JPS60211868A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS60211868A
JPS60211868A JP6942084A JP6942084A JPS60211868A JP S60211868 A JPS60211868 A JP S60211868A JP 6942084 A JP6942084 A JP 6942084A JP 6942084 A JP6942084 A JP 6942084A JP S60211868 A JPS60211868 A JP S60211868A
Authority
JP
Japan
Prior art keywords
type silicon
transistor
parasitic
layer
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6942084A
Other languages
Japanese (ja)
Inventor
Yasufumi Okuhara
奥原 保史
Akihisa Uchida
内田 晶久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6942084A priority Critical patent/JPS60211868A/en
Publication of JPS60211868A publication Critical patent/JPS60211868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the generation of a latch-up by completely separating grounding lines for a bipolar element and an MOS element and connecting the grounding line for the bipolar element to an isolating layer. CONSTITUTION:A P type silicon substrate 1 as an emitter in a parasitic P-N-P transistor 21 has the same potential as a grounding line 18 for a bipolar element through an isolating layer 4. The P type silicon substrate 1 as an emitter in a parasitic P-N-P transistor 23 has the same potential as the grounding line 18 for the bipolar element through the isolating layer 4 while potential on the plus side of a power supply is applied to an N type silicon epitaxial layer 3 as a base through a power supply line 20 and an N<+> diffusion layer 15. That is, the parasitic P-N-P transistor 23 is brought to a reverse bias state-for example, the transistor 23 is not turned ON even when the potential of the grounding line for the bipolar transistor varies more or less, thus eliminating a latch-up.

Description

【発明の詳細な説明】 〔発明の技術分野〕 安定化に関するものである。[Detailed description of the invention] [Technical field of invention] It is about stabilization.

(従来技術〕 従来この種の回路の構造として第1図に示すものがあっ
た。第1図において、1はP型シリコン基板、2,3は
N型シリコンエピタキシャル層、4はバイポーラ素子と
CMOS素子とを分離するための分離層である。5.6
.7はそれぞれNPNトランジスタのベース(P十拡散
層)、エミッタ(N+十被拡散層、コレクタ(N+十被
拡散層である。8,9,10.11はそれぞれNチャネ
ル(Nch) M OS )ランリスクのアイランド(
P−拡散層)、ゲート電極、ソース(N十拡散層)、ド
レイン(N十拡散層)であり、12,13.14はそれ
ぞれPchMOSトランジスタのゲート電極、ソース(
P十拡散層)、ドレイン(P十拡散層)である。15は
N十拡散層であり、これはPchMO3)ランリスクの
基板となるN型シリコンエミッタN3と電源ライン20
のオーミックコンタクトをとるためのものである。16
は酸化膜、17はアルミ配線である。1B、19.20
はそれぞれバイポーラ素子用アースライン、CMO3素
子用アースライン、電源ラインである。
(Prior art) Conventionally, there was a structure of this type of circuit as shown in Fig. 1. In Fig. 1, 1 is a P-type silicon substrate, 2 and 3 are N-type silicon epitaxial layers, and 4 is a bipolar element and a CMOS. It is a separation layer for separating the elements. 5.6
.. 7 are the base (P10 diffusion layer), emitter (N+10 diffusion layer), and collector (N+10 diffusion layer) of the NPN transistor, respectively. 8, 9, 10. 11 are the N channel (Nch) MOS) runs, respectively. Island of Risk (
12, 13.14 are the gate electrode and source (of the PchMOS transistor), respectively.
(P10 diffusion layer), and the drain (P10 diffusion layer). 15 is an N+ diffusion layer, which connects the N-type silicon emitter N3, which serves as the substrate for the PchMO3) run risk, and the power supply line 20.
This is for making ohmic contact. 16
1 is an oxide film, and 17 is an aluminum wiring. 1B, 19.20
are the ground line for the bipolar element, the ground line for the CMO3 element, and the power supply line, respectively.

第2図、第3図はそれぞれP型シリコン基板1−NPN
 )ランジメタ22間、P型シリコン基板1−NchM
OS )ランジスク間に存在する寄生サイリスクであり
、第2図の21.22はそれぞれ寄生PNP )ランジ
スタ、N、PNトランジスタである。第3図の23は寄
生PNP )ランリスク。
Figures 2 and 3 are P-type silicon substrate 1-NPN, respectively.
) Between the range metal 22, P-type silicon substrate 1-NchM
21 and 22 in FIG. 2 are parasitic PNP transistors, N, and PN transistors, respectively. 23 in Figure 3 is a parasitic PNP) orchid risk.

24.25は寄生NPN トランジスタを示す。これら
の図において、第1図と同一部分は同一符号で示されて
いる。
24 and 25 indicate parasitic NPN transistors. In these figures, the same parts as in FIG. 1 are designated by the same reference numerals.

このようなり1−MO3集積回路において、P型シリコ
ン基板1−NPN’)ランジス222間。
In this way, in the 1-MO3 integrated circuit, between the P-type silicon substrate 1-NPN') rungis 222.

P型シリコン基板1−NchMOS トランジスタ間に
はそれぞれ第2図、第3図のような寄生サイリスクが存
在する。
Parasitic silicon risks as shown in FIGS. 2 and 3 exist between the P-type silicon substrate 1 and the NchMOS transistor, respectively.

ここで0MO8素子用アースライン19は分離層4に接
続されており、バイポーラ素子用アースライン18と完
全に絶縁されている。従って、P型シリコン基板1は分
離N4を通して0MO3素子用アースライン19の電位
が与えられる。
Here, the ground line 19 for the 0MO8 element is connected to the separation layer 4 and is completely insulated from the ground line 18 for the bipolar element. Therefore, the potential of the 0MO3 element earth line 19 is applied to the P-type silicon substrate 1 through the isolation N4.

このときP型シリコン1−NchMOSトランジスタ間
のリスサイリスクは、次のような理由により、オンしな
い。なぜなら寄生PNP )ランリスク23のエミッタ
、即ちP型シリコン基板1は0MO3素子用アースライ
ン19と同電位でミ力、これに対しベース、即ちN型シ
リコンエピタキシャル層3にはN十数散層15を通して
電源のプラス側の電圧が与えられており、このため寄生
PNPトランジスタ23がオンしないからである。
At this time, the resiliency risk between the P-type silicon 1 and NchMOS transistors is not turned on for the following reason. This is because the emitter of the parasitic PNP run risk 23, that is, the P-type silicon substrate 1, is at the same potential as the earth line 19 for the 0MO3 element, whereas the base, that is, the N-type silicon epitaxial layer 3, has an N-dozen scattered layer 15. This is because the positive voltage of the power supply is applied through the transistor, and therefore the parasitic PNP transistor 23 is not turned on.

ところがP型シリコン基板1とNPNドランジスク22
間のサイリスクは次のような条件のもとでオンし、ラン
チアンプを起こす。即ち、NPNトランジスタ22はベ
ース5に加わる回路信号によりオンまたはオフ状態とな
るものとすると、これがオンしている時、寄生PNP 
)ランリスク21のエミッタであるP型シリコン基板1
の電位がベース、即ちN型シリコンエピタキシャル層2
の電位より高くなるとこの寄生PNPトランジスタ21
はオンし、これ以後NPNトランジスタ22はベース5
に加わる回路信号に関係な(オンし続けることになって
しまう。
However, the P-type silicon substrate 1 and the NPN drain disk 22
The si-risk in between turns on under the following conditions and causes the launch amplifier. That is, assuming that the NPN transistor 22 is turned on or off by a circuit signal applied to the base 5, when it is on, the parasitic PNP
) P-type silicon substrate 1 which is the emitter of run risk 21
The potential of the base, that is, the N-type silicon epitaxial layer 2
When the potential becomes higher than the potential of this parasitic PNP transistor 21
turns on, and from now on, the NPN transistor 22 has a base 5
It is related to the circuit signal applied to the circuit (it will continue to turn on).

このように、バイポーラ素子用とCMO3素子用の2つ
のアースラインを持つ従来のBi−CMO8集積回路に
おいてはNPN )ランリスク22が飽和状態で動作し
、P型シリコン基板1の電位、即ち0MO3素子用アー
スライン19の電位が浮き上がると、寄生サイリスクが
オンし、ランチアップが発生するという欠点があった。
In this way, in the conventional Bi-CMO8 integrated circuit having two ground lines, one for bipolar elements and one for CMO3 elements, the NPN) run risk 22 operates in a saturated state, and the potential of the P-type silicon substrate 1, that is, the 0 MO3 element When the potential of the ground line 19 rises, the parasitic silicon risk is turned on and launch-up occurs.

〔発明の概要〕[Summary of the invention]

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、バイポーラ素子用とMO3素子
用のアースラインを完全に分離し、かつバイポーラ素子
用のアースラインを分離層に接続することにより、ラン
チアンプの発生を防止することのできる半導体集積回路
を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it completely separates the ground lines for bipolar elements and MO3 elements, and connects the ground line for bipolar elements to the separation layer. It is an object of the present invention to provide a semiconductor integrated circuit that can prevent the occurrence of launch amplifiers.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第4
図において、1はP型シリコン基板、2゜3はN型シリ
コンエピタキシャル層、4はバイポーラ素子とCMO3
素子とを分離するための分離層である。5,6.7はそ
れぞれNPN)ランリスクのベース(P十数散層)、エ
ミッタ(N+十十数散層、コレクタ(N+十十数散層で
ある。8,9゜10.11はそれぞれNchMO3)ラ
ンリスクのアイランド(P−拡散層)、ゲート電極、ソ
ース(N十数散l1i)、ドレイン(N十数散層)であ
り、12.13.14はそれぞれPchMO3)ランリ
スクのゲート電極、ソース(P十数散N)、ドレイン(
P+拡散N)である。15はN十数散層であるが、これ
はPchMO3)ランリスクの基板となるN型シリコン
エピタキシャルN3とアルミ配線のオーミックコンタク
トをとるためのものである。16は酸化膜、17はアル
ミ配線である。1B、19.20はそれぞれバイポーラ
素子用アースライン、CMO3素子用アースライン、電
源ラインである。
An embodiment of the present invention will be described below with reference to the drawings. Fourth
In the figure, 1 is a P-type silicon substrate, 2.3 is an N-type silicon epitaxial layer, and 4 is a bipolar element and CMO3.
This is a separation layer for separating the elements. 5 and 6.7 are respectively NPN) run risk base (P dozen scattered layer), emitter (N + ten dozen scattered layer), collector (N + ten dozen scattered layer. 8, 9゜10.11 are respectively NchMO3) run risk island (P-diffused layer), gate electrode, source (N 10-odd scattered l1i), drain (N 10-odd scattered layer), and 12, 13, 14 are the gate electrode of PchMO3) run risk, respectively. , source (P tens of N), drain (
P+diffusion N). Reference numeral 15 denotes an N-doped scattering layer, which is used to establish ohmic contact between the aluminum wiring and the N-type silicon epitaxial layer N3, which serves as the substrate for the PchMO3) run risk. 16 is an oxide film, and 17 is an aluminum wiring. 1B and 19.20 are a bipolar element ground line, a CMO3 element ground line, and a power supply line, respectively.

また本実施例におけるP型シリコン基板1−NPN)ラ
ンジスク22間、P型シリコン基Fj、1−NchMO
3)ランジスク間に存在する寄生サイリスクは、従来の
それを示す第2図、第3図と同様である。
Further, in this embodiment, between the P-type silicon substrate 1-NPN) run disk 22, the P-type silicon group Fj, 1-NchMO
3) The parasitic parasitic risks that exist between the land disks are the same as those shown in conventional figures 2 and 3.

次に作用効果について説明する。Next, the effects will be explained.

上述のように、本実施例のBi−CMO3集積回路につ
いても従来のものと同様に寄生サイリス夕が存在するが
、第2図で示すP型シリコン基板1−NPN )ランジ
ス222間に存在する寄生サイリスクは次の理由により
動作しない。即ち、寄生PNP )ランリスク21のエ
ミッタであるP型シリコン基板1は分離N4を通してバ
イポーラ素子用アースライン18と同電位を持つ。とこ
ろが、このバイポーラ素子用アースライン18はNPN
トランジスタ22のエミッタ6に接続されている。
As mentioned above, the Bi-CMO3 integrated circuit of this embodiment also has a parasitic thyristor as in the conventional one, but the parasitic thyristor existing between the P-type silicon substrate 1 and the NPN) rungis 222 shown in FIG. Cyrisk does not work due to the following reasons: That is, the P-type silicon substrate 1, which is the emitter of the parasitic PNP run risk 21, has the same potential as the bipolar element earth line 18 through the isolation N4. However, this bipolar element ground line 18 is NPN.
It is connected to the emitter 6 of the transistor 22.

このような条件のもとでは第2図の寄生サイリスタはオ
ンしない。
Under these conditions, the parasitic thyristor shown in FIG. 2 does not turn on.

次に第3図で示すP型シリコン基板1とNchMOSト
ランジスタ間にリスする寄生サイリスタであるが、寄生
PNP )ランリスク23のエミッタであるP型シリコ
ン基板lは分離層4を通してバイポーラ素子用アースラ
イン18と同電位を持つのに対し、ベースであるN型シ
リコンエピタキシャル1if3には電源ライン20.N
十数散屓15を通して電源のプラス側の電位が与えられ
ている。
Next, as shown in FIG. 3, there is a parasitic thyristor placed between the P-type silicon substrate 1 and the NchMOS transistor. 18, while the base N-type silicon epitaxial layer 1if3 has a power supply line 20. N
A potential on the positive side of the power supply is applied through the 15 wires.

つまり寄生PNP )ランリスク23は逆バイアス状態
にあり、たとえバイポーラ素子用のアースラインの電位
が多少変動してもオンしない。従って第3図の寄生サイ
リスクも第2図のものと同様、オンすることはなく、従
来回路で生じていたラッチアップをなくすことができる
In other words, the parasitic PNP run risk 23 is in a reverse bias state and will not turn on even if the potential of the ground line for the bipolar element changes somewhat. Therefore, the parasitic silicon risk shown in FIG. 3 does not turn on like the one shown in FIG. 2, and the latch-up that occurs in the conventional circuit can be eliminated.

なお、上記実施例ではBi−CMO3集積回路について
説明したが、これはBi −MO3集積回路であっても
よく、上記実施例と同様の効果を奏する。
In the above embodiment, a Bi-CMO3 integrated circuit has been described, but this may also be a Bi-MO3 integrated circuit, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、同一半導体基板上に
バイポーラ素子及びMO3素子を形成した半導体集積回
路において、バイポーラ素子用とMOS素子用のアース
ラインを完全に分離し、しかもバイポーラ素子用のアー
スラインを分離層に接続したので、ラッチアップの発生
を防止することができる効果がある。
As described above, according to the present invention, in a semiconductor integrated circuit in which bipolar elements and MO3 elements are formed on the same semiconductor substrate, the ground lines for bipolar elements and MOS elements are completely separated, and the ground lines for bipolar elements and MO3 elements are completely separated. Since the ground line is connected to the separation layer, it is possible to prevent latch-up from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のBi−CMO3集積回路の断面図、第2
図、第3図はB i−CMO3集積回路に寄生するサイ
リスクを示す図、第4図はこの発明の一実施例によるB
i−CMO3集積回路の断面図である。 1・・・半導体基板、4・・・分離層、18・・・ノ1
イポーラ素子用アースライン、19・・・CMO3素子
用アースライン、22・・・NPN)ランリスク。 なお図中同一符号は同−又は相当部分を示す。 代理人 大岩増雄 第2図 第3図 手続補正書(自発) 昭和 5ル 8月22日 2、発明の名称 半導体集積回路 3、補正をする者 代表者片山仁へ部 4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 +11 明細書第1頁第13〜14行の「ノ飄イボーラ
MO3(以下Bi−MO3と記す)」を「ノ飄イボーラ
CMO3(以下Bi−CMO5と記す)」に訂正する。 (2)同第2頁第11〜12行の1シリコンエミツタ屓
」を「シリコンエピタキシャル層」に訂正する。 (3)同第3頁第6行のrB 1−M03Jを[Bi−
CMO3Jに訂正する。 以 −ヒ
Figure 1 is a cross-sectional view of a conventional Bi-CMO3 integrated circuit;
3 is a diagram showing the parasitic risk of B i-CMO3 integrated circuit, and FIG.
FIG. 2 is a cross-sectional view of an i-CMO3 integrated circuit. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 4... Separation layer, 18... No1
Earth line for Ipolar element, 19...Earth line for CMO3 element, 22...NPN) Run risk. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa 2 Figure 3 Procedural amendment (voluntary) Showa 5 Ru August 22 2 Name of the invention Semiconductor integrated circuit 3 Person making the amendment Representative Hitoshi Katayama Dept. 4 Agent 5 Amendment Column 6 of the detailed description of the invention in the subject specification, Contents of amendment +11 "Nono Ibora MO3 (hereinafter referred to as Bi-MO3)" on page 1, lines 13-14 of the specification is changed to "Nono Ibora CMO3 (hereinafter referred to as Bi-MO3)" (hereinafter referred to as Bi-CMO5)". (2) On the 2nd page, lines 11-12, ``1 silicon emitter layer'' is corrected to ``silicon epitaxial layer''. (3) rB 1-M03J on page 3, line 6 of [Bi-
Corrected to CMO3J. -H

Claims (1)

【特許請求の範囲】[Claims] (1) バイポーラ素子とMO3素子とが同一半導体基
板上に分離層により分離して形成され、上記各素子用の
アース端子は相互に絶縁して設けられ、上記バイポーラ
素子用のアース端子が上記分離層に接続されていること
を特徴とする半導体集積回路。
(1) A bipolar element and an MO3 element are formed on the same semiconductor substrate and separated by a separation layer, the ground terminals for each of the elements are provided insulated from each other, and the ground terminal for the bipolar element is provided on the separated layer. A semiconductor integrated circuit characterized by being connected in layers.
JP6942084A 1984-04-05 1984-04-05 Semiconductor integrated circuit Pending JPS60211868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6942084A JPS60211868A (en) 1984-04-05 1984-04-05 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6942084A JPS60211868A (en) 1984-04-05 1984-04-05 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS60211868A true JPS60211868A (en) 1985-10-24

Family

ID=13402101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6942084A Pending JPS60211868A (en) 1984-04-05 1984-04-05 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS60211868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030066291A (en) * 2002-02-01 2003-08-09 미쓰비시덴키 가부시키가이샤 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030066291A (en) * 2002-02-01 2003-08-09 미쓰비시덴키 가부시키가이샤 Semiconductor device

Similar Documents

Publication Publication Date Title
JP3530414B2 (en) Semiconductor device
JPS60211868A (en) Semiconductor integrated circuit
JPS6197858A (en) Latch-up preventer for cmos transistor
JP2680848B2 (en) Semiconductor memory device
JPS5949702B2 (en) Semiconductor integrated circuit device
JPS5944784B2 (en) Complementary MOS semiconductor device
JP2555890B2 (en) Input protection device for semiconductor integrated circuit
JPH0671008B2 (en) diode
JP2833913B2 (en) Bipolar integrated circuit device
JPH01185971A (en) Insulated gate semiconductor device
JPH05175519A (en) Semiconductor device
JPH0440273Y2 (en)
JPH0525232Y2 (en)
JPH0440272Y2 (en)
JPH01273346A (en) Semiconductor device
JPH0440867B2 (en)
JPS63161658A (en) Semiconductor integrated circuit device
JPS59200459A (en) Complementary type semiconductor device and manufacture thereof
JPS59121864A (en) Semiconductor device
JPS5956757A (en) Semiconductor device
JPH02133965A (en) Gate protecting device
JPS63304661A (en) Semiconductor integrated circuit
JPS6083361A (en) Semiconductor device
JPH0351103B2 (en)
JPS61208863A (en) Cmos semiconductor device