JPS6379379A - Manufacture of self-alignment type thin film transistor - Google Patents

Manufacture of self-alignment type thin film transistor

Info

Publication number
JPS6379379A
JPS6379379A JP61224729A JP22472986A JPS6379379A JP S6379379 A JPS6379379 A JP S6379379A JP 61224729 A JP61224729 A JP 61224729A JP 22472986 A JP22472986 A JP 22472986A JP S6379379 A JPS6379379 A JP S6379379A
Authority
JP
Japan
Prior art keywords
layer
photoresist layer
self
photoresist
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61224729A
Other languages
Japanese (ja)
Inventor
Satoru Kawai
悟 川井
Yasuhiro Nasu
安宏 那須
Tomotaka Matsumoto
友孝 松本
Koichi Tatsuoka
浩一 立岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61224729A priority Critical patent/JPS6379379A/en
Publication of JPS6379379A publication Critical patent/JPS6379379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To shorten exposure time, by dividing photoresist into a thick layer and a thin layer, exposing the upper layer of the thick layer beforehand, and performing rear surface exposure for the thin film. CONSTITUTION:A photoresist layer is formed in a double-layer structure of a first photoresist layer 5-1 and a second photoresist layer 5-2. Ultraviolet rays 12-1 are projected on the entire surface of the thick photoresist layer 5-1 from the upper part of a substrate 1 and the layer 5-1 is exposed. The layer 5-1 is made to be in a transparent state for the ultraviolet rays 12-1. Thereafter, the thin photoresist layer 5-2 is formed on the layer 5-1. Ultraviolet rays 12-2 are projected on the layer 5-2 from the rear side surface of the transparent substrate 1, and the layer 5-2 is exposed. As a result, only the layer 5-2, which is formed on the layer 5-1, is subject to the rear surface exposure because the layer 5-1 is made to be in the transparent state by the front surface exposure. Therefore, the exposing time for the rear surface is shortened to a large extent in comparison with a conventional method.

Description

【発明の詳細な説明】 〔概要〕 この発明は、半透明動作半導体膜を用いて自己整合型薄
膜トランジスタを製作するのに、不透明ゲートとの自己
整合パターン形成に長時間を要するという問題を解決す
るために、露光バターニング用のフォトレジストを厚い
第1の層と薄い第2の層に分割し、第1層は予め上部よ
り露光し、背面露光を第2の層で行い、露光時間の短縮
を可能とする。
[Detailed Description of the Invention] [Summary] The present invention solves the problem that it takes a long time to form a self-aligned pattern with an opaque gate when manufacturing a self-aligned thin film transistor using a semi-transparent operating semiconductor film. In order to reduce the exposure time, the photoresist for exposure patterning is divided into a thick first layer and a thin second layer, and the first layer is exposed from the top in advance and the second layer is exposed from the back. is possible.

〔産業上の利用分野〕[Industrial application field]

この発明は液晶あるいは、エレクトロルミネッセンス等
の駆動に用いる薄膜トランジスタの製造方法に関するも
のである。
The present invention relates to a method for manufacturing a thin film transistor used for driving liquid crystals, electroluminescence, etc.

薄膜トランジスタは、素子を微細化するためにゲート電
極(合圧)をフォトマスクとして用いる自己整合型の薄
膜トランジスタが開発されている。
In order to miniaturize elements, self-aligned thin film transistors have been developed that use a gate electrode (combined pressure) as a photomask.

しかしながら、薄膜トランジスタは動作半導体層として
一般に水素原子を添加したアモルファス・シリコン(以
後a−5i:Hと記す)等の半透明材料を多く用いてい
る。この動作半導体層が半透明であることから、背面露
光で薄膜トランジスタを製作しようとすると、露光に長
時間を要すると云う不都合があり、これを解決する製造
方法が必要とされている。
However, thin film transistors generally use semitransparent materials such as amorphous silicon (hereinafter referred to as a-5i:H) doped with hydrogen atoms as an active semiconductor layer. Since this active semiconductor layer is semi-transparent, if a thin film transistor is manufactured by back exposure, there is a disadvantage that exposure takes a long time, and there is a need for a manufacturing method that solves this problem.

〔従来の技術〕[Conventional technology]

第3図は従来の自己整合型の薄膜トランジスタの製造工
程図である。まず第2図(a)の工程において、透明基
板、例えばガラス基板1上にクローム(Cr)からなる
不透明のゲート電極2をパターニングし、その上部に、
シラン(5itb )をベースガスとしてプラズマCV
D (以後P−CVDと記す)法にて300nn厚さの
ゲート絶縁膜となる窒化シリコン(SiN)膜3と、半
透明動作半導体膜となる1100nのa−Si : H
膜4を被着形成する。
FIG. 3 is a manufacturing process diagram of a conventional self-aligned thin film transistor. First, in the process shown in FIG. 2(a), an opaque gate electrode 2 made of chrome (Cr) is patterned on a transparent substrate, for example, a glass substrate 1, and on the top thereof,
Plasma CV using silane (5 itb) as base gas
D (hereinafter referred to as P-CVD) method: Silicon nitride (SiN) film 3 that becomes a gate insulating film with a thickness of 300 nm and a-Si film of 1100 nm that becomes a semi-transparent operating semiconductor film: H
A film 4 is deposited.

次ぎに第3図(blの工程で、その上部にフォトレジス
ト(マイクロポジット社製1400−27)を厚さ1゜
5μmスピンコードしてフォトレジスト層5を形成する
。この形成した後にガラス基板1の側から紫外光11を
照射してフォトレジスト層5に対するゲート電極2をマ
スクとするの背面露光を施す。
Next, in the step shown in FIG. 3 (bl), a photoresist (1400-27 manufactured by Microposit Co., Ltd.) is spin-coated on top of the photoresist layer 5 to a thickness of 1.5 μm. After this formation, the glass substrate 1 Ultraviolet light 11 is irradiated from the side to expose the back surface of the photoresist layer 5 using the gate electrode 2 as a mask.

この場合a−3i:H膜4が半透明、かつ1100nの
FKさであるためにフォトレジストFi5に到達する光
量は、100分の1以下となり、フォトレジスト層を十
分露光するためには、100倍以上の時間を要すること
となる。この露光時間は数十分〜数時間の長時間必要と
される。この背面露光によって、フォトレジスト層5に
はゲート電極に自己整合して未露光部が生じる。
In this case, since the a-3i:H film 4 is semitransparent and has an FK of 1100n, the amount of light reaching the photoresist Fi5 is less than 1/100, and in order to sufficiently expose the photoresist layer, the amount of light reaching the photoresist Fi5 is less than 1/100. It will take more than twice as long. This exposure time is required for a long time from several tens of minutes to several hours. By this back exposure, an unexposed portion is generated in the photoresist layer 5 in self-alignment with the gate electrode.

次に第3図(C)の工程で現像を行うと、前記未露光部
に対応したフォトレジスト層の自己整合パターン゛5′
が形成される。なお、このパターンは上記露光時に紫外
光11の散乱によって端部が露光されるので、そのパタ
ーン幅はマスクとして用いたゲート電極2の幅より0.
1〜1μm狭く形成される。
Next, when development is carried out in the step shown in FIG.
is formed. Note that since the edges of this pattern are exposed by scattering of the ultraviolet light 11 during the exposure, the pattern width is 0.0 mm wider than the width of the gate electrode 2 used as a mask.
It is formed 1 to 1 μm narrower.

次ぎに、第3図(d)の工程で自己整合パターン5′の
上部に厚さ50nmのn” a−St:)IIQからな
るドープ半導体膜6を120℃のP−CVD法で成形し
、さらにその上含むa−Si:!(膜4上にチタン(T
i)膜7を真空蒸着法で1100n厚に形成する。
Next, in the step shown in FIG. 3(d), a 50 nm thick doped semiconductor film 6 made of n''a-St:)IIQ is formed on the self-aligned pattern 5' by P-CVD at 120°C. Furthermore, it contains a-Si:!(titanium (T) on the film 4).
i) Form the film 7 to a thickness of 1100 nm by vacuum evaporation.

次に第3図(elの工程で前記自己整合パターン5′上
の材料、n ” a−Si:H膜6とTi膜7をリフト
オフ法によって除去し、さらに素子分離工程やTi膜の
エツチング工程を経て薄膜トランジスタ素子が得られる
。なお図中りとSはドープ半導体膜6とTi膜7との積
層構造よりなるソース1掻とドレイン電極を示す。
Next, in the process shown in FIG. Through these steps, a thin film transistor element is obtained. In the figure, reference characters 1 and S indicate the source 1 and drain electrodes each having a laminated structure of a doped semiconductor film 6 and a Ti film 7.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記した従来の自己整合型の薄膜トランジスタの製造方
法は、半透明の動作半導体膜を介してフォトレジスト層
を基板背面から露光し自己整合パターンを作成するため
に、背面露光に長時開票するという問題があった。
The above-mentioned conventional method for manufacturing self-aligned thin film transistors has the problem of requiring long back exposure to create a self-aligned pattern by exposing the photoresist layer from the back side of the substrate through a semi-transparent active semiconductor film. was there.

この発明は、以上のような従来の状況から背面露光の時
間の短縮の図れる薄膜トランジスタの製造方法の提供を
目的とするものである。
The object of the present invention is to provide a method for manufacturing a thin film transistor that can shorten the time required for back exposure in view of the conventional situation as described above.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、第1図に示すようにフォトレジスト層を
5−1 と5−2との2層構造とし寂に形成した厚い第
1のフォトレジスト層5−1は、同図(alに示すよう
に基板1の上部から全面に紫外光12−1を照射して露
光し、第2の紫外光に対し透明状態にして胃く。この後
それの上に移送した薄いフォトレジスト層5−2は同図
(b)に示ように基板1の背面から紫外光12−2を照
射して露光を施す。
In this invention, as shown in FIG. 1, the photoresist layers 5-1 and 5-2 have a two-layer structure, and the thick first photoresist layer 5-1 is thinly formed as shown in FIG. The entire surface of the substrate 1 is irradiated with ultraviolet light 12-1 from the top to expose it, and is made transparent to the second ultraviolet light.After this, a thin photoresist layer 5-2 is transferred on top of the substrate 1. As shown in FIG. 2B, exposure is performed by irradiating ultraviolet light 12-2 from the back side of the substrate 1.

〔作用〕[Effect]

厚い第1のフォトレジスト層5−1は前面露光によって
透明状態とされるので、これの上に形成される薄い第2
のフォトレジスト層5−2のみが背面露光の対象となる
。従って、この背面露光しかたんは前述した従来法に比
べて大幅にたんしゅつされる。即ち、この時間短縮は従
来のフォトレジスト層厚と当該第2のフォトレジスト層
厚の比の1/eに比例するので、例えば第2のフォトレ
ジスト層を従来のフォトレジスト層の3分の1とすると
それの背面露光時間は従来の5%となり、露光時間が大
幅に短縮される。
Since the thick first photoresist layer 5-1 is made transparent by front exposure, the thin second photoresist layer formed thereon is
Only the photoresist layer 5-2 is subject to backside exposure. Therefore, this back exposure method is significantly simpler than the conventional method described above. That is, since this time reduction is proportional to 1/e of the ratio of the thickness of the conventional photoresist layer to the thickness of the second photoresist layer, for example, the second photoresist layer is reduced to one third of the thickness of the conventional photoresist layer. In this case, the back exposure time will be 5% of the conventional one, and the exposure time will be significantly shortened.

〔実施例〕〔Example〕

第2図は本発明による実施例の工程図であり、第3図と
同一箇所は同符号を用いる。この発明の特徴は、レジス
ト層露光の工程にある。このレジスト層露光に付いて第
2図(b)と(C)を用いて説明をする。
FIG. 2 is a process diagram of an embodiment according to the present invention, and the same parts as in FIG. 3 are denoted by the same reference numerals. The feature of this invention lies in the step of exposing the resist layer. This resist layer exposure will be explained using FIGS. 2(b) and 2(C).

第2図(b)の工程において、a−St:H膜よりなる
半透明動作半導体膜4の上に、第1のフォトレジストr
g5−1を1.5 μm厚さに形成する。この厚いフォ
トレジスト層5−1にガラス基Fi1の上部(前面)か
ら紫外光12−1を照射しフォトレジスト層5−1の露
光を行う、露光された第1のフォトレジスト層5−1は
、紫外光に対して透過性のものとなる。
In the step of FIG. 2(b), a first photoresist r is applied on the semitransparent operating semiconductor film 4 made of a-St:H film
g5-1 is formed to a thickness of 1.5 μm. This thick photoresist layer 5-1 is irradiated with ultraviolet light 12-1 from the top (front side) of the glass base Fi1 to expose the photoresist layer 5-1.The exposed first photoresist layer 5-1 is , it becomes transparent to ultraviolet light.

次ぎに、第2図(C)の工程において、透明状態とされ
た第1のフォトレジスト層5−1上に、第2のフォトレ
ジストI’ti5−2を0.5 μm厚さに形成した後
、この薄いフォトレジスト層をガラス基板1の背面から
紫外光12−2を照射して露光を行う。ここで、仮に従
来方法で1.5μm厚を有するフォトレジスト層の背面
露光に90分の露光時間を要していた工程が、この発明
では5分で終了することとなる。
Next, in the step of FIG. 2(C), a second photoresist I'ti5-2 was formed to a thickness of 0.5 μm on the first photoresist layer 5-1 which had been made transparent. Thereafter, this thin photoresist layer is exposed to ultraviolet light 12-2 from the back side of the glass substrate 1. Here, in the conventional method, a process that required 90 minutes of exposure time for back exposure of a photoresist layer having a thickness of 1.5 μm can be completed in 5 minutes in the present invention.

この背面露光を終了した後の第2図(d)〜(「)の工
程は、従来の第3図(C)〜(e)と同一であるので説
明を省略する。
The steps shown in FIGS. 2(d) to 2(') after completing this back exposure are the same as the conventional steps shown in FIGS. 3(c) to 3(e), and therefore their explanation will be omitted.

〔効果〕〔effect〕

以上の説明から明らかなように、この発明によれば、自
己整合パターン用の背面露光時間の短縮が行えるので、
自己整合型の薄膜トランジスタを製作する上できわめて
有効な効果を奏する。
As is clear from the above description, according to the present invention, the back exposure time for self-aligned patterns can be shortened.
This is extremely effective in manufacturing self-aligned thin film transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明による実施例の工程図、第3図は従来の
自己整合型の薄膜トランジスタの製造工程図である。 図において、1はガラス基板、2は不透明ゲート電極、
3はゲート絶縁膜、4は半透明動作半導体膜、5−1は
第1のフォトレジスト層、5−2は第2のフォトレジス
ト層、12−1と12−2は紫不発明の原理図 第1図 /If11巳による*施イ刊のエボ)刀第2図 第3図
FIG. 1 is a principle diagram of the present invention, FIG. 2 is a process diagram of an embodiment of the present invention, and FIG. 3 is a manufacturing process diagram of a conventional self-aligned thin film transistor. In the figure, 1 is a glass substrate, 2 is an opaque gate electrode,
3 is a gate insulating film, 4 is a semi-transparent operating semiconductor film, 5-1 is a first photoresist layer, 5-2 is a second photoresist layer, 12-1 and 12-2 are diagrams of the principle of Shifu invention Figure 1/Evo published by If11 Mi) Sword Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 透明基板(1)の表面に不透明のゲート電極(2)、ゲ
ート絶縁膜(3)、半透明の動作半導体膜(4)を成層
して形成し、その上に前記ゲート電極(2)をマスクと
して露光法によりゲート電極に整合するフォトレジスト
層の自己整合パターン(5)を形成する薄膜トランジス
タの製造方法において、 前記自己整合パターン(5)は、半透明動作半導体膜(
4)上に厚い第1のフォトレジスト層(5−1)を形成
したる後に、該第1のフォトレジスト層(5−1)を前
記基板上部より全面露光をする工程と、露光され透光性
となった第1のフォトレジスト層(5−1)上に薄い第
2のフォトレジスト層5−2を形成した後、該第2のフ
ォトレジスト層を基板背面から露光する工程と、これら
2像のフォトレジスト層(5−1、5−2)を現像する
工程を含んで形成されることを特徴とする自己整合型薄
膜トランジスタの製造方法。
[Claims] An opaque gate electrode (2), a gate insulating film (3), and a semitransparent active semiconductor film (4) are formed on the surface of a transparent substrate (1), and the gate electrode is formed on the surface of the transparent substrate (1). In a method for manufacturing a thin film transistor in which a self-aligned pattern (5) of a photoresist layer that is aligned with a gate electrode is formed by an exposure method using an electrode (2) as a mask, the self-aligned pattern (5) is formed of a semi-transparent operating semiconductor film (
4) After forming a thick first photoresist layer (5-1) on the substrate, the first photoresist layer (5-1) is exposed to light from above the substrate, and the first photoresist layer (5-1) is exposed to light and transparent. After forming a thin second photoresist layer 5-2 on the first photoresist layer (5-1) which has become transparent, a step of exposing the second photoresist layer to light from the back side of the substrate; A method for manufacturing a self-aligned thin film transistor, comprising the step of developing a photoresist layer (5-1, 5-2).
JP61224729A 1986-09-22 1986-09-22 Manufacture of self-alignment type thin film transistor Pending JPS6379379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61224729A JPS6379379A (en) 1986-09-22 1986-09-22 Manufacture of self-alignment type thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61224729A JPS6379379A (en) 1986-09-22 1986-09-22 Manufacture of self-alignment type thin film transistor

Publications (1)

Publication Number Publication Date
JPS6379379A true JPS6379379A (en) 1988-04-09

Family

ID=16818327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61224729A Pending JPS6379379A (en) 1986-09-22 1986-09-22 Manufacture of self-alignment type thin film transistor

Country Status (1)

Country Link
JP (1) JPS6379379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264383A (en) * 1991-06-28 1993-11-23 U.S. Philips Corp. Method of manufacturing a thin film transistor
JP2009206388A (en) * 2008-02-29 2009-09-10 Toyama Univ Thin film transistor, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264383A (en) * 1991-06-28 1993-11-23 U.S. Philips Corp. Method of manufacturing a thin film transistor
JP2009206388A (en) * 2008-02-29 2009-09-10 Toyama Univ Thin film transistor, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6635581B2 (en) Method for forming a thin-film transistor
JPH10163174A (en) Patterning method of thin film
JPS6379379A (en) Manufacture of self-alignment type thin film transistor
JPS6239817B2 (en)
JPS6222463B2 (en)
JP2610402B2 (en) Method of manufacturing T-shaped gate by double exposure
JPS62152174A (en) Manufacture of thin-film transistor
JPH07226356A (en) Pattern forming method using multilayer resistance
JPS62245251A (en) Resist pattern forming method
JPH0697024A (en) Formation of resist pattern
JPH06118445A (en) Production of liquid crystal display device
JPH0658875B2 (en) X-ray mask and pattern forming method using the same
JPH0298147A (en) Manufacture of semiconductor device
JPS59165459A (en) Manufacture of thin film transistor
JPS6341077A (en) Manufacture of thin-film transistor
JPS60257171A (en) Manufacture of thin-film semiconductor element
JPH02106756A (en) Fine pattern forming method
JP2791757B2 (en) Semiconductor mask and method of manufacturing the same
JPH04345162A (en) Mask and production thereof
JP2519763B2 (en) Method of manufacturing thin film transistor matrix
JPS60235467A (en) Manufacture of thin-film transistor
JPH04298048A (en) Manufacture of semiconductor device
WO2004055917A2 (en) Manufacture of thin film transistors
JPS6189671A (en) Manufacture of thin film semiconductor element
JPS6266630A (en) Manufacturing of semiconductor device