JP2625913B2 - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JP2625913B2
JP2625913B2 JP15743788A JP15743788A JP2625913B2 JP 2625913 B2 JP2625913 B2 JP 2625913B2 JP 15743788 A JP15743788 A JP 15743788A JP 15743788 A JP15743788 A JP 15743788A JP 2625913 B2 JP2625913 B2 JP 2625913B2
Authority
JP
Japan
Prior art keywords
film
light
exposure
protective film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15743788A
Other languages
Japanese (ja)
Other versions
JPH025022A (en
Inventor
友孝 松本
悟 川井
安宏 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15743788A priority Critical patent/JP2625913B2/en
Publication of JPH025022A publication Critical patent/JPH025022A/en
Application granted granted Critical
Publication of JP2625913B2 publication Critical patent/JP2625913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概 要〕 薄膜トランジスタに係り、特に背面露光法を用いた自
己整合型薄膜トランジスタの構造に関し、 背面露光に要する時間を最短時間に短縮できるTFT構
造を提供することを目的とし、 透光性の絶縁性基板上に非透光性のゲート電極,ゲー
ト絶縁膜,動作半導体層が積層され、該動作半導体層上
に前記ゲート電極をマスクとする位置整合法により形成
された透光性の絶縁膜からなる保護膜並びに該保護膜を
挟んで対向するソース電極及びドレイン電極を有するト
ランジスタ構成において、前記保護膜の膜厚と屈折率の
積が前記位置整合法の露光に使用する光の半波長の整数
倍に略等しく選ばれた構成とする。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a thin film transistor, and more particularly to a structure of a self-aligned thin film transistor using a back exposure method, which aims at providing a TFT structure capable of shortening a time required for back exposure to a minimum time. A non-light-transmitting gate electrode, a gate insulating film, and an operating semiconductor layer are laminated on a light-transmitting insulating substrate, and the light-transmitting gate is formed on the operating semiconductor layer by a position matching method using the gate electrode as a mask; In a transistor configuration having a protective film made of an optical insulating film and a source electrode and a drain electrode opposed to each other with the protective film interposed therebetween, the product of the film thickness of the protective film and the refractive index is used for exposure in the position matching method. The configuration is selected so as to be substantially equal to an integral multiple of a half wavelength of light.

〔産業上の利用分野〕[Industrial applications]

本発明は薄膜トランジスタに係り、特に背面露光法を
用いた自己整合型薄膜トランジスタを製造する際に、背
面露光時間を最短にすることを可能ならしめる構造に関
する。
The present invention relates to a thin film transistor, and more particularly to a structure capable of minimizing a back exposure time when manufacturing a self-aligned thin film transistor using a back exposure method.

〔従来の技術〕[Conventional technology]

アクティブマトリクス型液晶表示装置の液晶セル駆動
などに用いる薄膜トランジスタ(TFT)のゲート電極と
ソース,ドレイン電極の重なりは、寄生容量およびリー
ク電流を生じる原因となる。これらをできるだけ小さく
するため、ゲート電極端部とソース,ドレイン電極端部
との重なりをできるだけ小さくせねばならない。
Overlap of the gate electrode and the source and drain electrodes of a thin film transistor (TFT) used for driving a liquid crystal cell of an active matrix type liquid crystal display device causes a parasitic capacitance and a leak current. In order to make these as small as possible, the overlap between the end of the gate electrode and the ends of the source and drain electrodes must be made as small as possible.

そこで、かねてよりTFTの製造に際しては、背面露光
法を用いてゲート電極とソース電極,ドレイン電極を自
己整合法により形成し、電極端部同士の重なりをなくし
ている。
Therefore, in manufacturing a TFT, a gate electrode, a source electrode, and a drain electrode are formed by a self-alignment method by using a backside exposure method to eliminate overlap between electrode ends.

第3図に従来の逆スタガード型TFTのソース電極およ
びドレイン電極を形成する工程を示す。同図に見られる
如く、背面露光は、ガラス基板1上に形成された非透光
性のゲート電極2をマスクとして、SiN(窒化シリコ
ン)膜のようなゲート絶縁膜3,a−Si(アモルファス・
シリコン)層4或いは多結晶Si層のような動作半導体
層,SiO2膜のような保護膜5の上に塗布されたレジスト
膜6を、ガラス基板1の背面から照射した紫外光9によ
り露光する。
FIG. 3 shows a process of forming a source electrode and a drain electrode of a conventional inverted staggered TFT. As shown in the figure, the back exposure is performed by using a non-light-transmitting gate electrode 2 formed on a glass substrate 1 as a mask, and a gate insulating film 3, a-Si (amorphous) such as a SiN (silicon nitride) film.・
A resist film 6 applied on an active semiconductor layer such as a silicon (Si) layer 4 or a polycrystalline Si layer and a protective film 5 such as an SiO 2 film is exposed to ultraviolet light 9 irradiated from the back of the glass substrate 1. .

従ってレジスト膜6を露光する透過光8は、a−Si層
4或いは多結晶Si層を透過した光である。上記a−Si層
4や多結晶Si層は、紫外線に対して大きな吸収係数を持
ち、水銀灯から出た紫外線はこれらの膜を透過する際に
かなり減衰する。
Therefore, the transmitted light 8 for exposing the resist film 6 is light transmitted through the a-Si layer 4 or the polycrystalline Si layer. The a-Si layer 4 and the polycrystalline Si layer have a large absorption coefficient for ultraviolet rays, and the ultraviolet rays emitted from the mercury lamp are considerably attenuated when passing through these films.

更に、a−Si層4を透過した光は保護膜5内で多重反
射を起こすため、透過光8の位相は一般に一定とはなら
ないので、これら位相の異なる光が干渉し合うことによ
り、レジスト膜6に入射する透過光8の強度は、著しく
減衰する。
Furthermore, since the light transmitted through the a-Si layer 4 causes multiple reflections in the protective film 5, the phase of the transmitted light 8 is generally not constant. The intensity of the transmitted light 8 incident on 6 is significantly attenuated.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このような理由により、従来は背面露光に長い露光時
間を必要としていた。
For these reasons, a long exposure time has conventionally been required for backside exposure.

本発明は、背面露光に要する時間を最短時間に短縮で
きるTFT構造を提供することを目的とする。
An object of the present invention is to provide a TFT structure that can reduce the time required for backside exposure to a minimum time.

〔課題を解決するための手段〕[Means for solving the problem]

第1図は本発明の原理説明図である。 FIG. 1 is a diagram illustrating the principle of the present invention.

本発明は保護膜5の膜厚dを、保護膜5の上に形成さ
れるレジスト膜6の露光に寄与する光7の、保護膜5中
における実効波長〔λ/n〕の〔m/2〕倍に等しく選ぶ。
但しmは正の整数である。
The present invention sets the thickness d of the protective film 5 to [m / 2] of the effective wavelength [λ / n] of the light 7 contributing to the exposure of the resist film 6 formed on the protective film 5. ] Equal to double.
Here, m is a positive integer.

即ち、保護膜5の膜厚dとその屈折率nの積が、露光
用光7の半波長λ/2の整数m倍に略等しくなるよう、膜
厚dを選択する。
That is, the thickness d is selected so that the product of the thickness d of the protective film 5 and the refractive index n thereof is substantially equal to an integer m times the half wavelength λ / 2 of the exposure light 7.

〔作 用〕(Operation)

吸収係数の小さい材料は、膜中で多重反射を起こすた
め、透過光強度は干渉によって支配される。
Since a material having a small absorption coefficient causes multiple reflection in the film, the transmitted light intensity is controlled by interference.

そこで膜厚dを上述のように選べば、入射光7の膜中
における実効波長(λ/n)が、レジスト膜6に入射する
透過光8の光路差2dの整数倍に等しくなり、透過光8の
位相が揃うので干渉は起こらず、透過光8の強度を最大
にすることができる。
Therefore, if the film thickness d is selected as described above, the effective wavelength (λ / n) of the incident light 7 in the film becomes equal to an integral multiple of the optical path difference 2d of the transmitted light 8 incident on the resist film 6, and the transmitted light Since the phases of the light beams 8 are aligned, no interference occurs, and the intensity of the transmitted light 8 can be maximized.

従って本発明によれば背面露光時の露光時間を最短時
間に短縮できる。
Therefore, according to the present invention, the exposure time for backside exposure can be reduced to the shortest time.

なお、a−Si層4の厚さを薄くすることが出来れば、
露光時間をより短くできるが、この厚さは素子特性等の
他の要因により規制されるので、任意に選ぶことはでき
ない。また、ゲート絶縁膜3の厚さも、絶縁耐圧等の要
因によって規制され、これも任意に選ぶことはできな
い。従って、これら素子の設計要因による規制が少ない
保護膜5の膜厚を、上述したように選ぶことが、露光光
の無駄な減衰を避けるための要因であり、これによって
透過光8の強度は最大となり、背面露光時間を最短とす
ることが可能となる。
If the thickness of the a-Si layer 4 can be reduced,
Although the exposure time can be made shorter, the thickness cannot be arbitrarily selected because it is regulated by other factors such as element characteristics. Further, the thickness of the gate insulating film 3 is also regulated by factors such as dielectric strength, and cannot be arbitrarily selected. Therefore, it is a factor to avoid the useless attenuation of the exposure light by selecting the thickness of the protective film 5 that is less restricted by the design factors of these elements as described above, whereby the intensity of the transmitted light 8 is maximized. Thus, the back exposure time can be minimized.

〔実 施 例〕〔Example〕

以下本発明の一実施例を第2図(a)〜(b)により
説明する。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 2 (a) and 2 (b).

第2図(a)に示す如く、Ti(チタン)のような非透
光性材料からなるゲート電極2を形成したガラス基板1
上に、化学気相成長(P−CVD)法により、ゲート絶縁
膜としての厚さ約300nmのSiN膜3,動作半導体層としての
厚さ約100nmのa−Si層4,保護膜としての厚さ約145nmの
SiO2膜5を形成する。
As shown in FIG. 2A, a glass substrate 1 on which a gate electrode 2 made of a non-translucent material such as Ti (titanium) is formed.
On top of this, a SiN film 3 having a thickness of about 300 nm as a gate insulating film, an a-Si layer 4 having a thickness of about 100 nm as an active semiconductor layer, and a thickness as a protective film are formed by chemical vapor deposition (P-CVD). About 145nm
An SiO 2 film 5 is formed.

次いで第2図(b)に示すように、塗布法によりポジ
型のレジスト膜6を形成し、上記ゲート電極2をマスク
として背面露光を行い、ゲート電極2に位置整合した非
感光部11および感光部12が得られる。
Next, as shown in FIG. 2 (b), a positive resist film 6 is formed by a coating method, a back exposure is performed using the gate electrode 2 as a mask, and the non-photosensitive portion 11 aligned with the gate electrode 2 and the photo resist are exposed. The part 12 is obtained.

露光光源の水銀灯から出る紫外光は、約350,375,435n
mの波長の輝線スペクトルを有する。これらのうち400nm
以下の波長はほぼa−Si層4で吸収されるため、435nm
の光のみがレジスト膜6の露光に寄与する。従って保護
膜であるSiO2膜5の膜厚を、この波長の光が干渉を起こ
さないように選べばよい。
The UV light emitted from the exposure light source, a mercury lamp, is approximately 350,375,435n
It has an emission spectrum at a wavelength of m. 400nm of these
Since the following wavelengths are almost absorbed by the a-Si layer 4, 435 nm
Only contributes to the exposure of the resist film 6. Therefore, the thickness of the SiO 2 film 5 serving as the protective film may be selected so that light of this wavelength does not cause interference.

即ちSiO2の屈折率n≒1.5であるので、 2d=(435/1.5)×m 従って d=145×m (但しmは正の整数) を満たす膜厚dが、波長435nmの光に対する共鳴条件で
ある。
That is, since the refractive index of SiO 2 is n ≒ 1.5, the thickness d satisfying 2d = (435 / 1.5) × m and d = 145 × m (where m is a positive integer) is the resonance condition for light having a wavelength of 435 nm. It is.

m=1とすれば、膜厚dは145nmとなる。本実施例でS
iO2膜5の膜厚を145nmに選んだのは、この理由による。
If m = 1, the film thickness d will be 145 nm. In this embodiment, S
It is for this reason that the thickness of the iO 2 film 5 is selected to be 145 nm.

このような条件を選択し得る保護膜は、SiN,SiOなど
を用いても形成できる。要は、保護膜の材料としては、
露光に使用する紫外光に対して透明な絶縁膜であればよ
い。
A protective film for which such conditions can be selected can also be formed using SiN, SiO, or the like. In short, as a material for the protective film,
Any insulating film that is transparent to ultraviolet light used for exposure may be used.

また、保護膜は単層でなく、積層膜であってもよい。
その場合には、上述したような膜の組み合わせを用い、
それぞれの膜の屈折率と膜厚の積が露光紫外光の半波長
の整数倍になればよい。
The protective film is not limited to a single layer but may be a laminated film.
In that case, use a combination of films as described above,
It suffices that the product of the refractive index and the film thickness of each film is an integral multiple of a half wavelength of the exposure ultraviolet light.

以上のように保護膜5を構成しておくことによって、
背面露光に要する時間を最短とすることができる。
By configuring the protective film 5 as described above,
The time required for back exposure can be minimized.

このように露光を行なった後、現像処理を行なって感
光部12を除去し、残留した非感光部10をマスクとして、
SiO2膜5の露出部をエッチング除去する。
After performing the exposure in this manner, a developing process is performed to remove the photosensitive portion 12, and the remaining non-photosensitive portion 10 is used as a mask.
The exposed portion of the SiO 2 film 5 is removed by etching.

次いで第2図(c)に示す如く、Al膜10を成膜した
後、リフトオフ法によりマスクとして用いたレジスト膜
6の感光部11とともに、その上に被着していたAl膜10の
不要部を除去して、ソース電極S及びドレイン電極Dを
形成し、本実施例のTFTが完成する。
Next, as shown in FIG. 2 (c), after the Al film 10 is formed, the unnecessary portion of the Al film 10 deposited on the photosensitive portion 11 of the resist film 6 used as a mask by the lift-off method is formed. Is removed to form a source electrode S and a drain electrode D, thereby completing the TFT of this embodiment.

本実施例においては、上述したように保護膜としての
SiO2膜5の膜厚dを、入射して来る紫外光の波長435nm
の当該膜中における実効波長の、半波長の整数倍(本実
施例ではm=1)と選んだことにより、透過光8の位相
を揃え、透過光8の強度を実現し得る最大の値として、
背面露光に要する時間を最も短くすることができた。
In the present embodiment, as described above,
The thickness d of the SiO 2 film 5 is set at the wavelength of the incident ultraviolet light of 435 nm.
Is selected as an integral multiple of a half wavelength (m = 1 in this embodiment) of the effective wavelength in the film, the phase of the transmitted light 8 is aligned, and the maximum value that can realize the intensity of the transmitted light 8 is obtained. ,
The time required for back exposure was minimized.

〔発明の効果〕〔The invention's effect〕

以上説明した如く本発明によれば、背面露光時におけ
る露光時間を短縮でき、製造工程が容易となる。
As described above, according to the present invention, the exposure time at the time of back exposure can be shortened, and the manufacturing process becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理説明図、 第2図(a)〜(c)は本発明の一実施例説明図、 第3図は従来の背面露光法説明図である。 図において、1は絶縁性基板(ガラス基板)、2はゲー
ト電極、3はゲート絶縁膜(SiN膜)、4はa−Si層、
5は保護膜(SiO2膜)、6はレジスト膜、7は露光光、
8は透過光、9は紫外光、10はAl膜、11は非感光部、12
は感光部を示す。
FIG. 1 is an explanatory view of the principle of the present invention, FIGS. 2 (a) to (c) are explanatory views of an embodiment of the present invention, and FIG. 3 is an explanatory view of a conventional back exposure method. In the figure, 1 is an insulating substrate (glass substrate), 2 is a gate electrode, 3 is a gate insulating film (SiN film), 4 is an a-Si layer,
5 is a protective film (SiO 2 film), 6 is a resist film, 7 is exposure light,
8 is transmitted light, 9 is ultraviolet light, 10 is Al film, 11 is unexposed part, 12
Indicates a photosensitive unit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透光性の絶縁性基板(1)上に非透光性の
ゲート電極(2),ゲート絶縁膜(3),動作半導体層
(4)が積層され、該動作半導体層上に前記ゲート電極
をマスクとする位置整合法により形成された透光性の絶
縁膜からなる保護膜(5)並びに該保護膜を挟んで対向
するソース電極(S)及びドレイン電極(D)を有する
トランジスタ構成において、 前記保護膜(5)の膜厚と屈折率の積が前記位置整合法
の露光に使用する光(7)の半波長の整数倍に略等しく
選ばれてなることを特徴とする薄膜トランジスタ。
A non-light-transmitting gate electrode, a gate insulating film, and an operating semiconductor layer are laminated on a light-transmitting insulating substrate. A protective film (5) made of a translucent insulating film formed by a position matching method using the gate electrode as a mask, and a source electrode (S) and a drain electrode (D) opposed to each other with the protective film interposed therebetween. In the transistor configuration, a product of a film thickness of the protective film (5) and a refractive index is selected to be substantially equal to an integral multiple of a half wavelength of light (7) used for exposure by the position matching method. Thin film transistor.
JP15743788A 1988-06-24 1988-06-24 Thin film transistor Expired - Lifetime JP2625913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15743788A JP2625913B2 (en) 1988-06-24 1988-06-24 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15743788A JP2625913B2 (en) 1988-06-24 1988-06-24 Thin film transistor

Publications (2)

Publication Number Publication Date
JPH025022A JPH025022A (en) 1990-01-09
JP2625913B2 true JP2625913B2 (en) 1997-07-02

Family

ID=15649630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15743788A Expired - Lifetime JP2625913B2 (en) 1988-06-24 1988-06-24 Thin film transistor

Country Status (1)

Country Link
JP (1) JP2625913B2 (en)

Also Published As

Publication number Publication date
JPH025022A (en) 1990-01-09

Similar Documents

Publication Publication Date Title
JP3045804B2 (en) Automatic alignment mask forming method by photolithography using backside illumination and diffuse reflection layer
US5045487A (en) Process for producing a thin film field-effect transistor
JP4560924B2 (en) Liquid crystal display
KR910009040B1 (en) Method of manufacturing an amphorous-silicon thin film transistor
US20020176029A1 (en) Semipermeable liquid crystal display device and manufacturing method thereof
JP5040847B2 (en) Optical element, liquid crystal device, display device
FR2864640A1 (en) TRANS-REFLECTOR TYPE LIQUID CRYSTAL DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF
US4888632A (en) Easily manufacturable thin film transistor structures
JP2002229060A (en) Reflection-type display device and method of manufacturing the same
JPH0523057B2 (en)
NL8803197A (en) METHOD FOR ETCHING AN IMMEDIATE THIN FILM
JP2625913B2 (en) Thin film transistor
KR100268010B1 (en) Reflector of reflective-type liquid crystal display device and method of making the same
JP2004179450A (en) Semiconductor device and method for manufacturing the same
JPS58134476A (en) Thin film transistor
JPS62152174A (en) Manufacture of thin-film transistor
JPH04326769A (en) Thin film transistor and manufacture thereof
JPH07142737A (en) Manufacture of thin-film transistor
JP2001526412A (en) Fabrication of a matrix composed of thin-film transistors with storage capacitors
JPH0262078A (en) Thin film transistor
JP2802611B2 (en) Phase inversion mask
JP2560602Y2 (en) Thin film transistor
KR100537875B1 (en) Reflective Liquid Crystal Display and Manufacturing Method Thereof
JP2001305515A (en) Method and device for manufacturing reflection type liquid crystal display device
JPS59165459A (en) Manufacture of thin film transistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12