JPS60211839A - Forming method of photoresist pattern - Google Patents

Forming method of photoresist pattern

Info

Publication number
JPS60211839A
JPS60211839A JP6802484A JP6802484A JPS60211839A JP S60211839 A JPS60211839 A JP S60211839A JP 6802484 A JP6802484 A JP 6802484A JP 6802484 A JP6802484 A JP 6802484A JP S60211839 A JPS60211839 A JP S60211839A
Authority
JP
Japan
Prior art keywords
photoresist
light
thin film
photoresist pattern
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6802484A
Other languages
Japanese (ja)
Inventor
Fujio Okumura
藤男 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP6802484A priority Critical patent/JPS60211839A/en
Publication of JPS60211839A publication Critical patent/JPS60211839A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To form a photoresist pattern to self-align without limiting the thickness of a thin film by emitting a long wavelength light having the specific value or higher from a transparent substrate side to photosense a photographic photosensitive material, developing and fixing it, then emitting ultraviolet ray from the side of the photosensitive material. CONSTITUTION:When a long wavelength light 11 having 500nm or longer is emitted from a substrate 9 side, it photosenses a photographic photosensitive material 13 through a thin film layer 11 and a photoresist 12. Since the photoresist 12 does not have a sensitivity for the light 11, it is not photosensed, an opaque unit 10 does not pass the light 11. Accordingly the material 13 is not photosensed. When it is developed and fixed, the portion except the unit 10 is blackened. Then, when the light 15 is emitted from the material 13 side, the blackened portion 13a does not pass the light 15, and the not blackened portion 13b passes the light 15. Therefore, the lower photoresist 12 is selectively photosensed. Then, when the material 13 is separated and the photoresist 12 is developed, a photoresist pattern is formed.

Description

【発明の詳細な説明】 (技術分野) 本発明は薄膜素子におけるフォトレジストパターンの形
成方法に関する。詳しくは、薄膜半導体素子の自己整合
を目的としたフォトレジストパターンの形成方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for forming a photoresist pattern in a thin film device. Specifically, the present invention relates to a method of forming a photoresist pattern for the purpose of self-alignment of thin film semiconductor devices.

(従来技術とその問題点) 半導体素子を製造する際、自己整合技術は素子の性能向
上、歩留シの向上のため必要不可欠な技術である。薄膜
半導体素子でもこれは同じであシ、とくに近年平面ディ
スプレイや密着型イメージセンサ−等の薄膜半導体素子
の開発が盛んになるにつれその重要性の認識が高まって
いる。従来薄膜半導体素子の自己整合方法では平面ディ
スプレイ用薄膜トランジスタに関して次に示すものが報
告されている。
(Prior art and its problems) When manufacturing semiconductor devices, self-alignment technology is an indispensable technology for improving device performance and yield. The same is true for thin film semiconductor devices, and in recent years, as the development of thin film semiconductor devices such as flat displays and contact image sensors has become more active, recognition of its importance has increased. As a conventional self-alignment method for thin film semiconductor devices, the following methods have been reported for thin film transistors for flat panel displays.

第1図にその方法の一例を示す。図において、lはガラ
ス基板、2はゲートとなる金属電極、3はSt、、や5
sNx等の絶縁膜、4は非晶質シリコン膜(a−8i:
H)、5はポジティブな7オトレジスト(光の当った部
分が除去されるフォトレジスト)、6は紫外光、7は4
の非晶質シリコン膜と8のA1のソース・ドレイン電極
とのオーミック接触を得るためのn”−a −8i :
H’膜である。プロセスは以下の通りである。
FIG. 1 shows an example of this method. In the figure, l is a glass substrate, 2 is a metal electrode that becomes a gate, 3 is St, , 5
4 is an amorphous silicon film (a-8i:
H), 5 is a positive 7 photoresist (a photoresist that removes the areas exposed to light), 6 is ultraviolet light, 7 is 4
n”-a −8i to obtain ohmic contact between the amorphous silicon film of 8 and the source/drain electrode of A1 of 8:
It is an H' film. The process is as follows.

まず、第1図(a)に示すように半導体薄膜を形成し、
フォトレジストを塗布し、1のガラス基板側から6の紫
外光を照射する。このとき2の金属電極は6の紫外光を
透過させないため、これがマスクとなってこの上の7オ
トレジストは感光しない。
First, as shown in FIG. 1(a), a semiconductor thin film is formed,
A photoresist is applied, and ultraviolet light 6 is irradiated from the glass substrate 1 side. At this time, since the metal electrode 2 does not transmit the ultraviolet light 6, it serves as a mask and the photoresist 7 above it is not exposed.

従って、現像すると第1図(b)に示すようにゲート電
極上だけフォトレジストが残る。次にこの上に7のn+
−a −8i : H,A Iの順に積層する(第1図
(C))。最後にフォトレジストをリフトオンして薄膜
トランジスタが完成する(第1図(d))。
Therefore, when developed, the photoresist remains only on the gate electrode as shown in FIG. 1(b). Next on top of this is 7 n+
-a-8i: H and AI are stacked in this order (FIG. 1(C)). Finally, the photoresist is lifted on to complete the thin film transistor (FIG. 1(d)).

しかしながら、この自己整合方法におけるフォトレジス
トパターンの形成方法には次に述べる欠点がある。第1
の欠点は半導体薄膜の膜厚が著しく制限されることであ
る。ここで言う半導体薄膜とは、単結晶シリコン、多結
晶シリコン、非晶質シリコン、CdS、CdSe等であ
るが、これらはいずれも紫外域で大きな吸収係数を持っ
ている。例えば非晶質シリコンの紫外域での吸収係数は
l Q’ L:N”以上である。従って、膜厚を制限し
ないと紫外光が半導体薄膜で吸収されてしまいフォトレ
ジストまで届かないことになる。第2に同じ理由で紫外
光は半導体薄膜に吸収されて弱まるため長い時間の露光
が必要となる。報告されている例では、非晶質シリコン
において膜厚が01μmの場合露光時間は20〜30分
にもなる。これは通常のフォトレジストの露光時間の3
0倍から50倍に相当する。第3に長時間紫外光を照射
することによって膜にダメージを与える危険性があるこ
とでちる。例えば非晶質シリコンではS taeble
r−Wronski効果という光による膜の構造変化が
知られているが、紫外光を長時間照射するとこの効果に
よる膜質の劣化が起こる。また、この薄膜トランジスタ
の例に限って言えば、第1の欠点で述べたように膜厚に
制限があるため通常は連続形成できるn+−a”Si:
Hをあとから着けなければならないという2次的な欠点
もあった。
However, this self-alignment method for forming a photoresist pattern has the following drawbacks. 1st
The drawback is that the thickness of the semiconductor thin film is severely limited. The semiconductor thin films mentioned here include single crystal silicon, polycrystalline silicon, amorphous silicon, CdS, CdSe, etc., all of which have large absorption coefficients in the ultraviolet region. For example, the absorption coefficient of amorphous silicon in the ultraviolet region is greater than lQ'L:N''. Therefore, unless the film thickness is limited, ultraviolet light will be absorbed by the semiconductor thin film and will not reach the photoresist. Second, for the same reason, ultraviolet light is absorbed by the semiconductor thin film and weakens, so a long exposure time is required.In a reported example, when the film thickness is 0.1 μm in amorphous silicon, the exposure time is 20~20 μm. It can take up to 30 minutes, which is 3 times longer than the exposure time of normal photoresist.
It corresponds to 0 times to 50 times. Thirdly, there is a risk of damaging the film by irradiating it with ultraviolet light for a long period of time. For example, in amorphous silicon, S table
It is known that the structure of a film changes due to light, called the r-Wronski effect, and when ultraviolet light is irradiated for a long time, the quality of the film deteriorates due to this effect. In addition, in the case of this thin film transistor, as mentioned in the first drawback, there is a limit to the film thickness, so normally n+-a”Si can be formed continuously.
There was also the secondary drawback of having to add the H later.

(発明の目的) 本発明の目的は上記従来方法の欠点を除去せしめ、薄膜
半導体素子の実用的な範囲の1換厚まで対応でき、紫外
光の露光時間も通常のプロセスと変シないフォトレジス
トパターンの形成方法を提供することにある。
(Objective of the Invention) The object of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods, and to produce a photoresist that can be applied to thicknesses up to one thickness within the practical range of thin-film semiconductor devices, and whose exposure time to ultraviolet light is the same as that of a normal process. The object of the present invention is to provide a method for forming a pattern.

(発明の構成) 本発明によれば、透明基板上に少くとも一部が不透明で
ある薄膜を含む薄膜を積層した素子上にフォトレジスト
パターンを形成する過程において、該薄膜素子の上に7
オトレジスト、500nm以上の長波長光に感度を有す
る写真用感光材料を積層し、透明基板側から500nm
以上の長波長光を照射し、該写真用感光材料を感光させ
、現像、定着した後、該写真用感光材料側から紫外光を
照射し、該写真用感光材料をマスクとしてフォトレジス
トを感光、現像してフォトレジストパターンを形成する
ことを特徴とするフォトレジストパターンの形成方法が
得られる。
(Structure of the Invention) According to the present invention, in the process of forming a photoresist pattern on an element in which a thin film including a thin film that is at least partially opaque is laminated on a transparent substrate, a photoresist pattern is formed on the thin film element.
Otoresist, a photographic photosensitive material sensitive to long wavelength light of 500 nm or more is laminated, with a distance of 500 nm from the transparent substrate side.
The photographic light-sensitive material is irradiated with the above long wavelength light, developed and fixed, and then ultraviolet light is irradiated from the side of the photographic light-sensitive material, and the photoresist is exposed using the photographic light-sensitive material as a mask. A method for forming a photoresist pattern is obtained, which is characterized by forming a photoresist pattern by developing.

(発明の概要) 本発明の7オトレジストパターンの形成方法を第2図に
示す。図において9は透明絶縁性基板、10は例えば金
属などの不透明体、11は少くとも半導体層を含む薄膜
層で、例えば先に示した薄膜トランジスタでは絶縁膜と
非晶質シリコ/膜、plnダイオードであればそれぞれ
p型、i型、n型の半導体膜を積層した薄膜、等である
。12はフォトレジスト、13は500nm以上の長波
長光に感度を有する写真用感光材料、13aは13の写
真用感光材料を感光後、現像、定着し、黒化した部分、
131)は同様の過程をへて黒化されなかった部分、1
4は500nm以上の長波長光、15は紫外光である。
(Summary of the Invention) A method for forming seven photoresist patterns according to the present invention is shown in FIG. In the figure, 9 is a transparent insulating substrate, 10 is an opaque material such as a metal, and 11 is a thin film layer containing at least a semiconductor layer.For example, in the thin film transistor shown earlier, an insulating film, an amorphous silicon/film, and a PLN diode are used. If available, they are thin films made by stacking p-type, i-type, and n-type semiconductor films, respectively. 12 is a photoresist, 13 is a photographic light-sensitive material sensitive to long wavelength light of 500 nm or more, and 13a is a blackened portion of the photographic light-sensitive material of 13 after exposure, development, and fixation;
131) is the part that went through the same process and was not blackened, 1
4 is long wavelength light of 500 nm or more, and 15 is ultraviolet light.

以下、本発明の7オトレジストパターンの形成方法を順
を追って説明する。
Hereinafter, the method for forming the seven photoresist patterns of the present invention will be explained in order.

まず、フォトレジストパターンを形成する薄膜半導体素
子の上に12の7オトレジストを回転塗布する。このフ
ォトレジストは目的によってポジティブなものかネガテ
ィブなものかを選ぶ。次に13の写真用感光材料を形成
する。この写真用感光材料は薄膜半導体素子の持つ吸収
係数の波長依存性によって選択する。例えばCdSの光
学吸収端は500nm付近であシ、この場合は可視光域
で使用する最も一般的な感光材料で充分である。非晶質
シリコンの場合光学吸収端は650nm付近であシ、こ
れよシ上の長波長域では吸収係数はlQ”o++−”以
下となる。単結晶シリコンは可視光域で非晶質シリコン
に比べ吸収係数が1桁小さく、非晶質シリコンの吸収端
付近からその大小関係は逆転するが、値はlQ”n−’
以下である。これらシリコン系の半導体では600nm
以上の長波長域に感度を持つ感光材料が最も良い。現在
では、写真用感光材料は紫外から赤外にいたるまでほと
んどすべての波長域をカバー□しておシ、この目的のた
め、簡単には赤外写真用の感光材料を用いればよい。ま
た一般に用いられる可視用の写真用感光材料でも赤色に
感度を持っているため、半導体薄膜の膜厚によってはそ
れでも充分である。写真用感光材料はこの要求を満たし
、パターンを形成するのに充分な解像度を持つものなら
どんなものでもよい。汎用性のあるものとしては、ゼラ
チンをベースとして、ハロゲン化銀を含んだ乳剤で、赤
色増感をほどこしたものである。赤外増感したものには
750nm、850nm、950nmに感度の極大を持
つものなどが製造されている。
First, a 12-7 photoresist is spin-coated on a thin film semiconductor element on which a photoresist pattern is to be formed. This photoresist can be selected as positive or negative depending on the purpose. Next, 13 photographic light-sensitive materials are formed. This photographic light-sensitive material is selected depending on the wavelength dependence of the absorption coefficient of the thin film semiconductor element. For example, the optical absorption edge of CdS is around 500 nm, and in this case, the most common photosensitive material used in the visible light range is sufficient. In the case of amorphous silicon, the optical absorption edge is around 650 nm, and in the long wavelength range above this, the absorption coefficient is less than lQ"o++-". Single-crystal silicon has an absorption coefficient that is one order of magnitude smaller than that of amorphous silicon in the visible light region, and the relationship in magnitude reverses from near the absorption edge of amorphous silicon, but the value is lQ"n-'
It is as follows. 600nm for these silicon-based semiconductors
Photosensitive materials that are sensitive to longer wavelengths than this are best. At present, photosensitive materials cover almost all wavelength ranges from ultraviolet to infrared, and for this purpose, it is sufficient to simply use photosensitive materials for infrared photography. Furthermore, since commonly used visible photographic materials are sensitive to red, this may be sufficient depending on the thickness of the semiconductor thin film. Any photographic light-sensitive material may be used as long as it satisfies this requirement and has sufficient resolution to form a pattern. A versatile emulsion is based on gelatin and contains silver halide, and is sensitized to red. Infrared sensitized products are manufactured that have maximum sensitivity at 750 nm, 850 nm, and 950 nm.

以上のように作製した素子の透明絶縁性基板側から14
の500nrn以上の長波長光を照射する(第2図(a
))。このときこの長波長光は11の薄膜層、12の7
オトレジストを透過し13の写真用感光材料に達し、こ
れを感光させる。フォトレジストは長波長光に感度を持
たないため感光されない。また10の不透明体はこの光
を透過させないため、この上の写真用感光材料は感光さ
れない。
14 from the transparent insulating substrate side of the device fabricated as above.
(Figure 2 (a)
)). At this time, this long wavelength light passes through the thin film layers of 11 and 7 of 12.
It passes through the photoresist and reaches 13 photographic light-sensitive materials, which are exposed to light. Photoresist is not sensitive to long wavelength light, so it is not exposed to light. Further, since the opaque body 10 does not transmit this light, the photographic light-sensitive material thereon is not exposed.

これに現像、定着を行なうと第2図(b)に示すように
10の不透明体の上坂外の部分は黒化する。
When this is developed and fixed, the area outside the upper slope of the opaque body 10 becomes black as shown in FIG. 2(b).

次に第2図(clに示すように写真用感光材料側から紫
外光15を照射する。黒化した部分13a は紫外光を
通さず、黒化しなかった部分13bは紫外光を通すため
これがフォトマスクとなって下のフォトレジストを選択
的に感光する。しかる後写真用感光材料13を剥離し、
フォトレジスト12を現像するとネガ型の7オトレジス
トの場合第2図(e)に示すようにフォトレジストパタ
ーンが形成される。
Next, as shown in FIG. 2 (cl), ultraviolet light 15 is irradiated from the side of the photographic light-sensitive material.The blackened portion 13a does not transmit ultraviolet light, and the non-blackened portion 13b transmits ultraviolet light. It acts as a mask and selectively exposes the underlying photoresist.Then, the photosensitive material 13 is peeled off.
When the photoresist 12 is developed, a photoresist pattern is formed as shown in FIG. 2(e) in the case of a negative type 7 photoresist.

以上の説明から明らかなように、本発明のフォトレジス
トパターンの形成方法では従来方法に比べ半導体薄膜に
対する膜厚の制限が非常にゆるい。
As is clear from the above description, in the method for forming a photoresist pattern of the present invention, restrictions on the thickness of a semiconductor thin film are much looser than in conventional methods.

例えばシリコン系の半導体薄膜の場合で1〜2pmCa
Sなどでは数十μmまで適用可能である。従って、現在
までに報告されているほとんどの薄膜半導体素子に応用
することができる。また紫外光の線光時間は通常のフォ
トレジストパターンの形成方法とほとんど同じか短かい
くらいであるから、紫外光によるダメージもない。
For example, in the case of a silicon-based semiconductor thin film, 1 to 2 pmCa
With S, etc., it is applicable up to several tens of μm. Therefore, it can be applied to most of the thin film semiconductor devices reported to date. Furthermore, since the ray time of ultraviolet light is almost the same or shorter than that of a conventional method of forming a photoresist pattern, there is no damage caused by ultraviolet light.

(実施例) 本発明のフォトレジストパiつの形成方法の実施例のい
くつかを示す。第3図は本発明のフォートレジストパタ
ーンの形成方法を適用した自己整合法によるスタガード
型薄膜トランジスタの形成過程を示している。図におい
て16はガラス基板、17はソース、ドレイン電極とな
るMO118はSiH4のグロー放電分解法によって形
成した膜厚0.3pmのノンドープa−8i:HIIK
、19はSiH4゜N、あるいはS iH4,N、 、
 NH,の混合ガスのグロー放電分解法によシ形成した
膜厚0.3pmのSiNx膜、20はネガ型のフォトレ
ジスト、21は750nmに感度の極大を持つ赤外写真
用感光材料、22は少くとも750nrn付近の波長の
光を含む長波長光、23は紫外光、24はゲート電極と
なるMoである。形成過程を以下に示す。
(Example) Some examples of the method for forming a photoresist layer of the present invention will be described. FIG. 3 shows the process of forming a staggered thin film transistor by a self-alignment method to which the fort resist pattern forming method of the present invention is applied. In the figure, 16 is a glass substrate, 17 is a source, and MO118, which becomes a drain electrode, is a non-doped a-8i film with a thickness of 0.3 pm formed by glow discharge decomposition of SiH4: HIIK.
, 19 is SiH4°N, or SiH4,N, ,
20 is a negative photoresist, 21 is an infrared photographic material with maximum sensitivity at 750 nm, and 22 is a SiNx film with a thickness of 0.3 pm formed by glow discharge decomposition of a mixed gas of NH. 23 is ultraviolet light; 24 is Mo serving as a gate electrode; and 23 is ultraviolet light. The formation process is shown below.

ソース、ドレイン電極17を形成したガラス基板上に1
8のa−8i:H,19のSiNxを連続形成しその上
にネガ型のフォトレジス)20.写真用感光材料21を
塗布し、ガラス基板側から長波長光22を照射する(第
3図(a))。これを現像し定ら紫外光23を照射する
(第3図(C))。写真用感光材料を剥離し、フォトレ
ジストを現像すると第3図(dlに示すように7オトレ
ジストパターンが形成される。この上にMoを蒸着する
(第3図(e))。
1 on a glass substrate on which source and drain electrodes 17 are formed.
8 a-8i: H, 19 SiNx is continuously formed and a negative photoresist is applied thereon)20. A photosensitive material 21 is applied, and long wavelength light 22 is irradiated from the glass substrate side (FIG. 3(a)). This is developed and then irradiated with ultraviolet light 23 (FIG. 3(C)). When the photographic light-sensitive material is peeled off and the photoresist is developed, a 7-photoresist pattern is formed as shown in FIG. 3 (dl).Mo is deposited on this (FIG. 3(e)).

最後にフォトレジストをリフトオンしチャネル上のゲー
ト電極以外の部分のM、oを除去して薄膜トランジスタ
が完成する(第3図(f))。
Finally, the photoresist is lifted on and the M and O portions on the channel other than the gate electrode are removed to complete the thin film transistor (FIG. 3(f)).

次に第2の実施例を第4図に示す。第4図は逆スタガー
ド型薄膜トランジスタの自己整合力に本発明の7オトレ
ジストパターンの形成方法を適用した例である。図にお
いて25はガラス基板、26はCrからなるゲート電極
、27は5IH4゜N、あるいはS i Ha 、 N
、 、 NH,の混合ガスをグロー放電法によシ分解形
成したSiNx膜、28はSiH4のグロー放電分解法
によシ形成したノンドープa −8i : HIII、
29はPH,を0.1%混合した5zH4をグロー放電
法により形成した0、05pmのn+−a−8i:H膜
、30はネガ型の7オトレジスト、31は750nmに
感度の極大を持つ赤外写真用感光材料、32は少なくと
も750nm付近の波長の光を含む長波長光、33は紫
外光、34はソースドレイン電極となるA1である。形
成過程を以下に示す。
Next, a second embodiment is shown in FIG. FIG. 4 is an example in which the method for forming seven photoresist patterns of the present invention is applied to the self-alignment force of an inverted staggered thin film transistor. In the figure, 25 is a glass substrate, 26 is a gate electrode made of Cr, and 27 is 5IH4°N or S i Ha , N
, , NH, SiNx film formed by decomposing a mixed gas by a glow discharge method, 28 is a non-doped a-8i film formed by a glow discharge decomposition method of SiH4: HIII,
29 is a 0.05 pm n+-a-8i:H film formed by a glow discharge method using 5zH4 mixed with 0.1% PH, 30 is a negative type 7 photoresist, and 31 is a red film with maximum sensitivity at 750 nm. A photosensitive material for external photography, 32 is long wavelength light including light with a wavelength of at least around 750 nm, 33 is ultraviolet light, and 34 is A1 serving as a source/drain electrode. The formation process is shown below.

まず、ガラス基板にCrを蒸着、パターンニングしてゲ
ート電極26を形成する。グロー放電法によシ27のS
 iNx 、 28のa−8t:H,29のn+−a−
8i:Hを連続形成しその上にネガ型のフォトレジスト
30、赤外写真用感光材料31を塗布し、ガラス基板側
から長波長光32を照射する(第4図(a))。これを
現像し定着させると第4図(b)に示すようにゲート電
極の真上にあたる部分以外の写真用感光材料が黒化する
。次に写真用感光材料側から紫外光33を照射する(第
4図(C))。
First, Cr is deposited on a glass substrate and patterned to form the gate electrode 26. 27 S by glow discharge method
iNx, 28 a-8t:H, 29 n+-a-
8i:H is continuously formed, a negative photoresist 30 and an infrared photosensitive material 31 are applied thereon, and long wavelength light 32 is irradiated from the glass substrate side (FIG. 4(a)). When this is developed and fixed, the photographic light-sensitive material except for the portion directly above the gate electrode turns black, as shown in FIG. 4(b). Next, ultraviolet light 33 is irradiated from the side of the photographic light-sensitive material (FIG. 4(C)).

写真用感光材料を剥離し、フォトレジストを現像すると
第4図(d)に示すように7オトレジストパターンが形
成される。この上にAIを蒸着する(第4図(e))。
When the photosensitive material is peeled off and the photoresist is developed, seven photoresist patterns are formed as shown in FIG. 4(d). AI is deposited on this (FIG. 4(e)).

フォトレジストをリフトオフしチャネル上のA1を除去
する(第4図(f))。最後にチャネル上のn+−a 
−8i :)(をエツチングして薄11% トランジス
タが完成する(第4図(g))。
The photoresist is lifted off to remove A1 on the channel (FIG. 4(f)). Finally n+-a on the channel
-8i:) (is etched to complete a thin 11% transistor (Fig. 4(g)).

これらの例では半導体薄膜の厚さを0.3/Jmとした
が、この厚さは現在非晶質シリコンを使った薄膜トラン
ジスタで普通に用いられている実際的なものであり、前
記従来方法では実施不可能な厚さである。膜厚は他の素
子との関連でさらに厚くなる可能性もある。例えばダイ
オードと薄膜トランジスタを同一の半導体薄膜で形成す
る場合などがそうである。また、従来方法で実際にどの
くらいの時間がかかるかを考えると、第2の実施例で半
導体薄膜の膜厚が0.1μmのときこれを露光するのに
20分かかるとすれば、005μmのn+−a−si:
H膜がつくことによりm光時間は実に90分にもなる。
In these examples, the thickness of the semiconductor thin film was set to 0.3/Jm, but this thickness is a practical thickness commonly used in thin film transistors using amorphous silicon, and the conventional method described above The thickness is impractical. The film thickness may become even thicker in relation to other elements. For example, this is the case when a diode and a thin film transistor are formed using the same semiconductor thin film. Also, considering how much time it actually takes in the conventional method, if it takes 20 minutes to expose the semiconductor thin film with a thickness of 0.1 μm in the second embodiment, then the n + -a-si:
Due to the formation of the H film, the light time is actually as long as 90 minutes.

これは光の減衰が膜厚に対し指数関数的であるためであ
る。これに対し本発明のフォトレジストパターンの形成
方法では紫外光の露光時間はたかだか数十秒である。
This is because the attenuation of light is exponential with respect to the film thickness. In contrast, in the method for forming a photoresist pattern of the present invention, the exposure time to ultraviolet light is at most several tens of seconds.

上記実施例は2種類の薄膜トランジスタに関するもので
あるが、他の薄膜トランジスタやダイオードでも工程は
ほぼ同じである。
Although the above embodiments relate to two types of thin film transistors, the steps are almost the same for other thin film transistors and diodes.

(発明の効果) 以上の説明で明らかなように、本発明のフォトレジスト
パターンの形成方法によれば、薄膜半導体素子において
その薄膜の膜厚に制限されることなく自己整合を行なう
ための7オトレジストパターンが形成できる。しかもフ
ォトレジストに対する紫外光の露光時間は通常のプロセ
スと同じであり、膜にダメージを与えることがない。従
って、薄膜半導体素子を歩留シよく、安定に製造するこ
とが可能である。
(Effects of the Invention) As is clear from the above explanation, according to the method for forming a photoresist pattern of the present invention, the method for forming a photoresist pattern in a thin film semiconductor device can be used to perform self-alignment without being limited by the thickness of the thin film. A resist pattern can be formed. Moreover, the exposure time of the photoresist to ultraviolet light is the same as in a normal process, so the film is not damaged. Therefore, it is possible to stably manufacture thin film semiconductor devices with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(dlは薄膜トランジスタの自己整合法
の従来例を説明するための図、第2図(al〜telは
本発明のフォトレジストパターンの形成方法を説明する
ための図、第3図(a)〜(f)は本発明の7オトレジ
ストハターンの形成方法を適用したスタガード型薄膜ト
ランジスタの製造過程を説明するための図、第4図(a
)〜fg)は本発明のフォトレジストパターンの形成方
法を適用した逆スタガード型薄模トランジスタの製造過
程を説明するための図である。 図において 1・−・ガラス基板、2・・・金属電極、3・・・絶縁
膜、4・・・非晶質シリコン換、5・・・フォトレジス
ト、6・・・紫外光、7− n”−a −8i :H膜
、8 ・A l電極、9・・・透明絶縁性基板、10・
・・不透明体、11・・・半導体薄ah、12・・・フ
ォトレジスト、13・・・500nm以上の長波長光に
感度を持つ写真用感光材料、13a・・・写真用感光材
料の黒化した部分、13b・・・写真用感光材料の黒化
しなかった部分、14・・・500nm以上の長波長光
、15・・・紫外光、16.25・・・ガラス基板、1
7.24・−Mo電極、18.28−・・a−81:H
膜、I 9 、27− SiNx膜、20.30=−ネ
ガ型の7オトレジスト、21.31・・・赤外写真用感
光材料、22.32・・・長波長光、23.33・・・
紫外光、34・・・AIl電極 代理人弁理−1: 内 原 晋 第1図 (α) Ib) (C) ((1) (α) (b) (C〕 (d) (e) (α) (b) (C) (d) 第3図 (e) (チ〕 (0) (b) (C) (d)
FIGS. 1(a) to dl are diagrams for explaining a conventional example of a self-alignment method for thin film transistors; FIGS. 3(a) to 3(f) are diagrams for explaining the manufacturing process of a staggered thin film transistor to which the method of forming seven photoresist patterns of the present invention is applied, and FIG. 4(a)
) to fg) are diagrams for explaining the manufacturing process of an inverted staggered thin model transistor to which the photoresist pattern forming method of the present invention is applied. In the figure, 1...Glass substrate, 2...Metal electrode, 3...Insulating film, 4...Amorphous silicon dioxide, 5...Photoresist, 6...Ultraviolet light, 7-n "-a-8i: H film, 8. Al electrode, 9... transparent insulating substrate, 10.
... Opaque body, 11 ... Semiconductor thin ah, 12 ... Photoresist, 13 ... Photographic light-sensitive material sensitive to long wavelength light of 500 nm or more, 13a ... Blackening of photographic light-sensitive material 13b... Portion of photosensitive material that did not blacken, 14... Long wavelength light of 500 nm or more, 15... Ultraviolet light, 16.25... Glass substrate, 1
7.24.-Mo electrode, 18.28-.a-81:H
Film, I 9 , 27- SiNx film, 20.30 = -Negative type 7 photoresist, 21.31... Sensitive material for infrared photography, 22.32... Long wavelength light, 23.33...
Ultraviolet light, 34... AIl electrode attorney-1: Susumu Uchihara Figure 1 (α) Ib) (C) ((1) (α) (b) (C) (d) (e) (α ) (b) (C) (d) Figure 3 (e) (chi) (0) (b) (C) (d)

Claims (1)

【特許請求の範囲】[Claims] 透明基板上に、少くとも一部が不透明である薄膜を含む
薄膜を積層した素子上にフォトレジストパターンを形成
する過程において、該薄膜素子の上に7オトレジスト、
500 nm以上の波長の光に感度を有する写真用感光
材料を積層し、透明基板側から500nm以上の長波長
光を照射し、該写真用感光材料を感光させ、現像、定着
した後、該写真用感光材料側から紫外光を照射し、該写
真用感光材料をマスクとしてフォトレジストを感光、現
像してフォトレジストパターンを形成することを特徴と
するフォトレジストパターンの形成方法。
In the process of forming a photoresist pattern on an element in which a thin film including at least a partially opaque thin film is laminated on a transparent substrate, a photoresist,
Photographic light-sensitive materials sensitive to light with a wavelength of 500 nm or more are laminated, and long-wavelength light of 500 nm or more is irradiated from the transparent substrate side to expose the photographic material, developed, and fixed, and then the photographic material is 1. A method for forming a photoresist pattern, which comprises irradiating ultraviolet light from the side of a photographic photosensitive material, exposing and developing a photoresist using the photographic photosensitive material as a mask, and forming a photoresist pattern.
JP6802484A 1984-04-05 1984-04-05 Forming method of photoresist pattern Pending JPS60211839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6802484A JPS60211839A (en) 1984-04-05 1984-04-05 Forming method of photoresist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6802484A JPS60211839A (en) 1984-04-05 1984-04-05 Forming method of photoresist pattern

Publications (1)

Publication Number Publication Date
JPS60211839A true JPS60211839A (en) 1985-10-24

Family

ID=13361824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6802484A Pending JPS60211839A (en) 1984-04-05 1984-04-05 Forming method of photoresist pattern

Country Status (1)

Country Link
JP (1) JPS60211839A (en)

Similar Documents

Publication Publication Date Title
CA1278883C (en) Process for making self-aligning thin film transistors
US4700458A (en) Method of manufacture thin film transistor
US20070269750A1 (en) Colored masking for forming transparent structures
KR910009040B1 (en) Method of manufacturing an amphorous-silicon thin film transistor
KR970053623A (en) Thin film transistor substrate for liquid crystal display device and manufacturing method thereof
TW200305924A (en) Manufacturing method of mask and manufacturing method of semiconductor integrated circuit device
US4892613A (en) Process for etching light-shielding thin film
JPH1056180A (en) Manufacture of semiconductor device
US20070037406A1 (en) Methods of fabricating a semiconductor device using a photosensitive polyimide layer and semiconductor devices fabricated thereby
JP3221206B2 (en) Semiconductor device for display panel and method of manufacturing the same
JPS60211839A (en) Forming method of photoresist pattern
JP3163844B2 (en) Method of manufacturing inverted staggered thin film field effect transistor
JPH07287387A (en) Half-tone type phase shift mask and its manufacture
JPH03105324A (en) Matrix type liquid crystal display substrate and its production
JPS62152174A (en) Manufacture of thin-film transistor
JP3071964B2 (en) Manufacturing method of liquid crystal display device
JPH0262050A (en) Manufacture of thin-film transistor
KR100870347B1 (en) Method of manufacturing a image device
JP2560602Y2 (en) Thin film transistor
JPH04345162A (en) Mask and production thereof
JP3194551B2 (en) Method for manufacturing thin film transistor
JPS60257171A (en) Manufacture of thin-film semiconductor element
JP2625913B2 (en) Thin film transistor
JPS6379379A (en) Manufacture of self-alignment type thin film transistor
JPS60235467A (en) Manufacture of thin-film transistor