JPH04335411A - Position controller - Google Patents

Position controller

Info

Publication number
JPH04335411A
JPH04335411A JP10598091A JP10598091A JPH04335411A JP H04335411 A JPH04335411 A JP H04335411A JP 10598091 A JP10598091 A JP 10598091A JP 10598091 A JP10598091 A JP 10598091A JP H04335411 A JPH04335411 A JP H04335411A
Authority
JP
Japan
Prior art keywords
deviation amount
gain
speed
amount
subtracter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10598091A
Other languages
Japanese (ja)
Inventor
Hideo Uno
宇野 英男
Hideo Yamamoto
英生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Magnescale Inc
Original Assignee
Sony Magnescale Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Magnescale Inc filed Critical Sony Magnescale Inc
Priority to JP10598091A priority Critical patent/JPH04335411A/en
Publication of JPH04335411A publication Critical patent/JPH04335411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To eliminate the uncontrollable area and to improve the positioning precision without decreasing a control speed and without making rigidity of a control system higher than necessary by providing a specific variable gain arithmetic means. CONSTITUTION:A target position signal (b) from a position command means 1 is supplied to a subtracter 3, and also, a position feedback signal (a) for showing the present position of an object 2 to be controlled, obtained in a position detector 4 is supplied to the subtracter 5, and in the subtracter 3, a position deviation amount (e) is derived on its output side. Subsequently, this position deviation amount (e) is converted to a speed command amount (v) and the position of the object 2 to be controlled is controlled. In such a state, a variable gain computing element 8 for varying hyperbolically the position gain against this position deviation amount (e) is provided. That is, in this variable gain computing element 8, whether the position deviation amount (e) is (e)>0, or (e)=0, or (e)<0 is judged and a prescribed operation is executed, but the position deviation amount (e) becomes smaller as it approaches a target position, and becomes a gain curve of a hyperbolic type.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は精密かつ高速な制御を必
要とする機器例えば工作機械等の工具、ワーク等の位置
制御をするのに使用して好適な位置制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position control device suitable for use in controlling the position of tools, workpieces, etc. of equipment such as machine tools that require precise and high-speed control.

【0002】0002

【従来の技術】先に工作機械等の工具、ワーク等の被制
御物の位置を制御するのに図5に示す如き数値制御装置
による閉ループ制御方式の位置制御装置が提案されてい
る。即ち図5において、1は被制御物2の目標位置を示
す目標位置信号bを発生する位置指令手段を示し、この
位置指令手段1よりの目標位置信号bを位置偏差量eを
得るための減算器3に供給する。また4は被制御物2の
現在位置を検出する位置検出器を示し、この位置検出器
4に得られる被制御物2の現在位置を示す位置帰還信号
aをこの減算器3に供給する。この減算器3においては
位置偏差量ee=b−aを得るようにしている。
2. Description of the Related Art Previously, a closed-loop control type position control device using a numerical control device as shown in FIG. 5 has been proposed for controlling the position of controlled objects such as tools and workpieces of machine tools. That is, in FIG. 5, 1 indicates a position command means that generates a target position signal b indicating the target position of the controlled object 2, and the target position signal b from the position command means 1 is subtracted to obtain the position deviation amount e. Supply to vessel 3. Reference numeral 4 denotes a position detector for detecting the current position of the controlled object 2, and a position feedback signal a indicating the current position of the controlled object 2 obtained by the position detector 4 is supplied to the subtracter 3. This subtracter 3 is designed to obtain the positional deviation amount ee=ba.

【0003】この位置偏差量e信号をNC増幅器5に供
給する。このNC増幅器5においてはこの位置偏差量e
(μm)に位置ゲインg(1/sec)及び制御定数(
被制御物2の単位速度当りの速度指令量)k(sec/
μm)を乗算した速度指令量v
[0003] This positional deviation amount e signal is supplied to an NC amplifier 5. In this NC amplifier 5, this positional deviation amount e
(μm), position gain g (1/sec) and control constant (
Speed command amount per unit speed of controlled object 2) k (sec/
Speed command amount v multiplied by μm)

【0004】0004

【数1】v=e×g×k[Math. 1] v=e×g×k

【0005】を得る。ここで位置ゲインgとは単位位置
偏差量当りの制御速度で、制御系の剛性(応答特性)に
応じて設定する利得をいう。この位置ゲインgは一定と
され、このNC増幅器5より位置偏差量eに比例した速
度指令量vを得ている。このNC増幅器5の出力側に得
られるこの速度指令量v信号を駆動増幅器6に供給する
。ここで速度指令量vはこの駆動増幅器6に供給する操
作量で、この駆動増幅器6の入力仕様に合わせたもので
、あらかじめ取り決めた任意の単位で無名数である。 この駆動増幅器6の出力信号を被制御物2を駆動する駆
動装置7に供給する。本例では直線位置を回転型駆動装
置で制御するものとする。斯る図5例においては制御速
度Vは
0005 is obtained. Here, the position gain g is a control speed per unit position deviation amount, and is a gain that is set according to the rigidity (response characteristics) of the control system. This position gain g is kept constant, and a speed command amount v proportional to the positional deviation amount e is obtained from this NC amplifier 5. This speed command amount v signal obtained at the output side of this NC amplifier 5 is supplied to a drive amplifier 6. Here, the speed command amount v is a manipulated variable to be supplied to the drive amplifier 6, which is matched to the input specifications of the drive amplifier 6, and is an arbitrary unit determined in advance and is an anonymous number. The output signal of this drive amplifier 6 is supplied to a drive device 7 that drives the controlled object 2 . In this example, it is assumed that the linear position is controlled by a rotary drive device. In the example in FIG. 5, the control speed V is

【0006】[0006]

【数2】V=v×(1/k)=eg[Formula 2] V=v×(1/k)=eg

【0007】である。ここで1/kは単位速度指令量当
りの被制御物2の速度である。また
[0007] Here, 1/k is the speed of the controlled object 2 per unit speed command amount. Also

【0008】[0008]

【数3】k=1/(r×d)[Math. 3] k=1/(r×d)

【0009】である。ここでrは単位速度指令量当りの
駆動装置の回転速度であり、dは駆動装置1回転当りの
被制御物2の移動量である。この図5例においては被制
御物2を位置指令手段1よりの目標位置に移動すること
ができる。
[0009] Here, r is the rotational speed of the drive device per unit speed command amount, and d is the amount of movement of the controlled object 2 per one rotation of the drive device. In the example shown in FIG. 5, the controlled object 2 can be moved to the target position specified by the position command means 1.

【0010】0010

【発明が解決しようとする課題】然しながら斯る図5例
において、位置検出器4から得られる現在位置が離散値
である場合、位置偏差量e及び速度指令量vも離散値と
なる為、より精密な位置決めを目標として位置検出器4
の検出分解能を高めた場合、微小な位置偏差量eに対応
する速度指令量vが出力されず、結果的に位置制御が不
能となる。
However, in the example shown in FIG. 5, if the current position obtained from the position detector 4 is a discrete value, the position deviation amount e and the speed command amount v also become discrete values, so that Position detector 4 for precise positioning
If the detection resolution is increased, the speed command amount v corresponding to the minute positional deviation amount e will not be output, and as a result, position control will become impossible.

【0011】これにつき以下に具体的例につき説明する
。 r=0.05(rev/sec)、d=2000(μm
/rev)、g=25(1/sec)の場合、これを数
3及び数1に代入すると k=1/(r×d)=0.01(sec/μm)v=e
×g×k=0.25eとなる。 位置ゲインgは一定であるから、位置偏差量eと位置ゲ
インgとの関係は図6に示す如く位置偏差量eの変化に
関係なく常に一定(g=25)である。一方位置偏差量
eと速度指令量vとの関係は図7に示す如くなり、この
図7から明らかな如く位置偏差量eが−3〜+3(μm
)の範囲では速度指令量vが零であり、この範囲は位置
制御不能域である。この様に従来の位置ゲインgが一定
での制御では位置決め精度を高めようとすると(位置検
出器4と目標位置の分解能を高めるほど)、この様な位
置制御不能域が発生しやすく、これにより位置決めの精
度の悪化をまねく不都合があった。
A specific example of this will be explained below. r=0.05 (rev/sec), d=2000 (μm
/rev), g = 25 (1/sec), substituting this into Equation 3 and Equation 1 gives k = 1/(r x d) = 0.01 (sec/μm) v = e
×g×k=0.25e. Since the positional gain g is constant, the relationship between the positional deviation amount e and the positional gain g is always constant (g=25) regardless of the change in the positional deviation amount e, as shown in FIG. On the other hand, the relationship between the position deviation amount e and the speed command amount v is as shown in FIG.
), the speed command amount v is zero, and this range is an area where position control is impossible. In this way, in conventional control where the position gain g is constant, when trying to improve positioning accuracy (the higher the resolution of the position detector 4 and the target position), such a position uncontrollable region is likely to occur, and this There was an inconvenience that led to deterioration of positioning accuracy.

【0012】この様な位置制御不能域を解消するのに位
置ゲインgを大きくすること及び被制御物2の単位速度
当りの速度指令量kを大きくすることが考えられる。数
1において、gが上述具体例の4倍の100(1/se
c)以上とすれば、この位置制御不能域を無くすことが
できる。ところが上述の通り位置ゲインgは制御系の剛
性に合わせて設定するためこの機械系の剛性を向上させ
る必要がある。この機械等の剛性に相当する値を超える
位置ゲインgを設定すると、この制御系の応答特性を超
える不安定な制御となり、振動が生じ制御不能となる。 一般的に機械等の剛性を向上させることは多大な労力と
費用がかかり、また限度がある。
In order to eliminate such a positional uncontrollable region, it is conceivable to increase the position gain g and to increase the speed command amount k per unit speed of the controlled object 2. In Equation 1, g is 100 (1/s
c) With the above, this position-uncontrollable area can be eliminated. However, as described above, the position gain g is set in accordance with the rigidity of the control system, so it is necessary to improve the rigidity of this mechanical system. If the position gain g exceeds a value corresponding to the rigidity of the machine, etc., the control system becomes unstable and exceeds the response characteristics of the control system, causing vibration and becoming uncontrollable. In general, improving the rigidity of machines requires a lot of effort and cost, and there are limits.

【0013】またkを4倍以上にするには、数3よりr
×dを1/4にすればよい。ここで1/4の減速機を用
いてrを1/4、上述具体例でr=0.0125とした
場合 k=1/(r×d)=0.04(sec/μm)∴v=
e となり、位置制御不能域を無くすことができるが、制御
最高速度が1/4となる不都合がある。本発明は斯る点
に鑑み制御速度を低減させることなく、必要以上に制御
系の剛性を高めることなく、より精密な位置決めができ
るようにすることを目的とする。
[0013] Also, in order to increase k by 4 times or more, from equation 3, r
×d may be set to 1/4. Here, if r is set to 1/4 using a 1/4 speed reducer, and r = 0.0125 in the above specific example, then k = 1/(r x d) = 0.04 (sec/μm) ∴v =
e, which eliminates the positional uncontrollable region, but there is a disadvantage that the maximum control speed is reduced to 1/4. In view of these points, it is an object of the present invention to enable more precise positioning without reducing the control speed or increasing the rigidity of the control system more than necessary.

【0014】[0014]

【課題を解決するための手段】本発明位置制御装置は例
えば図1、図2、図3及び図4に示す如く被制御物2の
目標位置と現在位置との差の位置偏差量eを速度指令量
vに変換して、この被制御物2の位置を制御するように
した位置制御装置において、この位置偏差量eに対して
双曲線的に位置ゲインGを変化させる可変ゲイン演算手
段8を設けたものである。
[Means for Solving the Problems] The position control device of the present invention converts the position deviation amount e of the difference between the target position and the current position of the controlled object 2 into the speed as shown in FIGS. 1, 2, 3, and 4. In a position control device that controls the position of the controlled object 2 by converting it into a command amount v, a variable gain calculation means 8 is provided that changes the position gain G in a hyperbolic manner with respect to the position deviation amount e. It is something that

【0015】[0015]

【作用】本発明に依れば図3に示す如く位置ゲインGを
位置偏差量eに対して双曲線的に変化するようにしてい
るので、安定で良好な制御を行なうことができ、速度指
令量vと位置偏差量eとの関係は図4に示す如く制御不
能域は無いものとなり、位置決め精度が向上され且つN
C増幅器の速度制御比を有効に使用して、高速な位置決
めを行うことができ、また被制御物2の剛性を必要以上
に高める必要がなく、この為の労力費用は不要である。
[Operation] According to the present invention, as shown in FIG. 3, the position gain G is made to change hyperbolically with respect to the position deviation amount e, so stable and good control can be performed, and the speed command amount As shown in FIG. 4, the relationship between v and the positional deviation amount e is such that there is no uncontrollable area, the positioning accuracy is improved, and N
High-speed positioning can be performed by effectively using the speed control ratio of the C amplifier, and there is no need to increase the rigidity of the controlled object 2 more than necessary, and there is no need for labor costs for this purpose.

【0016】[0016]

【実施例】以下、図1〜図4を参照して本発明位置制御
装置の一実施例につき説明しよう。この図1において図
5に対応する部分には同一符号を付し、その詳細説明は
省略する。図1例においては、位置指令手段1よりの目
標位置信号bを減算器3に供給すると共に位置検出器4
に得られる被制御物2の現在位置を示す位置帰還信号a
をこの減算器3に供給する。この減算器3においてはそ
の出力側に位置偏差量e e=b−a を得るようにしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the position control apparatus of the present invention will be described below with reference to FIGS. 1 to 4. In FIG. 1, parts corresponding to those in FIG. 5 are designated by the same reference numerals, and detailed explanation thereof will be omitted. In the example shown in FIG. 1, the target position signal b from the position command means 1 is supplied to the subtractor 3, and the position
Position feedback signal a indicating the current position of the controlled object 2 obtained in
is supplied to this subtracter 3. In this subtracter 3, the positional deviation amount ee=ba is obtained on its output side.

【0017】この位置偏差量e信号をNC増幅器5に供
給する。このNC増幅器5においては、この位置偏差量
eに位置ゲインg及び制御定数k(被制御物2の単位速
度当りの速度指令量)を乗算した出力信号v′v′=e
×g×k を得る。本例においてはこの出力信号v′を可変ゲイン
演算器8に供給し、この可変ゲイン演算器8の出力側に
速度指令量v信号を得る如くする。この可変ゲイン演算
器8においては所定タイミング毎に図2に示す如き演算
を行う。即ち、この可変ゲイン演算器8においては位置
偏差量eがe>0か、e=0か、e<0かを判断し、
This positional deviation amount e signal is supplied to the NC amplifier 5. In this NC amplifier 5, an output signal v'v'=e is obtained by multiplying the positional deviation amount e by the position gain g and the control constant k (speed command amount per unit speed of the controlled object 2).
Obtain ×g×k. In this example, this output signal v' is supplied to the variable gain calculator 8, so that the speed command amount v signal is obtained at the output side of the variable gain calculator 8. The variable gain calculator 8 performs calculations as shown in FIG. 2 at predetermined timings. That is, the variable gain calculator 8 determines whether the positional deviation amount e is e>0, e=0, or e<0,


0018】
[
0018

【数4】v=e×g×k+P[Math. 4] v=e×g×k+P

【0019】の演算を行う。この場合e>0のときはP
=Cとし、e=0のときはP=0とし、e<0のときは
P=−Cとする。ここでCはゲイン定数であり、この可
変ゲイン演算器8に設定されたゲイン定数Cは制御の状
態に合わせて任意の値に設定する如くする。ここで数4
においてP=kpとおくと数2より制御速度Vは
The following calculation is performed. In this case, when e>0, P
=C, when e=0, P=0, and when e<0, P=-C. Here, C is a gain constant, and the gain constant C set in the variable gain calculator 8 is set to an arbitrary value according to the control state. Here number 4
If we set P=kp in, then from equation 2, the control speed V is

【00
20】
00
20]

【数5】 V=(e×g×k+kp)/k =e(g+p/e)[Math 5] V=(e×g×k+kp)/k =e(g+p/e)

【0021】となる。この数5と数2とを比較すると明
らかなように本例における位置ゲインGは従来の位置ゲ
インgにp/eを加算したものとなり、位置偏差量eは
目標位置に近づくにつれて小さくなり、pは定数である
ので、この位置ゲインGは図3に示す如く双曲線型のゲ
イン曲線となる。
[0021] As is clear from comparing Equation 5 and Equation 2, the position gain G in this example is the conventional position gain g plus p/e, and the position deviation amount e becomes smaller as it approaches the target position, and p Since is a constant, this position gain G has a hyperbolic gain curve as shown in FIG.

【0022】この可変ゲイン演算器8の出力側に得られ
る速度指令量v信号を駆動増幅器6に供給する。本例に
おいてはその他は図5と同様に構成する。
The speed command amount v signal obtained at the output side of the variable gain calculator 8 is supplied to the drive amplifier 6. In this example, the other configuration is the same as that in FIG. 5.

【0023】本例は上述の如く位置ゲインGを位置偏差
量eに対して図3に示す如く双曲線的に変化するように
しているので位置偏差量eと速度指令量vとの関係は図
4に示す如く制御不能域の無いものとなる。
In this example, as described above, the position gain G is made to vary hyperbolically with respect to the position deviation amount e as shown in FIG. 3, so the relationship between the position deviation amount e and the speed command amount v is as shown in FIG. As shown in the figure, there is no uncontrollable area.

【0024】これにつき具体的例につき説明するに従来
具体例と同様に r=0.05(rev/sec)、d=2000(μm
/rev)g=25(1/sec)の場合、k=0.0
1(sec/μm)であり、 v=e×25×0.01+P=0.25e+Pとなるか
ら、ゲイン定数C=1の時は図4に示す如くなり、制御
不能域の無いものとなり、位置決め精度が向上する。ま
た本例においては減速機等を使用しないのでNC増幅器
5の速度制御比を有効に使用でき高速な位置決めを行う
ことができる。更に本例に依れば被制御物2の剛性を必
要以上に高める必要がなく、このための労力、費用は不
要である。更にまた本例に依れば、駆動増幅器6の入力
感度がNC増幅器5の速度指令単位を下回る場合、その
入力感度を上回るNC増幅器5の速度指令出力を可能と
する。尚、本発明は上述実施例に限ることなく本発明の
要旨を逸脱することなくその他種々の構成が採り得るこ
とは勿論である。
[0024] To explain this using a specific example, r = 0.05 (rev/sec), d = 2000 (μm
/rev) If g=25 (1/sec), k=0.0
1 (sec/μm), and v=e×25×0.01+P=0.25e+P, so when the gain constant C=1, it becomes as shown in Figure 4, and there is no uncontrollable area, and positioning Improves accuracy. Further, in this example, since a reduction gear or the like is not used, the speed control ratio of the NC amplifier 5 can be used effectively and high-speed positioning can be performed. Furthermore, according to this example, there is no need to increase the rigidity of the controlled object 2 more than necessary, and no effort or expense is required for this purpose. Furthermore, according to this example, when the input sensitivity of the drive amplifier 6 is lower than the speed command unit of the NC amplifier 5, it is possible to output a speed command of the NC amplifier 5 that exceeds the input sensitivity. It goes without saying that the present invention is not limited to the above-described embodiments, and that various other configurations can be adopted without departing from the gist of the present invention.

【0025】[0025]

【発明の効果】本発明に依れば、制御速度を低減させる
ことなく、必要以上に制御系の剛性を高めることなく、
制御不能域を無くすことができ、良好に位置決め精度を
向上できる利益がある。
[Effects of the Invention] According to the present invention, the control system can be controlled without reducing the control speed or increasing the rigidity of the control system more than necessary.
There is an advantage that the uncontrollable area can be eliminated and positioning accuracy can be improved satisfactorily.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明位置制御装置の一実施例を示す構成図で
ある。
FIG. 1 is a configuration diagram showing an embodiment of a position control device of the present invention.

【図2】本発明の要部の説明に供する流れ図である。FIG. 2 is a flowchart for explaining essential parts of the present invention.

【図3】本発明の具体例の説明に供する線図である。FIG. 3 is a diagram for explaining a specific example of the present invention.

【図4】本発明の具体例の説明に供する線図である。FIG. 4 is a diagram for explaining a specific example of the present invention.

【図5】従来の位置制御装置の例を示す構成図である。FIG. 5 is a configuration diagram showing an example of a conventional position control device.

【図6】従来の具体例の説明に供する線図である。FIG. 6 is a diagram for explaining a conventional example.

【図7】従来の具体例の説明に供する線図である。FIG. 7 is a diagram for explaining a conventional example.

【符号の説明】[Explanation of symbols]

1  位置指令手段 2  被制御物 3  減算器 4  位置検出器 5  NC増幅器 6  駆動増幅器 7  駆動装置 8  可変ゲイン演算器 1 Position command means 2. Controlled object 3. Subtractor 4 Position detector 5 NC amplifier 6 Drive amplifier 7 Drive device 8 Variable gain calculator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  被制御物の目標位置と現在位置との差
の位置偏差量を速度指令量に変換して上記被制御物の位
置を制御するようにした位置制御装置において、上記位
置偏差量に対して双曲線的に位置ゲインを変化させる可
変ゲイン演算手段を設けたことを特徴とする位置制御装
置。
1. A position control device that controls the position of the controlled object by converting a position deviation amount of the difference between a target position and the current position of the controlled object into a speed command amount, wherein the position deviation amount is 1. A position control device comprising variable gain calculation means for hyperbolically changing a position gain relative to the position.
JP10598091A 1991-05-10 1991-05-10 Position controller Pending JPH04335411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10598091A JPH04335411A (en) 1991-05-10 1991-05-10 Position controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10598091A JPH04335411A (en) 1991-05-10 1991-05-10 Position controller

Publications (1)

Publication Number Publication Date
JPH04335411A true JPH04335411A (en) 1992-11-24

Family

ID=14421900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10598091A Pending JPH04335411A (en) 1991-05-10 1991-05-10 Position controller

Country Status (1)

Country Link
JP (1) JPH04335411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122724A (en) * 1998-10-20 2000-04-28 Matsushita Electric Ind Co Ltd Method for shortening positioning time of motor driver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122724A (en) * 1998-10-20 2000-04-28 Matsushita Electric Ind Co Ltd Method for shortening positioning time of motor driver

Similar Documents

Publication Publication Date Title
US4727303A (en) Positional control method and system utilizing same
US4143310A (en) Apparatus for positioning
JP3129622B2 (en) Quadrant projection correction method in full closed loop system
KR940003005B1 (en) Arrangement for speed regulation of electric motor
KR20010075266A (en) Position controller
US5379367A (en) Linear interpolating method for robot control
US4890046A (en) Numerical control apparatus
JPH04335411A (en) Position controller
JPH04352012A (en) Robot-position controlling method
JPH10277771A (en) X-y stage controller
KR101001051B1 (en) Servo Moter Speed Loop Gain Control Unit of CNC
JPH0623932B2 (en) Servo control method
JP2000267712A (en) Method for detecting inversion of moving direction of mobile object, and servo control method and device using the method
JP3383044B2 (en) Laser processing control device
KR0160699B1 (en) Method for circular error compensation of robot
EP0605909A1 (en) Controller
JP2706743B2 (en) Control method of belt transmission mechanism
JPH06276774A (en) Positioning control method for motor
JPS62229412A (en) Positioning device
JPS6316304A (en) Numerical controller
JPH01276315A (en) Numerical controller
JPH11161338A (en) Position control unit
JP2770978B2 (en) Position control method and positioning device therefor
JPS62150409A (en) Speed control method in digital servo control
JPH0561506A (en) Foreknowledge control method for action controller