JPS60211689A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS60211689A
JPS60211689A JP59067221A JP6722184A JPS60211689A JP S60211689 A JPS60211689 A JP S60211689A JP 59067221 A JP59067221 A JP 59067221A JP 6722184 A JP6722184 A JP 6722184A JP S60211689 A JPS60211689 A JP S60211689A
Authority
JP
Japan
Prior art keywords
potential
electrode
transistor
counter electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59067221A
Other languages
Japanese (ja)
Other versions
JPH0585990B2 (en
Inventor
Yoshihiro Takemae
義博 竹前
Tomio Nakano
中野 富男
Kimiaki Sato
公昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59067221A priority Critical patent/JPS60211689A/en
Publication of JPS60211689A publication Critical patent/JPS60211689A/en
Publication of JPH0585990B2 publication Critical patent/JPH0585990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enable a quick changeover of an intermediate voltage given to an opposite electrode by providing two terminal for outputting potentials corresponding to active and standby states of memory for a pressure-dividing circuit, by selecting the opposite electrode with the aid of a switching element and by connecting it. CONSTITUTION:A memory cell of one transistor and one capacitor is provided. An intermediate voltage obtained by dividing a supply voltages VCC and VSS is impressed on an opposite electrode OP at the opposite side of the transistor of the capacitor of the memory cell. A high resistance dividing circuit VD for outputting the intermediate voltage is provided with two terminals for generating an output OH at a high level and an output OL at a low level, while the electrode OP is selected by switching transistors Q3 and Q4 and connected to either two terminal. Thus the memory can switch the intermediate voltage given to the electrode OP to high and low levels when it is active and standby.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、1トランジスタ1キヤパシタ型のメモリセル
を備えそのキャパシタの対向電極を電源電圧と接地電位
の中間電位とするグイナミソク型半導体記憶装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a semiconductor memory device having a one-transistor, one-capacitor type memory cell in which a counter electrode of the capacitor is at an intermediate potential between a power supply voltage and a ground potential.

従来技術と問題点 グイナミソク型半導体記憶装置のメモリセルは一般に1
トランジスタ1キヤパシタ型であり、該キャパシタは半
導体基板表面の絶縁膜を誘電体、該絶縁膜上のメタルま
たは多結晶シリコンを一方の電極、その下部の半導体基
板を他方の電極としてするMOS型として構成され、特
に該一方の電極(対向電極という)に電源電圧+Vcc
を加えてその下部のp型半導体基板をn反転させこれを
他方の電極とするものが広く用いられる。また対向電極
に加える電圧はVccでなくてもよく、基板にn型不純
物を拡散させてn型化すれば対向電極電位は電源電圧V
ccと接地電位0ボルトの中間電位でも或いは接地電位
そのものでもよい。
Conventional technology and problems The memory cell of a Guinamisoku type semiconductor memory device is generally one
The transistor 1 is a capacitor type, and the capacitor is configured as a MOS type in which the insulating film on the surface of the semiconductor substrate is used as a dielectric, the metal or polycrystalline silicon on the insulating film is used as one electrode, and the semiconductor substrate below it is used as the other electrode. In particular, one electrode (referred to as the counter electrode) is supplied with a power supply voltage +Vcc.
It is widely used to add a p-type semiconductor substrate under the p-type semiconductor substrate to n-inversion and use it as the other electrode. Also, the voltage applied to the counter electrode does not have to be Vcc; if the substrate is made n-type by diffusing n-type impurities, the potential of the counter electrode is set to the power supply voltage Vcc.
It may be an intermediate potential between cc and the ground potential of 0 volts, or it may be the ground potential itself.

メモリは益々大容量化され、つれてメモリセルは益々小
型化される傾向にある。小型化には各部均等縮尺が必要
であり、つれて絶縁膜なども薄くする必要があり、耐圧
の点で問題がでてくる。ff1Jちキャパシタの対向電
極にVccを加え、他方の電極つまり半導体基板にVc
cで電荷を蓄え又は蓄えない(データ“1”、“0”を
記憶させる)と、該他方の電極の電位はVcc又はVs
s(Oボルト)であるから、キャパシタの絶縁膜には最
高でVccが加わる。これは、膜厚が薄いと強い電界を
生じ、絶縁膜は絶縁破壊する恐れがある。そこで対向電
極には中間電位例えばV cc/ 2を加えることが考
えられている。これなら、他方の電極がV cc、V 
ssのいずれでも対向電極との電位差はV cc/ 2
で、上記の半分になり、絶縁破壊の問題は大幅に軽減さ
れる。か−るダイナミックメモリの要部を第1図に示す
As memories become larger and larger, memory cells tend to become smaller and smaller. Miniaturization requires uniform scaling of all parts, and as a result, insulating films and the like must also be made thinner, which poses problems in terms of withstand voltage. Vcc is applied to the opposing electrode of the capacitor, and Vcc is applied to the other electrode, that is, the semiconductor substrate.
When a charge is stored or not stored at c (data “1” or “0” is stored), the potential of the other electrode becomes Vcc or Vs.
s (O volts), a maximum of Vcc is applied to the insulating film of the capacitor. If the film is thin, a strong electric field will be generated, which may cause dielectric breakdown of the insulating film. Therefore, it has been considered to apply an intermediate potential, for example, Vcc/2, to the counter electrode. In this case, the other electrode is V cc, V
The potential difference with the counter electrode for both ss is Vcc/2
This is half of the above value, and the problem of dielectric breakdown is greatly reduced. FIG. 1 shows the main parts of such a dynamic memory.

第1図で、WLはワード線、BL、BLはヒツト線対、
SAはセンスアンプ、MCはMC3)ランジスタQ+お
よびキャパシタCIからなるメモリセルである。分圧回
路VDは抵抗値の等しい2つの抵抗R1,R2をVcc
とVss間に直列に接続してなり、この中間接続点がセ
ル対向電極OPに接続される。対向電極OPは多数のメ
モリセルに共通であり、図ではワード線と同様な配線の
形で示している。Eは他方の電極であり、これは1ヘラ
ンジスクQ1のソースと一体化されることもある。
In FIG. 1, WL is a word line, BL, BL are a pair of human lines,
SA is a sense amplifier, and MC is a memory cell consisting of a transistor Q+ and a capacitor CI. The voltage divider circuit VD connects two resistors R1 and R2 with the same resistance value to Vcc
and Vss, and this intermediate connection point is connected to the cell counter electrode OP. The counter electrode OP is common to many memory cells, and is shown in the figure in the form of a wiring similar to a word line. E is the other electrode, which may be integrated with the source of 1 herange disk Q1.

この他方の電極EとトランジスタQのソースとの接続部
をノードN1で示す。
The connection between this other electrode E and the source of the transistor Q is indicated by a node N1.

ところで対向電極OPは大面積であり、ビット線BL、
BLなどと交叉してそれらとの間に大きなR,遊容量C
p1 、Cp2等を持つ結果、それらの信号線の電位変
化に伴い容量結合によって電位変動を生しる。そこで対
向電極OPの電位を當に正しく V cc/ 2に保つ
にはこれらの浮遊容量と分圧回路VD内の抵抗との時定
数が問題となる。勿論、この時定数は小さいほど良い。
By the way, the counter electrode OP has a large area, and the bit lines BL,
It intersects with BL etc. and there is a large R and free capacitance C between them.
As a result of having p1, Cp2, etc., potential fluctuations occur due to capacitive coupling as the potentials of these signal lines change. Therefore, in order to maintain the potential of the counter electrode OP exactly at Vcc/2, the time constant between these stray capacitances and the resistance in the voltage dividing circuit VD becomes a problem. Of course, the smaller this time constant is, the better.

しかし、抵抗R1,R2に流れる電流はメモリチップに
電源が投入されている限り流れる電流であるから、R+
However, since the current flowing through the resistors R1 and R2 continues to flow as long as the memory chip is powered on, R+
.

R2を小さくすると常時消費電力が増大する。従って抵
抗R1,R2は高抵抗にして消費電力の増大を避けねば
ならない。しかし抵抗R1,R2の値が大きく、対向電
極OPの充放電が即座にはできない状態であると、前記
寄生容量によるビン1−線等との結合で対向電極電位は
変動する。この変動の詳細は可成り複雑であるが、掘込
すれば次の如くである。即ち、メモリは、センスアンプ
SAが動作してピノ1−線BL、BLの一方をH(ハイ
)レベルまたはVcc、他方をL(ロー)レベル即ぢV
ssにしたアクティブな状態と、センスアンプSAは動
作せずビット線BL、BLがHレベルVccにチャージ
されたスタンバイ状態をとるが、上記分圧回路による充
放電を時定数大成に無視すると、対向電極OPは前者つ
まりアクティブのときは後者スタンバイのときよりも寄
生容Ml Cp l又はCp;の一方での容量結合によ
る変動分だけ低い電位をとる。
If R2 is made small, power consumption increases all the time. Therefore, resistors R1 and R2 must have high resistance to avoid an increase in power consumption. However, if the values of the resistors R1 and R2 are large and the counter electrode OP cannot be charged or discharged immediately, the potential of the counter electrode fluctuates due to the coupling with the bin 1- line etc. due to the parasitic capacitance. The details of this variation are quite complicated, but if you dig deeper, they are as follows. That is, in the memory, the sense amplifier SA operates to set one of the pin 1 lines BL and BL to an H (high) level or Vcc, and the other to an L (low) level, i.e., Vcc.
ss, and a standby state in which the sense amplifier SA does not operate and the bit lines BL and BL are charged to the H level Vcc, but if the charging and discharging by the voltage divider circuit is ignored due to the time constant, the opposite When the electrode OP is active, it takes a lower potential than when it is standby by the amount of variation due to capacitive coupling of one of the parasitic capacitances Ml Cp l or Cp.

アクティブ、スタンバイが繰り返されると対向電極電位
は上記2値の間を変動するが、実際にはこれに寄生容量
の充放電による影響が加わる。即ちOP = V cc
/ 2ならCp2にはOP側を+、BL側を−とする極
性で電荷が充電され該極性の電圧V cc/ 2をbつ
。この状態でBL=VccにするとCp2の電圧により
OPは突き上げられ、同時に寄生容量Cp+ 、CI)
2では電荷の充放電が行なわれる。突き上げられたOP
の電位をT+ΔvHとすると、Cp+ 、OP2の電圧
はT−ΔVH,Cp2の充電電荷の極性は前と逆になる
When active and standby are repeated, the counter electrode potential fluctuates between the above two values, but in reality, this is affected by charging and discharging of parasitic capacitance. That is, OP = Vcc
/ 2, Cp2 is charged with a polarity in which the OP side is + and the BL side is -, and the voltage V cc / 2 of the polarity is b. In this state, when BL=Vcc, OP is pushed up by the voltage of Cp2, and at the same time the parasitic capacitance Cp+, CI)
In step 2, charging and discharging of charges is performed. OP pushed up
When the potential of Cp+ and OP2 is T+ΔvH, the voltage of Cp+ and OP2 is T−ΔVH, and the polarity of the charged charge of Cp2 is opposite to that before.

この状態でBLが再びVssになると、OPはCp2に
より押し下げられ、同時に寄生容量Cp+ 、Cp2の
充放電が行なわれる。この押し下げられたOP性は最初
の状態に戻る。スタンバイ期間とアクティブ期間か同し
長さの場合はΔ■HはΔvLに等しい。
When BL becomes Vss again in this state, OP is pushed down by Cp2, and at the same time, parasitic capacitances Cp+ and Cp2 are charged and discharged. This depressed OP nature returns to its initial state. If the standby period and the active period are the same length, Δ■H is equal to ΔvL.

イブ、スタンバイが短時間で繰り返されている場合であ
って、アクティブ期間またはスタンバイ期間が長くなる
と、OPは分圧回路VDによりVcc/2を与えられる
のでこのVcc/2へ落らイ]りことになる。V cc
/ 2へ落ち付いた状態で、例えば今までスタンバイで
あったものがアクティブになり、BL−肥 BL=Lに
なると、CI)2による押し下げが生じ、OPの電位は
、−(ΔvL+ΔVH)にもなる。なお前記説明ではこ
れは□2 一ΔVLとしたが、それは前の状態か〒+八へHにあっ
たからであり、変動幅は同しAvL+ΔVHである。今
までアクティブであったものがスタンバイに変ったとき
も同様で、この場合は□+ΔVH→−Δ■5へ突き上げ
られる。
When active and standby are repeated in a short period of time, and the active period or standby period becomes long, the OP is given Vcc/2 by the voltage divider circuit VD, so it will not fall to this Vcc/2. become. Vcc
/ 2, for example, what was on standby becomes active and becomes BL=L, a pushdown occurs due to CI) 2, and the potential of OP also changes to -(ΔvL+ΔVH). Become. In the above explanation, this is □2 - ΔVL, but this is because the previous state was at 〒+8 to H, and the fluctuation range is the same AvL+ΔVH. The same thing happens when what has been active until now changes to standby; in this case, it is pushed up to □+ΔVH→-Δ■5.

このようなOPの電位の変動は、アクティブ期間とスク
ンハイ期間との比率が比較的長時間にわたって変化した
場合にも同様に生しる。前述のように対向電極に中間電
位V cc/ 2を与えるのは絶縁膜の絶縁劣化を防く
ためであるか、その対向電極の電位が上記のように大幅
に変ってしまうのでは中間電位採用のりJ果が減殺され
てしまう。また対向電極OPの電位は他方の電極E、従
ってノートN1の電位に影響し、OPの電位が大きく下
るとI’J+の電位も大きく下ってセンスアンプSAが
誤動作し、データ“1”記憶状態もデータ“′0”記憶
状態と誤判定される恐れがある。
Such fluctuations in the potential of OP similarly occur when the ratio between the active period and the scan high period changes over a relatively long period of time. As mentioned above, the reason for applying the intermediate potential V cc/2 to the counter electrode is to prevent insulation deterioration of the insulating film, or because the potential of the counter electrode changes significantly as described above, it is not appropriate to use an intermediate potential. The number of seaweed fruits will be reduced. In addition, the potential of the opposing electrode OP affects the potential of the other electrode E, and hence the note N1, and when the potential of OP drops significantly, the potential of I'J+ also drops significantly, causing the sense amplifier SA to malfunction, resulting in data "1" storage state. There is also a possibility that the data "'0" storage state may be erroneously determined.

そこで本発明者は分圧回路VDの出力をアクティブ時と
スタンバイ時で切換えることを考え、これを先に提案し
た(特願昭57−211146号)。
Therefore, the inventor of the present invention considered switching the output of the voltage divider circuit VD between active and standby states, and previously proposed this (Japanese Patent Application No. 57-211146).

第1図の抵抗R3,MOS)ランジスタQ2がこれで、
クロックφAによりトランジスタQ2をオンオフするこ
とにより分圧回路の出力レベルをH。
The resistor R3 and MOS) transistor Q2 in Figure 1 are now
By turning on and off transistor Q2 with clock φA, the output level of the voltage dividing circuit is set to H.

Lに変える。即ちクロックφAはアクティブ時にH1ス
タンバイ時にLとすると、アクティブ時にはトランジス
タQ2がオンになって抵抗R2に抵抗R3を並列接続し
、分圧回路の出力を下げ、スタンバイ時にはトランジス
タQ2をオフにして抵抗R3を切り離し、分圧回路の出
力を上げる。OPの平均電位をVcc/2とするにはR
1,R2の抵抗値は異ならせる。つまり分圧回路VDの
I]レベル出力は前記の□十ΔVH,Lレベル出力はc
c T〜Δ■、に選ふと、アクティブ期間及びスクンハイ期
間が長くなっても、対向電極電位の落ち付永先と分圧回
路の出力レベルが同しであるから変化がなく、アクティ
ブ、スタンバイの再開で対向電極電位が大きく変動する
ことがない。
Change to L. That is, if the clock φA is set to H1 during active and L during standby, then when active, transistor Q2 is turned on and resistor R3 is connected in parallel to resistor R2, lowering the output of the voltage divider circuit, and during standby, transistor Q2 is turned off and resistor R3 is connected. and increase the output of the voltage divider circuit. To set the average potential of OP to Vcc/2, R
1 and R2 have different resistance values. In other words, the I] level output of the voltage divider circuit VD is the above □10ΔVH, and the L level output is c
If c T ~ Δ■ is selected, even if the active period and the high-speed period become longer, there will be no change because the settling time of the counter electrode potential and the output level of the voltage divider circuit are the same. The counter electrode potential does not change significantly upon restart.

しかしながらこの既提案回路にも欠点がある。However, this proposed circuit also has drawbacks.

即ち、前述のように消費電力を少なくするため、抵抗R
1,R2ば高抵抗であり、つれて抵抗R3も高抵抗であ
るが、高抵抗であると寄生容量などと大きな時定数を作
ってしまう。特に抵抗R3の挿脱のためMOS)ランジ
スタQ2を用いると、これは大きなソース、ドレイン容
量を持っており、このためトランジスタQ2をオフにし
ても直ちにはノートN2の電位が上らず、抵抗R3が接
続されているのと同し状態になってしまう。第2図はこ
れを説明する図で、曲線N2はノードN2の電位変化を
示す。同様に曲線φΔはクロックψA、曲線OPは対向
電極OPの電位変化を示す。RA■はローアドレススト
ローブ信号で、外部より与えられ、Lレベルでメモリチ
ップのセンスアンプSAはアクティブ、Hレベルでスタ
ンバイになる。
That is, as mentioned above, in order to reduce power consumption, the resistor R
1 and R2 have a high resistance, and the resistor R3 also has a high resistance, but if the resistance is high, it will create a parasitic capacitance and a large time constant. In particular, when a MOS transistor Q2 is used to insert and remove the resistor R3, it has a large source and drain capacitance, so even if the transistor Q2 is turned off, the potential of the node N2 does not rise immediately, and the resistor R3 It will be in the same state as if it were connected. FIG. 2 is a diagram for explaining this, and a curve N2 shows a change in the potential of the node N2. Similarly, the curve φΔ shows the clock ψA, and the curve OP shows the potential change of the counter electrode OP. RA■ is a row address strobe signal, which is applied from the outside, and when it is at L level, the sense amplifier SA of the memory chip becomes active, and when it is at H level, it becomes standby.

前述のようにアクティブになるとビット線BL。As mentioned above, when activated, the bit line BL.

BLは電力がH1他方がLになり、対向電極OPの電位
は下り、スタンバイになるとビット線BL。
The power of BL becomes H1 and the other becomes L, the potential of the counter electrode OP decreases, and when the bit line BL becomes standby.

BLは共にHになり対向電極の電位が上る。この対向電
極OPの電位変化に合わせてクロックφAをH,Lにし
、分圧回路VDの出力レベルを変える。即ちアクティブ
でφAをI]にしてトランジスタQ2をオンにし、ノー
ドN2をVssへ落とし、抵抗R3をR2に並列に接続
する。これは直ちに行なえるので、分圧回路の出力は急
速にLレベルになる。しかしスタンバイでクロックφA
をLにし、トランジスタQ2をオフにしても、図示のよ
うにノードN2の電位は中々上らない。ノート’ N 
2の電位を上げるには高抵抗R1,R3を通して該ノー
ドを充電する必要があるが、これには時間がか\る。ノ
ードN2の電位が上らないとこれは抵抗R3を抵抗R2
に並列接続しているのと同じで分圧回路VDの出力はL
レベルである。この状態ではOPの電位は低く、Cpl
 、CI)2はBL。
Both BL become H, and the potential of the opposing electrode increases. The clock φA is set to H or L in accordance with the potential change of the counter electrode OP, and the output level of the voltage dividing circuit VD is changed. That is, in the active state, φA is set to I], transistor Q2 is turned on, node N2 is dropped to Vss, and resistor R3 is connected in parallel to R2. Since this can be done immediately, the output of the voltage divider circuit quickly becomes L level. However, in standby, the clock φA
Even if the voltage is set to L and the transistor Q2 is turned off, the potential of the node N2 hardly increases as shown in the figure. Note'N
In order to raise the potential of node 2, it is necessary to charge the node through high resistances R1 and R3, but this takes time. If the potential of node N2 does not rise, this will cause resistor R3 to become resistor R2.
The output of the voltage divider circuit VD is L.
level. In this state, the potential of OP is low and Cpl
, CI) 2 is BL.

BL側を十にして高い電圧に充電され、この状態でアク
ティブになって例えばBLがVssになるとOPは強く
押し下げられ、キャパシタ絶縁膜の劣化、記憶データの
読み誤りを生しる恐れがある。
The BL side is set to 100% and charged to a high voltage, and in this state it becomes active and, for example, when BL becomes Vss, OP is strongly pushed down, which may cause deterioration of the capacitor insulating film and erroneous reading of stored data.

発明の目的 本発明はか−る点を改善し、対向電極に与える中間電位
をH,Lに迅速に切換え可能にしようとずるものである
OBJECTS OF THE INVENTION The present invention aims to improve the above points and to make it possible to quickly switch the intermediate potential applied to the opposing electrode between H and L.

発明の構成 本発明は、1トランジスタ1キャパシタ型のメモリセル
を備え、該メモリセルのキャパシタのトランジスタとは
反対側の対向電極へは、分圧回路により′市fA電圧を
分圧して得た中間電圧を加える半導体記憶装置において
、該分圧回路に、メモリのアクティブ時とスタンバイ時
とに対応する2種の電位を出力する2端子を設け、スイ
ッチング素子により対向電極を該2端子のいずれかへ選
択接続するようにしてなることを特徴とするか、次に実
施例を参照しながらこれを説明する。
Structure of the Invention The present invention comprises a one-transistor, one-capacitor type memory cell, and an intermediate voltage obtained by dividing a voltage of 'fA' by a voltage dividing circuit is connected to a counter electrode of the capacitor of the memory cell on the opposite side from the transistor. In a semiconductor memory device that applies a voltage, the voltage divider circuit is provided with two terminals that output two types of potentials corresponding to when the memory is active and when it is on standby, and a switching element connects the opposing electrode to either of the two terminals. Next, this will be explained with reference to embodiments.

発明の実施例 第3図は本発明の実施例を示し、第1図と同し部分には
同じ符号が(=jしてある。本発明では高抵抗分圧回路
はHレベル出力とLレベル出力を生じる2端子を備え、
対向電極OPはこれらの2端子の一方へスイッチングト
ランジスタQ3.Q4で選択して接続する。抵抗R+と
R2がその111レベル出力用路、抵抗R4とR3がL
レベル出力用回路であり、N3.Naがその出力端であ
る。クロックφAがHレベルのときトランジスタQ4が
オンになり対向電極OPへLレベル出力OLを加える。
Embodiment of the Invention FIG. 3 shows an embodiment of the present invention, in which the same parts as in FIG. Equipped with two terminals that produce output,
The counter electrode OP is connected to one of these two terminals by the switching transistor Q3. Select in Q4 and connect. Resistors R+ and R2 are for the 111 level output, and resistors R4 and R3 are for the L level.
It is a level output circuit, and N3. Na is its output terminal. When clock φA is at H level, transistor Q4 is turned on and applies L level output OL to counter electrode OP.

またクロックφΔと逆相のクロック八がHレベルのとき
トランジスタQ3かオンになり、対向電極OPへI−ル
ヘル出力oHを加える。前述のブ、スタンバイを繰り返
しているときの対向電極○Pの1−1.R2種の電位に
選ぶ。このようにすれば、アクティブ、スタンバイ期間
か長くなっても、対向電極電位に変化がない。この分圧
回路はその出力端N3.N4に常時、H,R2種の電圧
を生しており、その一方をスイッチング素子Q3.Q、
Iで選択して対向電極OPへ加えるだけであるから、該
電圧印加は直ちに行なわれ、第1図の回路のように時定
数により煩わされて直ぢには所望電位にならないという
問題はない。
Further, when the clock 8 having the opposite phase to the clock φΔ is at the H level, the transistor Q3 is turned on, and the I-ruher output oH is applied to the counter electrode OP. 1-1 of the counter electrode ○P when repeating standby as described above. Select R2 potential. In this way, even if the active and standby periods become longer, there is no change in the potential of the counter electrode. This voltage divider circuit has its output terminal N3. Two voltages, H and R, are always generated at N4, one of which is connected to switching element Q3. Q,
Since the voltage is simply selected by I and applied to the counter electrode OP, the voltage is applied immediately, and there is no problem that the desired potential is not directly reached due to the time constant as in the circuit of FIG.

第4図は第2図と同様な図であるか、第4図ではクロッ
クφAの他にクロックφΔも示している。
FIG. 4 is a diagram similar to FIG. 2, or shows a clock φΔ in addition to the clock φA.

RASは図示していないが、やばりRASがLレベルに
なって対向電極OPの電位が下り、RASが11になっ
て対向電極OPの電位が上る。クロックψAはOPが下
ってから立ち上げ、OPが上る前に立ぢ下げる。同様に
クロックφAばOPが上ってから立ち上げ、OPが下る
前に立ち下げる。
Although RAS is not shown, RAS becomes L level and the potential of the counter electrode OP decreases, and RAS becomes 11 and the potential of the counter electrode OP increases. The clock ψA rises after OP falls and falls before OP rises. Similarly, the clock φA is started up after OP goes up and is stopped before OP goes down.

OPの電位変化中はφΔ、6いずれもLであり、トラン
ジスタQ:+、Q4はオフで対向電極OPはフローティ
ングの状態にある。
While the potential of OP is changing, both φΔ and 6 are at L, transistors Q:+ and Q4 are off, and the counter electrode OP is in a floating state.

対向電極opの電位変化中は該opを分圧回路から切り
離す理由は次の如くである。即ぢRASかLになってセ
ンスアンプが動作しOPの電位か下るが、この電位変化
は急激ではない。そこでOPが十分1/2Vcc−ΔV
L即ちoLの電位りに達しないうちにφAを上げQ4を
ONとするとわずかの時間であるかOPよりQ4.’N
4.R3を通してVssに電流が流出する。R3の抵抗
も高いため1回の流出量はわずかであるが、数多くこの
ような現象が繰返されると、OPの電位は低下する。ま
たφAの立ち下かり時もOPが立ち上がる前にφAを下
げQ4を完全にOFFとしておかないと同様な問題が生
ずる。この問題はφAについても同様である。そしてO
P電位の立下り時と立上り時とで電流の流出量が相違す
ることによってアクティブ、スタンバイを繰返すうしに
、該繰返し周期に依存した且つH,Lと異なる電位にO
Pの電位が変化して行くことになる。これを避けるため
には第4図に示すごとく、OPの電位が完全にOL又は
OHの時のみφ4又はφ3をONとして、OPの電位変
化時Q4.Q3共にOFFとする事で可能である。
The reason why the counter electrode OP is separated from the voltage dividing circuit while the potential of the counter electrode OP is changing is as follows. Immediately, RAS goes low, the sense amplifier operates, and the potential of OP drops, but this potential change is not sudden. Therefore, OP is sufficiently 1/2Vcc-ΔV
If φA is increased and Q4 is turned on before reaching the potential of L, that is, oL, it will take only a short time or Q4. 'N
4. Current flows out to Vss through R3. Since the resistance of R3 is also high, the amount of outflow at one time is small, but if such a phenomenon is repeated many times, the potential of OP will decrease. Also, when φA falls, a similar problem will occur unless φA is lowered and Q4 is completely turned off before OP rises. This problem also applies to φA. And O
Due to the difference in the amount of current flowing out when the P potential falls and rises, the active and standby states are repeated, and the O
The potential of P will change. In order to avoid this, as shown in FIG. 4, φ4 or φ3 is turned on only when the OP potential is completely OL or OH, and when the OP potential changes, Q4. This is possible by turning off both Q3.

第5図は本発明の他の実施例を示ず。R5−R7は31
11ilの高抵抗で、電源V cc、V ss間に直列
に接続される。対向電極OPはスイッチングトランジス
タQ3.Q4を介してノードN5.N6即ち抵抗R5と
R6の直列接続点、抵抗R6とR7の直列接続点へ接続
される。1−ランジスタQg、C;Laのグー1−へは
クロックφへ、φΔがカロえられ、ノードN5.N6は
H,Lレベル出力oH,oLを生じるから(R5−R7
の抵抗値をそのように選ふ)、第3図と同様な動作が行
なわれる。消費電力の点では第5図の方が第3図より有
利である。
FIG. 5 does not show another embodiment of the invention. R5-R7 is 31
It has a high resistance of 11il and is connected in series between the power supplies Vcc and Vss. The counter electrode OP is the switching transistor Q3. Q4 to node N5. N6, that is, the series connection point of resistors R5 and R6, and the series connection point of resistors R6 and R7. 1-transistor Qg, C; La's G1- is connected to the clock φ, φΔ is added, and the node N5. Since N6 produces H and L level outputs oH and oL (R5-R7
3), the same operation as in FIG. 3 is performed. In terms of power consumption, FIG. 5 is more advantageous than FIG. 3.

なお抵抗R1−R7は拡散抵抗などの他にトランジスタ
などで構成してもよいことは言う迄もない。
It goes without saying that the resistors R1 to R7 may be constructed of transistors or the like in addition to diffused resistors.

発明の詳細 な説明したように本発明では、高抵抗分圧回路によりセ
ルキャパシタ対向電極に与える中間電位を、メモリがア
クティブ、スタンバイを繰り返し、この結果該対向電極
がその寄生容量により与えられるH、L電位に等しい2
種の電位とし、該分圧回路は該2種の電位を常時、同時
に出力しており、その一方を選択して対向電極に印加す
るようにしたので、選択と同時に当該電圧を対向電極に
加えることができ、高抵抗回路に不随する時定数により
該電圧印加が遅れるようなことがない。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, in the present invention, the memory repeats activation and standby of the intermediate potential applied to the counter electrode of the cell capacitor by the high resistance voltage divider circuit, and as a result, the counter electrode becomes H, which is given by its parasitic capacitance. 2 equal to L potential
The voltage dividing circuit always outputs the two types of potential at the same time, and one of them is selected and applied to the opposite electrode, so the voltage is applied to the opposite electrode at the same time as the selection. Therefore, the voltage application is not delayed due to a time constant associated with a high resistance circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は既提案方式を説明する回路図、第2図はその動
作説明用波形図、第3図は本発明の実施例を示す回路図
、第4図はその動作説明図、第5は他の実施例を示す回
路である。 図面で、MCはメモリセル、Qlはそのトランジスタ、
C+ばキャパシタ、OPは対向電極、Cpl。 CI)2は寄生容量、VDは分圧回路、N3.N4はそ
の出力端、Vccは電源電圧、Vssは接地電位出願人
 富士通株式会社 代理人弁理士 青 柳 稔 第5図 VCC Ss 手続補正書(自発) 昭和60年 3月23日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第67221号 2、発明の名称 半導体記憶装置 3、補正をする者 事件との関係 特許出願人 住 所 神奈川県用崎市中原区上小田中1015番地名
称 (665)富士通株式会社 代表者 山 本 卓 眞 4、代 理 人 〒101 6、補正によシ増加する発明の数 な し7、補正の対
象 明細書の発明の詳細な説明の欄8、補正の内容 (1)明細書第11頁5行の「分圧回路」を「高抵抗分
圧回路」に補正する。
Figure 1 is a circuit diagram explaining the proposed method, Figure 2 is a waveform diagram explaining its operation, Figure 3 is a circuit diagram showing an embodiment of the present invention, Figure 4 is a diagram explaining its operation, and Figure 5 is a diagram explaining its operation. 7 is a circuit showing another embodiment. In the drawing, MC is a memory cell, Ql is its transistor,
C+ is a capacitor, OP is a counter electrode, and Cpl. CI)2 is a parasitic capacitance, VD is a voltage dividing circuit, N3. N4 is the output terminal, Vcc is the power supply voltage, and Vss is the ground potential.Applicant: Minoru Aoyagi, Patent Attorney, Fujitsu Ltd., Figure 5, VCC Ss Procedural Amendment (Spontaneous), March 23, 1985, Commissioner of the Japan Patent Office, Shiga Gakuden 1, Indication of the case, Patent Application No. 67221 filed in 1982, 2, Name of the invention, semiconductor storage device 3, Person making the amendment, Relationship to the case Patent applicant address: 1015 Kamiodanaka, Nakahara-ku, Yozaki City, Kanagawa Prefecture Name (665) Fujitsu Limited Representative Takashi Yamamoto 4, Agent 101 6, Number of inventions increased due to amendment None 7, Subject of amendment Detailed explanation of the invention in the specification column 8, Amendment Contents (1) "Voltage divider circuit" on page 11, line 5 of the specification is corrected to "high resistance voltage divider circuit."

Claims (1)

【特許請求の範囲】 lトランジスタ1キヤパシタ型のメモリセルを備え、該
メモリセルのキャパシタのトランジスタとは反対側の対
向電極へは、分圧回路により電源電圧を分圧して得た中
間電圧を加える半導体記憶装置において、 該分圧回路に、メモリのアクティブ時とスタンバイ時と
に対応する2種の電位を出力する2端子を設り、スイッ
チング素子により対向電極を該2端子のいずれかへ選択
接続するようにしてなることを特徴とする半導体記憶装
置。
[Claims] A memory cell having one transistor and one capacitor type is provided, and an intermediate voltage obtained by dividing the power supply voltage by a voltage dividing circuit is applied to the opposite electrode of the capacitor of the memory cell on the opposite side from the transistor. In a semiconductor memory device, the voltage dividing circuit is provided with two terminals that output two types of potentials corresponding to when the memory is active and when it is on standby, and the opposing electrode is selectively connected to one of the two terminals by a switching element. A semiconductor memory device characterized in that it is configured to perform the following steps.
JP59067221A 1984-04-04 1984-04-04 Semiconductor memory device Granted JPS60211689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59067221A JPS60211689A (en) 1984-04-04 1984-04-04 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59067221A JPS60211689A (en) 1984-04-04 1984-04-04 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS60211689A true JPS60211689A (en) 1985-10-24
JPH0585990B2 JPH0585990B2 (en) 1993-12-09

Family

ID=13338632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59067221A Granted JPS60211689A (en) 1984-04-04 1984-04-04 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS60211689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105568A (en) * 1988-10-14 1990-04-18 Nec Corp Mos type dynamic semiconductor memory

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123685A (en) * 1977-04-04 1978-10-28 Nec Corp Binary memory device
JPH0219558A (en) * 1988-07-07 1990-01-23 Tokyo Kihan:Kk Impregnating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123685A (en) * 1977-04-04 1978-10-28 Nec Corp Binary memory device
JPH0219558A (en) * 1988-07-07 1990-01-23 Tokyo Kihan:Kk Impregnating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105568A (en) * 1988-10-14 1990-04-18 Nec Corp Mos type dynamic semiconductor memory

Also Published As

Publication number Publication date
JPH0585990B2 (en) 1993-12-09

Similar Documents

Publication Publication Date Title
KR940003891B1 (en) Semiconductor memory device having an arrangement for preventing operational errors
US5394365A (en) Charge pump circuit having an improved charge pumping efficiency
KR100539496B1 (en) Flexible regulator control method for large changes in power supply voltage
US4409496A (en) MOS Device including a substrate bias generating circuit
JP2002522871A (en) Word line voltage generation on DRAM chips embedded in logic processes
KR100532765B1 (en) Semiconductor memory device
EP0113187B1 (en) A dynamic semiconductor memory device
US5619164A (en) Pseudo ground line voltage regulator
JP3380823B2 (en) Semiconductor storage device
KR970006605B1 (en) Voltage generating circuit causing no threshold voltage loss by fet in output voltage
US6628162B2 (en) Semiconductor integrated circuit
JPH0750552B2 (en) Internal potential generation circuit
JPS6199363A (en) Substrate-potential generating circuit
JPH05250874A (en) Voltage generation device
JP3740577B2 (en) Negative potential generating circuit, negative potential generating device, and semiconductor device using the same
JPH1126697A (en) Back bias generator for semiconductor device and its generating method
KR100244837B1 (en) Semiconductor memory device capable of setting the magnitude of substrate voltage in accordance with the mode
JP2685469B2 (en) Semiconductor device
JPS60211689A (en) Semiconductor memory device
JP2003132679A (en) Semiconductor device
JP2613579B2 (en) Generator circuit in integrated semiconductor circuit
JPH0335493A (en) Dynamic semiconductor memory device
JPS6161293A (en) Dynamic memory
JP2724218B2 (en) Semiconductor integrated circuit
KR940003892B1 (en) Semiconductor memory device having an arrangement for preventing operational errors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees