JPS60209947A - Optomagnetic recording medium - Google Patents

Optomagnetic recording medium

Info

Publication number
JPS60209947A
JPS60209947A JP59065556A JP6555684A JPS60209947A JP S60209947 A JPS60209947 A JP S60209947A JP 59065556 A JP59065556 A JP 59065556A JP 6555684 A JP6555684 A JP 6555684A JP S60209947 A JPS60209947 A JP S60209947A
Authority
JP
Japan
Prior art keywords
layer
refractive index
magneto
optical recording
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59065556A
Other languages
Japanese (ja)
Inventor
Mitsuya Okada
満哉 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59065556A priority Critical patent/JPS60209947A/en
Publication of JPS60209947A publication Critical patent/JPS60209947A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To increase considerably the rotating angle of the plane of polarization of a recording medium and to improve the S/N ratio of a reproduction signal by using silicon (Si) for the 1st and 2nd high-refractive index interference layers of an optomagnetic recording medium provided with the 1st high-refractive index interference layer, optomagnetic recording layer, the 2nd high refractive index interference layer and reflecting layer on a transparent substrate. CONSTITUTION:A high-refractive index interference layer 3, an optomagnetic recording layer 2, a high-refractive index interference layer 3' and a reflecting layer 5 are provided on a transparent substrate 4. Si (refractive index n=2.5) is used as the layers, 3, 3'. Laser light 6 to be used for recording, reproducing and erasing is made incident from the substrate 4 side to perform recording of information on the layer 2. The information is reproduced from the rotation of the plane of polarization based on the Kerr rotating angle and Faraday rotating angle by the reflected light from the layer 2 and the layer 5. The film thickness of the layer 2 is set to the thickness at which the transmission of part of the wavelength of the laser light for reproduction is made possible. Since the effective use of the Faraday effect generated in the stage of transmission is thereby made possible, the rotation of the plane of polarization in the stage of reproduction is increased.

Description

【発明の詳細な説明】 (L業上の利用分野) 不発明はレーザ光を用いて情報の記録・再生・消去をお
こなう光磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of industrial application) The present invention relates to a magneto-optical recording medium that records, reproduces and erases information using laser light.

(従来技術とその問題点) 光磁気記録媒体は書き替えのできる光デイスク大容量・
高速アクセスが可能であるということから現在の磁気デ
ィスクメモリに代わる新規なメモリと考えられている。
(Prior art and its problems) Magneto-optical recording media are rewritable optical disks with large capacity and
Because high-speed access is possible, it is considered a new memory that can replace current magnetic disk memories.

中でも光磁気記録媒体を用いた光磁気ディスクは書き替
え性を有することから最も注目され、近年活発に研究開
発がおこなわれている。
Among them, magneto-optical disks using magneto-optical recording media have attracted the most attention because of their rewritability, and have been actively researched and developed in recent years.

従来よシ知られている光磁気記録媒体の構成は第1図に
示したように支持基板1としてガラス、金属あるいは有
機物樹脂を用い、支持基板1上に基板に対して垂直方向
に磁化を有する垂直磁化膜から成る光磁気記録層2を形
成したものである。光磁気記録層としてはMnB1. 
MnCuB1. PtCo、MnAl!Ge等の結晶体
、Gd、 Tb、 Dy、 Ho等希土類とFe、 C
o。
The configuration of a conventionally known magneto-optical recording medium is as shown in FIG. 1, in which glass, metal, or organic resin is used as a support substrate 1, and the support substrate 1 has magnetization in a direction perpendicular to the substrate. A magneto-optical recording layer 2 made of a perpendicularly magnetized film is formed. As the magneto-optical recording layer, MnB1.
MnCuB1. PtCo, MnAl! Crystals such as Ge, rare earths such as Gd, Tb, Dy, and Ho, and Fe, C
o.

Ni等遷移金属とを種々の組成で混合して作製したアモ
ルファス磁性薄膜が知られている〇光磁気記録媒体は前
記のとおシ磁気ディスクメモリに代わる利点を有してい
る反面、再生信号レベルすなわち87N比が低いという
欠点がある。
Amorphous magnetic thin films prepared by mixing transition metals such as Ni in various compositions are known. Magneto-optical recording media have the advantages of replacing the above-mentioned magnetic disk memories, but on the other hand, the playback signal level The disadvantage is that the 87N ratio is low.

特に光磁気記録媒体からの反射光を用いて再生をb?外
ら六−茹思jFス亜圧嘴#kr % l/%イ糾 甜体
のカー回転角が小さいことが低87N比の原因であった
In particular, reproduction is performed using reflected light from a magneto-optical recording medium. The reason for the low 87N ratio was that the Kerr rotation angle of the beak was small.

従来よシ再生信号のS/N比を向上させる方法として、
記録層の改良すなわち光磁気記録層を多元系にするある
いは他元素を添加する方法や、記録媒体のレーザ光入射
面に高屈折率干渉層を形成して反射光を減少させ、カー
回転角を増大させるカー回転増幅法が用いられている。
As a conventional method of improving the S/N ratio of the reproduced signal,
Improvements to the recording layer, such as making the magneto-optical recording layer multi-component or adding other elements, and forming a high refractive index interference layer on the laser beam incidence surface of the recording medium to reduce reflected light and increase the Kerr rotation angle. An increasing Kerr rotation amplification method is used.

このうち、後者のカー回転増幅法に関しては、第2図に
示したように支持基板1の上に光磁気記録層2を形成し
、さらに前記記録層2の上に8i0めるいは8i02の
高屈折率干渉層3を形成した媒体が知られている0しか
しながら、この媒体においては、前記記録層2が酸化し
やすい場合には、前記高屈折率干渉層3に用いる8i0
.8i02中の酸素が前記記録層20表面で酸化物を形
成し、記録層のカー回転角が経時変化を受け低下すると
いう欠点がある。また、前記高屈折率干渉層3上に付着
する小さなごみ、はこシ、汚れは記録層に集光されるレ
ーザー光の合焦点位置近傍に存在するため、信号再生時
の雑音源になるという欠点がある0(発明の目的) 本発明はこのような従来の欠点を除去せしめて、作製が
容易で記録層の耐蝕性、耐酸化性に優れ、かつ小さなご
みや汚れの影響を無視でき、カー回転角を増幅できる機
能を有し、優れた再生信号87N比が得られる新規な光
磁気記録媒体を提供することにある〇 (発明の構成) 本発明によれば、透明基板上に第1の高屈折率干渉層を
設け、前記第1の高屈折率誘電体層の上に光磁気記録層
を設け、前記光磁気記録層の上に第2の高屈折率干渉層
を設け、前記亀2の高屈折率干渉層の上に反射層を設叶
た光磁気記録媒体において、前記第1.第2の高屈折率
干渉層としてケイ素(Si)を用いることを特徴とする
光磁気記録媒体が得られる。
Regarding the latter Kerr rotation amplification method, as shown in FIG. However, in this medium, when the recording layer 2 is easily oxidized, the 8i0 used for the high refractive index interference layer 3 is known.
.. There is a drawback that the oxygen in 8i02 forms oxides on the surface of the recording layer 20, and the Kerr rotation angle of the recording layer decreases over time. In addition, small dust, chips, and dirt that adhere to the high refractive index interference layer 3 are present near the focal point of the laser beam focused on the recording layer, so they become a source of noise during signal reproduction. There are 0 drawbacks (objective of the invention) The present invention eliminates these conventional drawbacks, provides a recording layer that is easy to produce, has excellent corrosion resistance and oxidation resistance, and can ignore the effects of small dust and dirt. An object of the present invention is to provide a novel magneto-optical recording medium which has a function of amplifying the Kerr rotation angle and can obtain an excellent reproduced signal ratio of 87N. a high refractive index interference layer, a magneto-optical recording layer is provided on the first high refractive index dielectric layer, a second high refractive index interference layer is provided on the magneto-optical recording layer, and a high refractive index interference layer is provided on the first high refractive index dielectric layer; In the magneto-optical recording medium in which a reflective layer is provided on the high refractive index interference layer of the first. A magneto-optical recording medium characterized in that silicon (Si) is used as the second high refractive index interference layer is obtained.

(構成の詳細な説明) 本発明は上述の構成をとることによシ、従来技術の問題
点を解決した0まず、媒体支持基板として透明基板を用
いることによ多信号の記録再生消去用のレーザー光を基
板側から記録層に入射させる方式が採用できる。この方
式によれば基板表面ではレーザー光は未集光−状態であ
るため、透明基板表面に付着する小さなごみ、はこシ、
汚れは記録・再生・消去性能にtlとんど影響しない。
(Detailed explanation of the structure) The present invention solves the problems of the prior art by adopting the above-mentioned structure.Firstly, by using a transparent substrate as a medium support substrate, it is possible to record, reproduce and erase multiple signals. A method can be adopted in which laser light is made incident on the recording layer from the substrate side. According to this method, the laser beam is not focused on the surface of the substrate, so small dust, particles, etc. that adhere to the surface of the transparent substrate, etc.
Dirt has almost no effect on recording, reproducing, and erasing performance.

本発明の特徴は高屈折率干渉層としてケイ素(8i)を
用いることであるo Siは干渉層として既知の8i0
.5iO1に比べて屈折率が大きく、それ故にカー回転
角増幅効果が太きい0また8iは半導体レーザー波長7
80〜830 nmでは吸収がないことも干渉層として
有利である0記録層表面に酸化などの変化が生じると、
記録層の表面状態に影響されやすいカー回転角が低下し
、媒体特性を劣化させるが、Siは酸化物ではなくまた
化学的に安定であるから干渉層と記録層との界面に酸化
物が生成されることはない。
The feature of the present invention is the use of silicon (8i) as a high refractive index interference layer.
.. 0 or 8i, which has a larger refractive index than 5iO1 and therefore has a larger Kerr rotation angle amplification effect, has a semiconductor laser wavelength of 7.
It is also advantageous as an interference layer that there is no absorption in the wavelength range of 80 to 830 nm.0 When changes such as oxidation occur on the surface of the recording layer,
The Kerr rotation angle, which is easily affected by the surface condition of the recording layer, decreases, deteriorating the medium properties, but since Si is not an oxide and is chemically stable, oxides are formed at the interface between the interference layer and the recording layer. It will not be done.

光磁気記録層は記録・再生・消去に用いるレーザー光の
一部が透過する厚さに設定される。これによシ再生し−
ザー光は記録層表面で受けるカー回転と、記録層を透過
し干渉層を経て反射層で反射され再び干渉層と記録層を
透過することによって受けるファラデー回転によってよ
シ大きな偏光面回転を持って反射される。このとき、記
録層と反射層間に用いられる干渉層の厚さは干渉層中で
のレーザー光波長の1/2になるように設定される口 光磁気記録層は高屈折率干渉層であるSi によっては
さみ込まれているため、基板側あるいは反射層側からの
空気、水分の侵入に対して強(、Si層は保護層を兼ね
るものである。
The magneto-optical recording layer is set to have a thickness that allows a portion of laser light used for recording, reproduction, and erasing to pass through. Regenerate it with this.
The laser light has a large polarization plane rotation due to the Kerr rotation that it receives on the surface of the recording layer, and the Faraday rotation that it receives when it passes through the recording layer, passes through the interference layer, is reflected by the reflection layer, and passes through the interference layer and the recording layer again. reflected. At this time, the thickness of the interference layer used between the recording layer and the reflective layer is set to be 1/2 of the wavelength of the laser light in the interference layer.The magneto-optical recording layer is a high refractive index interference layer made of Si. Since the silicon layer is sandwiched between layers, it is resistant to air and moisture intrusion from the substrate side or the reflective layer side (the Si layer also serves as a protective layer).

(実施例) 第3図は本発明の適用された光磁気記録媒体の一実施例
の断面図でちゃ、透明基板4の上部に高屈折率干渉層3
さらに光磁気記録層2さらに高屈折率干渉層31さらに
反射層5を有する。透明基板4としてはガラス、有機物
樹脂(ポリメチルメタリフレート、ポリカーボネート、
ポリ塩化ビニル等)が用いられる◇高屈折率干渉層3,
3′として8i(屈折率n=2.5)を用いる。8iは
8i0.8i02に比べて高屈折率である。光磁気記録
層2としては、MnB1. MnCuB1. Pico
、 MnAl!Ge等の結晶体あるいはGd、 Tb、
 Dy、 Ho等の希土類とFe、 Co、 Ni等の
遷移金属の種々の組成から成るアモルファス磁性薄膜が
用いられる0反射層5としては、M。
(Embodiment) FIG. 3 is a cross-sectional view of an embodiment of a magneto-optical recording medium to which the present invention is applied.
Furthermore, it has a magneto-optical recording layer 2, a high refractive index interference layer 31, and a reflective layer 5. The transparent substrate 4 may be made of glass, organic resin (polymethylmetalliflate, polycarbonate,
◇High refractive index interference layer 3,
8i (refractive index n=2.5) is used as 3'. 8i has a higher refractive index than 8i0.8i02. As the magneto-optical recording layer 2, MnB1. MnCuB1. Pico
, MnAl! Crystals such as Ge or Gd, Tb,
As the reflective layer 5, an amorphous magnetic thin film made of various compositions of rare earth elements such as Dy and Ho and transition metals such as Fe, Co, and Ni is used.

Cu、 Cr、 Ag、 Au等の金属が用いられる。Metals such as Cu, Cr, Ag, and Au are used.

記録・再生・消去に用いるレーザー光6は透明基板4側
から入射し、記録層2に情報の記録をおこない、記録層
2ならびに反射層5からの反射光によってカー回転角な
らびに7アラデ一回転角に基づく偏光面の回転から情報
を再生する。ここで記録層2の膜厚を再生レーザー光波
長において一部の透過を可能とする厚さに設定すること
によシ、透過時に生じるファラデー効果を有効利用でき
るので、再生時の偏光面回転を大きくできる口たとえば
透明基板上に光磁気記録層を200X厚に形成し、さら
にその上部にSiの干渉層を設け、さらにその上部に反
射層を形成した構成では半導体レーザー波長(λ=83
0 am )において、偏光面回転は光磁気記録層だけ
の構成に比べて最大3倍になる。
A laser beam 6 used for recording, reproduction, and erasing enters from the side of the transparent substrate 4 and records information on the recording layer 2, and the Kerr rotation angle and the 7Alade rotation angle are determined by the reflected light from the recording layer 2 and the reflective layer 5. Regenerate information from the rotation of the plane of polarization based on . By setting the film thickness of the recording layer 2 to a thickness that allows a portion of the wavelength of the reproduction laser light to pass through, the Faraday effect that occurs during transmission can be effectively utilized, and the rotation of the plane of polarization during reproduction can be effectively utilized. For example, in a structure in which a magneto-optical recording layer is formed on a transparent substrate to a thickness of 200X, a Si interference layer is provided on top of the layer, and a reflective layer is further formed on top of the magneto-optical recording layer, the semiconductor laser wavelength (λ=83
0 am ), the rotation of the polarization plane is up to three times that of a configuration with only a magneto-optical recording layer.

本発明の一実施例である第3図に示した光磁気記録媒体
の特徴は上記の反射膜構造による偏光面回転増大に加え
て、透明基板と光磁気記録層間に8iの干渉層3を設け
る仁とによって、さらに偏光面回転を増幅するというこ
とである0第3図に示した高屈折率干渉層3の膜厚によ
って偏光面回転増幅効果は変化し、また再生レーザー光
波長によっても異なる。しかしながら高屈折率干渉層の
屈折率が大きいものほど偏光面回転の増幅率は大きい。
The feature of the magneto-optical recording medium shown in FIG. 3, which is an embodiment of the present invention, is that in addition to the increased rotation of the plane of polarization due to the above-mentioned reflective film structure, an 8i interference layer 3 is provided between the transparent substrate and the magneto-optical recording layer. The polarization plane rotation amplification effect changes depending on the film thickness of the high refractive index interference layer 3 shown in FIG. 3, and also varies depending on the reproduction laser beam wavelength. However, the higher the refractive index of the high refractive index interference layer, the higher the amplification factor of polarization plane rotation.

たとえば高屈折率干渉層3として8i(n=2.5)を
用いた場合と、8i0 (n =1.9 )を用いた場
合ではSiの場合のほうが偏光面回転の増幅率は大きく
、最大5倍に達するコ 透明基板としてガラスを用い、厚さ600XのSi@、
!!−サ200 X (7) GdTbFe膜、厚さ1
3oX(D8i膜、厚さ500XのAu膜を連続してス
パッタ法によシ作成した本発明に係る光磁気記録媒体に
おいては、波長830 nmでのカー回転角及びファラ
デー回転角に基づく偏光面回転はGdTbFe膜のみの
場合の15倍に達し、Siを用いた2つの干渉層と反射
層を持つ構造によって偏光面回転は大幅に増大される〇 一般に光磁気記録においては、再生信号のシ乍比は偏光
面回転角をθ、反射率をRとしたとき8/N oc θ
・〆Y であることが知られている0前記本発明の実施例におい
ては反射率Rは約179に低下しているにすぎず、87
N比は本発明によシ光磁気記録層単層の構成に比べて5
倍改善されることがわかる。
For example, when using 8i (n = 2.5) as the high refractive index interference layer 3 and when using 8i0 (n = 1.9), the amplification factor of polarization plane rotation is larger in the case of Si, and the maximum Glass is used as the transparent substrate, and the thickness is 600X.
! ! -Sa 200 x (7) GdTbFe film, thickness 1
In the magneto-optical recording medium according to the present invention in which a 3oX (D8i film and a 500X thick Au film are successively fabricated by sputtering), the polarization plane rotation based on the Kerr rotation angle and the Faraday rotation angle at a wavelength of 830 nm. is 15 times that of a GdTbFe film alone, and the rotation of the polarization plane is greatly increased by the structure with two Si interference layers and a reflective layer. In general, in magneto-optical recording, the reproduction signal signal ratio is is 8/Noc θ, where θ is the polarization plane rotation angle and R is the reflectance.
In the embodiment of the present invention, the reflectance R is only about 179, which is known to be 87.
The N ratio according to the present invention is 5 compared to the single-layer structure of the magneto-optical recording layer.
It can be seen that the improvement is doubled.

次に記録層の耐蝕性、耐酸化性については、記録層が2
つの8i干渉層にはさみ込まれる形に配置されているた
めに、完全に大気に対して遮蔽されていること、及び干
接層が酸化物でなく、8iは化学的に安定であること、
さらには各層が高真空中で連続して作製されるので各層
の界面が大気にさらされないことから、記録層が比較的
薄いにもかかわらず記録層の経時変化、特性の劣化はみ
られない。
Next, regarding the corrosion resistance and oxidation resistance of the recording layer, the recording layer is
It is completely shielded from the atmosphere because it is sandwiched between two 8i interference layers, and the 8i is chemically stable because the drying layer is not an oxide.
Furthermore, since each layer is manufactured successively in a high vacuum, the interface between each layer is not exposed to the atmosphere, so even though the recording layer is relatively thin, there is no change in the recording layer over time or deterioration of its characteristics.

(発明の効果) 本発明は簡単な構成であシながら、記録層の偏光面回転
角を大幅に増大させて再生信号S/N比を改善すること
ができる。さらに記録層を2つの干渉層ではさみ込んだ
構造とし、酸化物でない8iの干渉層を用いることによ
って耐蝕性、耐酸化性の向上が可能である。Siの干渉
層は化学的に安定であ)、特に基板として浸水性のある
有機物樹脂を使用するときに保護層として働き、その効
果逍発揮する。
(Effects of the Invention) Although the present invention has a simple configuration, it is possible to significantly increase the rotation angle of the polarization plane of the recording layer and improve the reproduced signal S/N ratio. Furthermore, the recording layer is sandwiched between two interference layers, and by using an 8i interference layer that is not an oxide, corrosion resistance and oxidation resistance can be improved. The Si interference layer is chemically stable) and works as a protective layer, particularly when a water-permeable organic resin is used as the substrate, and exhibits its effectiveness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光磁気記録媒体の構成を示す断面図、第
2図は従来の高屈折率干渉層を有する光磁気記録媒体の
構成を示す断面図、第3図は本発明の一実施例の構成を
示す断面図である。
FIG. 1 is a sectional view showing the structure of a conventional magneto-optical recording medium, FIG. 2 is a sectional view showing the structure of a conventional magneto-optical recording medium having a high refractive index interference layer, and FIG. 3 is an embodiment of the present invention. FIG. 3 is a cross-sectional view showing an example configuration.

Claims (1)

【特許請求の範囲】[Claims] 透明基板上に第1の高屈折率干渉層を設け、該第1の高
屈折率干渉層の上に光磁気記録層を設け、該光磁気記録
層の上に第2の高屈折率干渉層を設け、該第2の高屈折
率干渉層の上に反射層を設けた光磁気記録媒体において
、前記第1.第2の高屈折率干渉層としてケイ素を用い
ることを%徴とする光磁気記録媒体。
A first high refractive index interference layer is provided on a transparent substrate, a magneto-optical recording layer is provided on the first high refractive index interference layer, and a second high refractive index interference layer is provided on the magneto-optical recording layer. , and a reflective layer is provided on the second high refractive index interference layer. A magneto-optical recording medium characterized by using silicon as a second high refractive index interference layer.
JP59065556A 1984-04-02 1984-04-02 Optomagnetic recording medium Pending JPS60209947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59065556A JPS60209947A (en) 1984-04-02 1984-04-02 Optomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065556A JPS60209947A (en) 1984-04-02 1984-04-02 Optomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60209947A true JPS60209947A (en) 1985-10-22

Family

ID=13290390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065556A Pending JPS60209947A (en) 1984-04-02 1984-04-02 Optomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60209947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038148A (en) * 1989-06-05 1991-01-16 Hitachi Ltd Magneto-optical recording medium
US6139949A (en) * 1989-02-10 2000-10-31 Mitsubishi Denki Kabushiki Kaisha Magneto optical recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163247A (en) * 1984-02-06 1985-08-26 Ulvac Corp Photomagnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163247A (en) * 1984-02-06 1985-08-26 Ulvac Corp Photomagnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139949A (en) * 1989-02-10 2000-10-31 Mitsubishi Denki Kabushiki Kaisha Magneto optical recording medium
JPH038148A (en) * 1989-06-05 1991-01-16 Hitachi Ltd Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
US4414650A (en) Magneto-optic memory element
US4489139A (en) Magneto-optic memory medium
JPH0444333B2 (en)
JPS60209947A (en) Optomagnetic recording medium
JPH0263262B2 (en)
JP2921590B2 (en) Magneto-optical recording medium
JPS60209946A (en) Optomagnetic recording medium
JP2801984B2 (en) Magneto-optical storage element
JP2565884B2 (en) Magneto-optical storage element
JP3109926B2 (en) Method for manufacturing magneto-optical recording medium
JPH0458662B2 (en)
JP2960767B2 (en) Magneto-optical recording medium
JPH0512778B2 (en)
JP2740814B2 (en) Magneto-optical recording medium
JPH0442736B2 (en)
JPH06124488A (en) Manufacture of magneto-optical recording medium
JPS62295238A (en) Magneto-optical memory element
JPH0254437A (en) Optical disk
JPH02179947A (en) Magneto-optical recording medium
JPS63308752A (en) Optical thermomagnetic recording medium
JPH0414647A (en) Magneto-optical recording medium
JPH03165350A (en) Magneto-optical recording medium
JPS6040542A (en) Optical memory medium
JPH046642A (en) Magneto-optical disk
JPS623449A (en) Optical magnetic recording media