documents

Publication Publication Date Title
JP3129622B2 (en) Quadrant projection correction method in full closed loop system
KR100301751B1 (en) Servo adjustment method and apparatus therefor
JP3169838B2 (en) Servo motor control method
JPH05118302A (en) Controller for servomotor
JPS63123107A (en) Position control system
JPS60214018A (en) Positioning controller
JPS6063620A (en) Servocontrol method
JPH0469850A (en) Position controller for tape recorder
JPH0317703A (en) Zeroing method using speed-dependent disturbance estimating observer
JPS6375907A (en) Method for eliminating follow-up delay in full-close feedback nc system
JPH0475113A (en) Controller
JPS616711A (en) Positional servo control device of robot
JP2002006958A (en) Positioning control device
JPH08132369A (en) Robot controller
JPS5626676A (en) Welding arc detector
JPS63181011A (en) Control method for robot
JPS6228803A (en) Servo control device having feedforward compensation
JP2517640B2 (en) Electronic beam exposure system
JP3562535B2 (en) Numerical control unit
JPH10228319A (en) Controller for motor
JPH07164282A (en) Switching method of spindle operation
JP2000267714A (en) Correction input value generation method for precise track control of servo control system
JPH04335411A (en) Position controller
JPH0764644A (en) Gain switching device for positioning servo mechanism
JPH01271810A (en) Speed control method