JPH038148A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH038148A
JPH038148A JP14103889A JP14103889A JPH038148A JP H038148 A JPH038148 A JP H038148A JP 14103889 A JP14103889 A JP 14103889A JP 14103889 A JP14103889 A JP 14103889A JP H038148 A JPH038148 A JP H038148A
Authority
JP
Japan
Prior art keywords
film
dielectric film
recording medium
refractive index
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14103889A
Other languages
Japanese (ja)
Other versions
JP2728503B2 (en
Inventor
Jiichi Miyamoto
治一 宮本
Toshio Niihara
敏夫 新原
Norio Ota
憲雄 太田
Fumiyoshi Kirino
文良 桐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP1141038A priority Critical patent/JP2728503B2/en
Publication of JPH038148A publication Critical patent/JPH038148A/en
Priority to US08/831,262 priority patent/US5914198A/en
Application granted granted Critical
Publication of JP2728503B2 publication Critical patent/JP2728503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the magneto-optical recording medium having excellent recording and reproducing characteristics and high reliability by making the refractive index of the 1st dielectric film laminated on a substrate smaller than the refractive index of the 2nd dielectric film laminated thereon via a thin magnetic film intervened therebetween. CONSTITUTION:The recording medium is formed by laminating the 1st dielectric film 2, the thin magnetic film 3, the 2nd dielectric film 4, and a metallic reflecting film 5 on the transparent substrate 1. The refractive index of the film 2 is made smaller than the refractive index of the film 4. the films 4, 5 reflect the light transmitted through the film 3 and increase the Kerr rotating angle and the Faraday rotating angle in the film 3 by an interference effect. The film 2 increases the quantity of the reflected light by a multiple interference effect. Since the refractive index of the film 2 is smaller than the refractive index of the film 4, the reflectivity decreased by the film 4 is compensated by the film 2 and, therefore, the Kerr rotating angle is increased without decreasing the quantity of the reflected light. The recording medium having the excellent recording and reproducing performance and the high reliability is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ等の光を照射することにより情報の記録
・再生・消去等を行う光磁気記録媒体に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording medium in which information is recorded, reproduced, erased, etc. by irradiation with light such as a laser.

〔従来の技術〕[Conventional technology]

情報の書き換え可能な光ディスクとして、近年光磁気記
録が注目を集めておりその記録用媒体としては希土類遷
移金属合金膜が用いられている。
Magneto-optical recording has recently attracted attention as an optical disc on which information can be written, and rare earth transition metal alloy films are used as the recording medium.

しかし、希土類遷移金属合金膜のカー回転角はそのまま
では0.3〜0.4度と小さいため、光の干渉効果を利
用してカー回転角を高める方法が研究されている。
However, since the Kerr rotation angle of a rare earth transition metal alloy film is as small as 0.3 to 0.4 degrees, research is being carried out on methods of increasing the Kerr rotation angle using the interference effect of light.

第4図及び第5図はカー回転角をN6める方法を利用し
た光磁気記録用媒体の一部断面図である。
FIGS. 4 and 5 are partial cross-sectional views of a magneto-optical recording medium using the method of increasing the Kerr rotation angle by N6.

第5図において透明基板1の側から入射した光は誘電体
膜11と磁性薄膜3の間の界面で反射され、カー回転を
生じる。この光はMTM体1漠11と基板1との界面で
反射され、再び磁性薄11ケ3で反射され、カー回転を
生じる。このようにして、誘電体膜2の中で多重反射を
繰り返すことによりカー回転角は増大する。しかし、磁
性薄膜は光の一部を反射せずに吸収してしまうため、カ
ー回転角の増大と同時に吸収率も増大し結果として反射
率の低下を招く。
In FIG. 5, light incident from the transparent substrate 1 side is reflected at the interface between the dielectric film 11 and the magnetic thin film 3, causing Kerr rotation. This light is reflected at the interface between the MTM body 1 11 and the substrate 1, and is reflected again by the magnetic thin film 11 3, causing Kerr rotation. In this way, by repeating multiple reflections within the dielectric film 2, the Kerr rotation angle increases. However, since the magnetic thin film absorbs a portion of the light without reflecting it, the absorption rate also increases as the Kerr rotation angle increases, resulting in a decrease in the reflectance.

また、第4図の横進の場合、第1の誘電体膜2中での前
記と同様な多重反射に力11え、磁性薄I模j3中を通
過する光のファラデー回転の効果と、第2の誘電体膜4
中での多)1f反射による偏光面の回転が加わり、カー
回転角はさらに増大するが aに反射率は減少する。
In addition, in the case of lateral propagation in FIG. 4, the same multiple reflections as described above in the first dielectric film 2 are combined with the Faraday rotation effect of the light passing through the magnetic thin film 3, and the 2 dielectric film 4
Due to the addition of rotation of the plane of polarization due to 1f reflection, the Kerr rotation angle further increases, but the reflectance decreases.

両者いずれも、カー回転角の増大と反射率の減少が同時
に起っているが、媒体のS/N (信号対雑音比)に比
例する量である性能桁数ドはハq7大させることができ
る。ここでRを反射率、θ2をカー回転角するとき、性
能指数FはR−(ih(α=−orl)で与えられる。
In both cases, the Kerr rotation angle increases and the reflectance decreases at the same time, but the performance number, which is a quantity proportional to the S/N (signal-to-noise ratio) of the medium, can be increased by 7 orders of magnitude. can. Here, when R is the reflectance and θ2 is the Kerr rotation angle, the figure of merit F is given by R-(ih(α=-orl).

以上の様な方法に関する従来例としては、特開昭61−
17236や特開昭59−152552特開昭57−1
69996 、特開昭60−63747等が挙げられる
As a conventional example of the above-mentioned method, there is
17236 and JP-A-59-152552 JP-A-57-1
69996, JP-A No. 60-63747, and the like.

特開昭57−159995や特開昭60−63747に
おいては第4図にある第1の誘電体膜2の屈折率を第2
の誘電体膜4の屈折率よりも相対的に高くすることを提
案している。すなわち、−第1の1誘電体+1Sk 2
中での多片で干渉効果によりカー回転角を増大させ、第
2の誘電体膜4の屈折率を低くすることにより反射膜5
と第2の誘電体膜4とを合成した児がけのル」折率をO
に近づけ、反射率を高くすることがねらいである。
In JP-A-57-159995 and JP-A-60-63747, the refractive index of the first dielectric film 2 shown in FIG.
It is proposed to make the refractive index relatively higher than that of the dielectric film 4. That is, −1st 1 dielectric + 1Sk 2
The reflection film 5 is increased by increasing the Kerr rotation angle due to the interference effect in the multiple pieces inside and lowering the refractive index of the second dielectric film 4.
and the second dielectric film 4, the refractive index is O.
The aim is to make the reflectance as close as possible and to increase the reflectance.

しかし、第1の誘電体膜2の中での干渉効果を用いる4
1、確かにカー回転角を大きくすることができるが、同
時に反射率の低下も著しく、読み出しの性能指数ド=R
・θ0はあまり大きくできない、また、第1の誘電体膜
2の膜厚がカー回転角極太の条件で固定されるため膜厚
を大きくすることができす、磁性薄膜3の酸化等の腐食
に対する保護効果を大きくできない。さらに、第1の誘
電体膜2の、111折率が大きいため、カー回転角極大
の条件となる第1の誘電体膜2の膜1vを益々74くな
るという問題がある。
However, 4 using the interference effect in the first dielectric film 2
1. It is true that the Kerr rotation angle can be increased, but at the same time, the reflectance decreases significantly, and the readout figure of merit de = R
・θ0 cannot be made too large, and since the film thickness of the first dielectric film 2 is fixed under the condition of a very thick Kerr rotation angle, the film thickness can be increased. This prevents corrosion such as oxidation of the magnetic thin film 3. The protective effect cannot be increased. Furthermore, since the 111 refractive index of the first dielectric film 2 is large, there is a problem that the film 1v of the first dielectric film 2, which is a condition for maximum Kerr rotation angle, becomes 74.

〔発明が解決しようとするlllll題〕以上の様に第
4図及び第5図の方法でさらに性能指数を上げるために
は反射率を下げなければならない、また1反射率は、ト
ラッキングやオートツボNカスにも使用されるため、あ
る程度の光1tが必要である。
[Problem to be solved by the invention] As described above, in order to further increase the performance index using the methods shown in Figs. Since it is also used for dregs, a certain amount of light 1t is required.

また、耐食性の面から誘電体+1!5 Lの膜厚は逗い
方が望ましいが、従来の例では性能指数の而でその膜厚
が制約されていた。
Further, from the viewpoint of corrosion resistance, it is desirable that the film thickness of the dielectric +1!5 L be as small as possible, but in the conventional example, the film thickness was limited by the figure of merit.

本発明の目的は反射率を下げることなくカー回転角を増
加させ、良好な記録・再生特性を与えろ光磁気記録媒体
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magneto-optical recording medium that increases the Kerr rotation angle without lowering the reflectance and provides good recording and reproducing characteristics.

本発明の他の目的は良好な記録・再生特性を保ったまま
、耐食性を大幅に向上せしめる光磁気記録媒体を提供す
ることにある。
Another object of the present invention is to provide a magneto-optical recording medium that can significantly improve corrosion resistance while maintaining good recording and reproducing characteristics.

C課題を解決するための手段〕 上記目的は誘電体膜1の屈折率を誘電体膜2の屈折率よ
り低くすることにより達成される6上記他の目的は、誘
電体1漠2の膜Hをカー回転角が最大になる1漠Jすの
80〜120%とし、誘゛市体膜1の膜厚を反射率が最
小になる膜Hの120〜250%とすることにより達成
される。
Means for Solving Problem C] The above object is achieved by making the refractive index of the dielectric film 1 lower than the refractive index of the dielectric film 2. This can be achieved by setting 80 to 120% of the distance J where the Kerr rotation angle is maximum, and setting the film thickness of the attracting body film 1 to 120 to 250% of the film H where the reflectance is the minimum.

〔作用〕[Effect]

第2の誘電体膜4及び金属膜5は磁性薄膜3を通過した
光を反射させ、干渉効果によりカー回転角及び、磁性’
t”r II”a U中でのファラデー回転角を増加さ
せる作用がある。第1の、11¥電体膜2は多11j干
渉の効果により反射光の光にを増加させる動きがある。
The second dielectric film 4 and the metal film 5 reflect the light that has passed through the magnetic thin film 3, and the Kerr rotation angle and the magnetic '
It has the effect of increasing the Faraday rotation angle in t"r II"a U. The first 11\ electric film 2 moves to increase the amount of reflected light due to the effect of multi-11j interference.

これらの作用により第2の誘電体膜4によって減少する
反射率を第1の誘電体膜2で補うため、反射光量を減少
させずにカー回転角を増大させることができる。その際
第1の誘1℃体膜2は従来と比して厚くなるが、これは
磁性薄膜3を酸化から防止する効果を大きくする動きが
ある。これにより、記録再生性能と信頼性を共に高めた
話性能の光磁気記録媒体を得ることができる。
Due to these effects, the first dielectric film 2 compensates for the reflectance reduced by the second dielectric film 4, so the Kerr rotation angle can be increased without reducing the amount of reflected light. At this time, the first dielectric film 2 becomes thicker than before, but this tends to increase the effect of preventing the magnetic thin film 3 from oxidation. This makes it possible to obtain a magneto-optical recording medium with improved recording and reproducing performance and reliability.

換Hすれば、第2の誘電体膜4の1鴎厚と屈折率との積
に磁性薄膜3の膜厚とその船1折率との積を加えた値、
すなわち第2の誘′市体膜4と磁性薄膜3の光学長の和
が照射光の波長の約4分の1となっているためその2層
の膜は一種の反射防止膜として働き、かつ、磁性膜中を
光が多重反射で往復する実効的な回数が多くなるため、
ファラデー回転の効果が大きくなり、j′とかけ上のカ
ー回転角が増大する。
If we convert H, the value is the product of the thickness of the second dielectric film 4 and the refractive index plus the product of the thickness of the magnetic thin film 3 and its refractive index,
That is, since the sum of the optical lengths of the second dielectric film 4 and the magnetic thin film 3 is approximately one-fourth of the wavelength of the irradiated light, these two layers act as a kind of anti-reflection film, and , the effective number of times light travels back and forth in the magnetic film due to multiple reflections increases.
The effect of Faraday rotation becomes larger, and the Kerr rotation angle on j' increases.

また、第」の誘電体膜2の膜J)メと屈折率の積すなわ
ち光学長が、照射光の波長の約2分の1になっているた
め、第1のvIm体膜2は、いわゆる反射膜として働き
、干渉によって反射光の光景が増大する。このため本発
明の構成によれば、第2の誘電体膜4でカー回転角を増
大させ、第1の誘電体膜2で反射光量を増大させること
ができる。
Furthermore, since the product of the film J) and the refractive index of the "th" dielectric film 2, that is, the optical length, is approximately one half of the wavelength of the irradiated light, the first vIm body film 2 is Acting as a reflective film, the interference increases the reflected light scene. Therefore, according to the configuration of the present invention, the second dielectric film 4 can increase the Kerr rotation angle, and the first dielectric film 2 can increase the amount of reflected light.

本発明において第2の誘電体膜4の膜厚は、第2図にあ
るように、カー回転角7に大きな影響を及ぼす。カー回
転角7が最大になる第2の誘電体膜4の膜厚15の80
%〜120%の膜厚であれば、第2図にあるようにカー
1rJJ転角7は、十分に大きく本発明の効果が現れる
。カー回転角7だけから見九ば、第2の誘電体膜4の膜
厚は、前記カー回転角が最大になる膜厚15の80%よ
りも小さくてもよいが、媒体の耐食性の面からは膜厚は
80%が限度である。
In the present invention, the thickness of the second dielectric film 4 has a large effect on the Kerr rotation angle 7, as shown in FIG. 80 of the film thickness 15 of the second dielectric film 4 where the Kerr rotation angle 7 is maximum
% to 120%, the Kerr 1rJJ rotation angle 7 is sufficiently large as shown in FIG. 2, and the effect of the present invention appears. Considering only the Kerr rotation angle 7, the film thickness of the second dielectric film 4 may be smaller than 80% of the film thickness 15 at which the Kerr rotation angle becomes maximum, but from the viewpoint of the corrosion resistance of the medium. The film thickness is limited to 80%.

第3図に示すように反射率8が最小となる第1の誘電体
膜2の膜厚ではカー回転角7は最大とはならない、カー
回転角7のピークは膜厚が厚い側にずれている。そのた
め、@記性能指数Fは、第1の誘電体膜2の膜厚が反射
率8が最小となる膜厚の120%〜220%で大きな値
を持つ、220%以上の膜厚では逆に減少する。従って
、第1の誘電体膜2の膜厚は、最小の反射率を与える膜
厚の120%〜220%とするのがよい。
As shown in FIG. 3, when the thickness of the first dielectric film 2 has a minimum reflectance 8, the Kerr rotation angle 7 does not reach its maximum, and the peak of the Kerr rotation angle 7 shifts to the thicker side. There is. Therefore, the figure of merit F has a large value when the film thickness of the first dielectric film 2 is 120% to 220% of the film thickness at which the reflectance 8 is the minimum, and has a large value when the film thickness is 220% or more. Decrease. Therefore, the thickness of the first dielectric film 2 is preferably 120% to 220% of the film thickness that provides the minimum reflectance.

また、第2の誘電体膜4と、!性薄膜3の光学的膜ノフ
の和が、使用する光の波長の約174となった時第1の
7Ipt屯体膜2と磁性薄膜3の界面と。
Moreover, the second dielectric film 4 and! When the sum of the optical thicknesses of the magnetic thin film 3 becomes about 174 of the wavelength of the light used, the interface between the first 7Ipt tube film 2 and the magnetic thin film 3.

金属反射膜5の間での光の干渉が最大となるため、カー
回転角が最大となる。この光学的膜;ヴが光の波長の1
/2のときはカー回転角は零となるため。
Since the interference of light between the metal reflective films 5 is maximized, the Kerr rotation angle is maximized. This optical film; V is 1 of the wavelength of light.
/2, the Kerr rotation angle is zero.

少なくとも、本発明の効果を与えるためには、光学的膜
厚が波長の1/8以上378以下である必要がある。
At least, in order to provide the effects of the present invention, the optical film thickness needs to be 1/8 or more and 378 times or less of the wavelength.

第1の誘電体膜2についても、その光学的膜ノリが光の
波長の約174の時に反射率の最小を与え、光学的膜厚
が光の波長の約1/2の時に反射率の最大を与える。従
って1本発明の効果として、高い反射率を得るためには
、第1の誘電体膜2の膜厚を光の波長の3/8以上9/
8以下とするのがよい。
Regarding the first dielectric film 2, the minimum reflectance is given when the optical film thickness is about 174 wavelengths of light, and the maximum reflectance is given when the optical film thickness is about 1/2 of the wavelength of light. give. Therefore, as an effect of the present invention, in order to obtain a high reflectance, the film thickness of the first dielectric film 2 must be set to 3/8 or more or more than 9/9 of the wavelength of light.
It is better to set it to 8 or less.

〔実施例〕〔Example〕

以下、本発明の実施例を示す。 Examples of the present invention will be shown below.

実施例1 第1図において、射出成形により作製されたポリカーボ
ネート基板1には、1.6 μmのピッチで7字状のト
ラッキング案内溝が形成されている。
Example 1 In FIG. 1, a polycarbonate substrate 1 manufactured by injection molding has 7-shaped tracking guide grooves formed at a pitch of 1.6 μm.

該ポリカーボネート基板1をまず80℃の真空中に3時
間保持し、基板に含まれる水の脱水処理を行なった。こ
の後このポリカーボネート基板1の屈折率n3は1.5
である。
The polycarbonate substrate 1 was first held in a vacuum at 80° C. for 3 hours to dehydrate the water contained in the substrate. After this, the refractive index n3 of this polycarbonate substrate 1 is 1.5.
It is.

次いでポリカーボネート基板1を高周波マグネットロン
・スパッタ装置内に装填し、8X10’−’Torr以
下に真空槽内を排気した後、ArガスとN2ガスの混合
ガスを導入し、SiNの焼結体をターゲットとしてI 
X 10−”Torrのガス圧でスパッタし、第1の誘
電体膜2としてSiN膜を1000Aだけポリカーボネ
ート基板1上に形成した。この際、予めポリカーボネー
ト基板1の表面を逆スバッタ処理しておくのが望ましい
。こうして形成した1000人厚のSiN ll簗の屈
↑ハ率n I lま2.0である。
Next, the polycarbonate substrate 1 is loaded into a high-frequency magnetron sputtering device, and after the vacuum chamber is evacuated to below 8X10'-' Torr, a mixed gas of Ar gas and N2 gas is introduced to target the SiN sintered body. as I
A SiN film of 1000A was formed on the polycarbonate substrate 1 as the first dielectric film 2 by sputtering at a gas pressure of It is desirable that the flexural index n I l of the 1000-layer thick SiN screen thus formed is 2.0.

次いで同様な真空排気後、Arカスを導入し、TbFe
Coからなる合金ターゲットを5 X I O−”ro
rrのガス圧でスパッタし、Ad折率n5が3.0のT
bFcCo磁性薄膜3を200人だけ形成した。
Next, after a similar vacuum evacuation, Ar gas was introduced and TbFe
An alloy target consisting of Co is 5
Sputtered at a gas pressure of rr, and T with an Ad refractive index n5 of 3.0.
Only 200 people formed the bFcCo magnetic thin film 3.

次いで再び同様な真空排気後、Arガスを導入し、Si
Nの焼結体をターゲットとしてlXl0””Torrの
ガス圧でスパッタし、第2の、*電体膜4として、Si
N膜を300人のHさ形成した。この5iNINの屈折
率n′Xは2.2である。このあと再び、同様な真空排
気を行った後、Arガスを導入し、AQ−Ti合金のタ
ーゲットを3 X 10−”Torrのガス圧でスパッ
タし、金ノρ協膜5として屈折率n、が2.0のA Q
 −T i合金膜を500人の厚さだけ形成した。
Next, after similar vacuum evacuation, Ar gas was introduced and Si
Sputtering is performed using a sintered body of N as a target at a gas pressure of lXl0"" Torr, and a second *electrical film 4 is formed of Si.
A N film was formed by 300 people. The refractive index n'X of this 5iNIN is 2.2. After this, after performing the same evacuation again, Ar gas was introduced, and an AQ-Ti alloy target was sputtered at a gas pressure of 3 x 10-'' Torr to form a gold alloy film 5 with a refractive index of n, is 2.0 AQ
A -Ti alloy film was formed to a thickness of 500 mm.

このように膜形成されたポリカーボネート基板1を真空
槽から取り出し20 k Oeの磁界を膜面に垂直方向
に印加して、初期磁化を行なう。その後、同様にl1i
J形成された別のポリカーボネート基板lと金属膜側か
接するように接着剤13で密着貼り合せし、第6図の構
成とする。
The polycarbonate substrate 1 with the film formed thereon is taken out of the vacuum chamber, and a magnetic field of 20 kOe is applied in a direction perpendicular to the film surface to perform initial magnetization. After that, similarly l1i
It is closely bonded to another polycarbonate substrate l having a J formed thereon with an adhesive 13 so that the metal film side is in contact with the other polycarbonate substrate l to form the structure shown in FIG.

こうして作製された光磁気記録媒体はn s < nr
<nX<nrなる条件を満たしており、第1表実施例B
に示すように反射率は24%、カー回転角は0.75度
、性能指数R・θには0.18度が得られ、従来比約1
.4倍の向上をみた。
The magneto-optical recording medium produced in this way has n s < nr
<nX<nr is satisfied, and Example B in Table 1
As shown in the figure, the reflectance was 24%, the Kerr rotation angle was 0.75 degrees, and the figure of merit R・θ was 0.18 degrees, which is approximately 1% compared to the conventional model.
.. I saw a 4x improvement.

本発明においては第2図に示すように第2の誘電体膜4
の膜厚をカー回転角が最大になるように設定している。
In the present invention, as shown in FIG.
The film thickness is set so that the Kerr rotation angle is maximized.

この膜厚では第2の誘電体膜中での光の多重反射による
干渉の効果が最大となり、反射光のカー回転角が最大と
なる。
At this film thickness, the interference effect due to multiple reflections of light in the second dielectric film becomes maximum, and the Kerr rotation angle of the reflected light becomes maximum.

また、第3図に示すように、第1の誘電体膜2の膜厚は
反射光が最大となる膜厚の近くに設定しである。
Further, as shown in FIG. 3, the thickness of the first dielectric film 2 is set close to the thickness at which the reflected light becomes maximum.

このような構成にすることにより反射率を低下させるこ
となくカー回転角を増大させろことが可能となる。しか
し、逆に第1の誘電体膜2をカー回転角最大の膜厚にし
、第2の誘電体1漠4のHヶノ−ヴを反射率が最大とな
るように設定した場合は、上記の様な効果は認められな
い。これは、第3図に示すように第1の誘電体膜2の膜
厚を変化させても、カー回転角と反射率の積である性能
指数R・θにはほとんど変化しないが、第2の誘電体膜
4の11々厚を変化させた場合、性能指数が大きく変化
することに起因している。物理的には第2の誘電体膜4
による干渉効果は、磁性薄膜による反射のカー回転と、
磁性薄膜を透過する光のファラデー効果という2禎の効
果が複合していることが原因で、そのために1両方の効
果が互いに強め合う膜厚と逆に弱め合う膜厚が存在する
ことである。
With such a configuration, it is possible to increase the Kerr rotation angle without reducing the reflectance. However, if the thickness of the first dielectric film 2 is set to maximize the Kerr rotation angle and the H-nove of the second dielectric film 1 is set to maximize the reflectance, the above No such effect was observed. As shown in FIG. 3, even if the thickness of the first dielectric film 2 is changed, the figure of merit R・θ, which is the product of the Kerr rotation angle and the reflectance, hardly changes, but the second This is because when the thickness of the dielectric film 4 is changed, the figure of merit changes greatly. Physically, the second dielectric film 4
The interference effect is caused by the Kerr rotation of the reflection by the magnetic thin film,
This is due to the combination of two effects, the Faraday effect of light transmitted through a magnetic thin film, and therefore there are film thicknesses where both effects strengthen each other, and film thicknesses where they weaken each other.

実施例2 第7図において、U字状のトラッキング用案内溝を持つ
屈折率nsが1.5の化学強化ガラス基板1を高周波マ
グネトロン・スパッタ装置内に装填し、8 X 10−
’Torr以下に真空槽内を排気した後、Arガスと0
2ガスの混合ガスを導入し、Zr0zの焼結体をターゲ
ットとしてI X L O−”Torrのガス圧でスパ
ッタし、第1の誘電体1t!I!2としてZr0z膜2
を900人M’J’flした。コ(1) Z r Ox
膜2の屈折率nrは262であった。
Example 2 In FIG. 7, a chemically strengthened glass substrate 1 having a U-shaped tracking guide groove and a refractive index ns of 1.5 was loaded into a high frequency magnetron sputtering device, and a 8 x 10-
'After exhausting the vacuum chamber to below Torr, Ar gas and 0
A mixed gas of two gases is introduced, and sputtering is performed using a sintered body of Zr0z as a target at a gas pressure of I X L O-''Torr to form a Zr0z film 2 as a first dielectric 1t!I!2.
900 people M'J'fl. Ko (1) Z r Ox
The refractive index nr of film 2 was 262.

次に同様な真空排気後、Arガスを導入し、丁bFeC
oからなる合金ターゲットを5 X I O”−8To
rrのガス圧でスパッタし屈折率nrが3.0のTbF
eCo&i性薄膜3を200人だけ形成した6次いで再
び同様な真空排気後、ZnSの焼結体ターゲットを用い
、  2 X 10−”TorrのAr圧でスパッタし
znsvを250八積層し第2の誘電体膜4とする。こ
の膜の屈折率n−は2.4である。
Next, after a similar vacuum evacuation, Ar gas was introduced and the FeC
An alloy target consisting of 5 X I O"-8To
TbF with a refractive index nr of 3.0 sputtered at a gas pressure of rr
Only 200 eCo&I thin films 3 were formed.6 Then, after vacuum evacuation in the same manner again, using a ZnS sintered target, sputtering was performed at an Ar pressure of 2 x 10-''Torr to laminate 2508 Znsv to form the second dielectric. It is assumed to be a body membrane 4. The refractive index n- of this membrane is 2.4.

この後、再び、同様な真空排気を行い、Arガスを導入
し、AQのターゲットを3 X I O’Torrのガ
ス圧でスパッタし、金1.LlclIψ5とする。A 
Q++情の膜厚は300人、 hd折率nヨは2.0で
ある。
After that, the same vacuum evacuation was performed again, Ar gas was introduced, and the AQ target was sputtered at a gas pressure of 3 X I O'Torr, and gold 1. Let LlclIψ5. A
The film thickness of Q++ is 300 people, and the HD refractive index is 2.0.

こうして膜形成されたディスクを真空槽から取り出し、
20KOeの磁界を膜面に垂直に印加して初期磁化を行
った後、保護コート14として紫外線硬化樹脂(UV樹
脂)を回転塗布し、真空中で1分間の紫外線露光を行い
、硬化させる。保護コート14は浮上型磁気ヘッドのス
ライダの摺動による記録膜の損傷に対する保護の働きと
ともに。
The disk on which the film was formed in this way was taken out of the vacuum chamber, and
After initial magnetization is performed by applying a magnetic field of 20 KOe perpendicular to the film surface, an ultraviolet curable resin (UV resin) is spin-coated as the protective coat 14, and is cured by exposure to ultraviolet light for 1 minute in a vacuum. The protective coat 14 serves to protect the recording film from damage caused by sliding of the slider of the floating magnetic head.

記録膜の1食性を高める効果を併せ持っている。It also has the effect of increasing the monolithicity of the recording film.

こうして、製造された光磁気記録媒体の静特性第1表の
実施例Cとして示す、第1の誘電体1fIAi2及び第
2の誘電体膜4の膜ノリを適当に変えることにより第1
表の実施例A及びBの静特性を持った媒体を作製するこ
とも可能である。この実施例Cの特性を持った光磁気記
録媒体に、浮上型磁気ヘッドを用い、変調磁界を印加し
て記録再生特性を評価したところ、C/N比60dBを
得た。
In this way, the static characteristics of the magneto-optical recording medium manufactured are shown as Example C in Table 1.
It is also possible to produce media with the static properties of Examples A and B of the table. When the recording and reproducing characteristics of the magneto-optical recording medium having the characteristics of Example C were evaluated by using a floating magnetic head and applying a modulated magnetic field, a C/N ratio of 60 dB was obtained.

第8図には本発明による光磁気記録媒体を用いた時の記
録再生特性を示す。性能指数の増大に伴い、本発明の例
では従来と比してC/N比が大幅に向上し、また記録感
度も向上している。
FIG. 8 shows the recording and reproducing characteristics when using the magneto-optical recording medium according to the present invention. As the figure of merit increases, in the example of the present invention, the C/N ratio is significantly improved compared to the conventional example, and the recording sensitivity is also improved.

なお1本発明の光磁気記録媒体の1漠構成は、上述の実
施例に限られるものではなく、以下のような構成も可能
である。すなわち、 (1)第1の誘電体膜2及び第2の誘電体膜4として、
S iO,Taxoaなどの酸化物、T’ a N 。
Note that the configuration of the magneto-optical recording medium of the present invention is not limited to the above-described embodiment, and the following configurations are also possible. That is, (1) as the first dielectric film 2 and the second dielectric film 4,
Oxides such as SiO, Taxoa, T' a N .

SiNなどの窒化物、CdSなどの硫化物を用いる。A nitride such as SiN or a sulfide such as CdS is used.

(2)金属膜5としてA Q + Cu + A g 
g A u rTi、Ni、Crステンレスなど、ある
いは、それらの合金を用いる。
(2) A Q + Cu + A g as the metal film 5
g Au rTi, Ni, Cr stainless steel, etc., or alloys thereof are used.

(3)基板1としてアクリル、紫外線硬化樹脂、ポリオ
レフィンなどを用いる。
(3) For the substrate 1, acrylic, ultraviolet curing resin, polyolefin, etc. are used.

(4)磁性薄膜3としてT b −F e 、 G d
 −”1’ b −F a 、 B y −F e −
G oなどの希土類と遷移金属との非晶質合金、あるい
はこれらに、T i 。
(4) T b - Fe, G d as the magnetic thin film 3
-"1' b -F a , B y -F e -
Amorphous alloys of rare earths and transition metals such as Go, or these, and Ti.

Ta、Cr、V、Nbなどの耐食性向上のための元素を
少なくとも一種以上添加した非晶質合金を用いる。
An amorphous alloy containing at least one element added to improve corrosion resistance such as Ta, Cr, V, and Nb is used.

また本発明の光磁気記録媒体を用いて光磁気記録を行う
際には、レーザ光の強度を変化させて記録を行ってもよ
いし、レーザ光強度を一定として磁界強度を変化させて
記録を行ってもよ4N 。
Furthermore, when performing magneto-optical recording using the magneto-optical recording medium of the present invention, recording may be performed by changing the intensity of the laser beam, or recording may be performed by changing the magnetic field intensity while keeping the laser beam intensity constant. You can go 4N.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、基板1上
に積層された第1の誘電体膜2の膜厚を反射率が最少と
なる膜厚の120%〜220%とし、その上に磁性薄膜
3を挟んで積層された第2の誘電体膜4の膜厚をカー回
転角が最大となる膜厚の80%〜120%としているた
め、また、第1のM電体膜2の屈折率が第2の誘電体膜
の屈折率より低いため、反射率を減少させずにカー回転
角を増加させることができる。
As explained in detail above, according to the present invention, the film thickness of the first dielectric film 2 laminated on the substrate 1 is set to 120% to 220% of the film thickness at which the reflectance becomes the minimum, and Since the thickness of the second dielectric film 4 laminated with the magnetic thin film 3 in between is set to 80% to 120% of the film thickness at which the Kerr rotation angle is maximum, the first M electric film 2 Since the refractive index of the second dielectric film is lower than that of the second dielectric film, the Kerr rotation angle can be increased without decreasing the reflectance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第6図及び第7図は本発明の一実施例の光磁気
記録媒体の構造を示す断面図、第4図及び第5図は従来
の光磁気記録媒体の構造を示す断面図、第2図及び第3
図は第1及び第2の誘電体膜の膜厚とカー回転角、反射
率との関係を示す関係曲線図、第8図は本発明の効果を
表す記録レーザパワーとS/Nの関係曲線図である。 1・・・基板、2・・・第1の誘電体膜、3・・磁性膜
、4・・・第2のI/I電体膜、5・・・金属膜、6・
・光ビーム、7・・・カー回転角、8・・・反射率、1
1・・・誘電体膜、12・・・保護膜、13・・・接着
剤、14・保護コート。 第 図 茅 凹 第 ? 第 乙 色 奉3霞 第 ] 図 茅
1, 6 and 7 are cross-sectional views showing the structure of a magneto-optical recording medium according to an embodiment of the present invention, and FIGS. 4 and 5 are cross-sectional views showing the structure of a conventional magneto-optical recording medium. , Figures 2 and 3
The figure is a relationship curve diagram showing the relationship between the film thickness of the first and second dielectric films, the Kerr rotation angle, and the reflectance. Figure 8 is the relationship curve between recording laser power and S/N showing the effect of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1... Substrate, 2... First dielectric film, 3... Magnetic film, 4... Second I/I electric film, 5... Metal film, 6...
・Light beam, 7... Kerr rotation angle, 8... Reflectance, 1
DESCRIPTION OF SYMBOLS 1... Dielectric film, 12... Protective film, 13... Adhesive, 14... Protective coat. Diagram Kaya Dai? No. 3 Kasumi No. 3] Illustration

Claims (1)

【特許請求の範囲】 1、透明基板上に第1の誘電体膜、磁性薄膜、第2の誘
電体膜、金属反射膜の順に積層してなる光磁気記録媒体
において、前記第1の誘電体膜の屈折率が前記第2の誘
電体膜の屈折率より小あるいは等しいことを特徴とする
光磁気記録媒体。 2、請求項1記載の光磁気記録用媒体において、前記第
1の誘電体膜の膜厚を前記透明基板側から入射した光の
カー回転角が最大になる膜厚の80%〜120%とし、
前記第2の誘電体膜の膜厚を前記透明基板側から入射し
た光の反射率が最小になる膜厚の120%〜220%と
したことを特徴とする光磁気記録媒体。 3、特許請求の範囲1及び2に記載の光磁気記録媒体に
おいて、前記透明基板、前記第1の誘電体膜、前記磁性
薄膜、前記第2の誘電体膜前記金属膜の屈折率を順にn
s、n^ I 、nr、n^II、n_mとするとき、 ns<n^ I <n^II<nr、n_m<n^IIである
ことを特徴とする光磁気記録媒体。 4、特許請求の範囲1及び3に記載の光磁気記録媒体に
おいて、前記第1の誘電体膜の光学的膜厚が照射する光
の波長の3/8以上5/8以下であり、かつ、前記第2
の誘電体膜と前記磁性薄膜の光学的膜厚の和が前記照射
する光の波長の1/8以上3/8以下であることを特徴
とする光磁気記録媒体。
[Scope of Claims] 1. In a magneto-optical recording medium in which a first dielectric film, a magnetic thin film, a second dielectric film, and a metal reflective film are laminated in this order on a transparent substrate, the first dielectric film A magneto-optical recording medium characterized in that the refractive index of the film is smaller than or equal to the refractive index of the second dielectric film. 2. In the magneto-optical recording medium according to claim 1, the thickness of the first dielectric film is 80% to 120% of the thickness at which the Kerr rotation angle of light incident from the transparent substrate side is maximum. ,
A magneto-optical recording medium characterized in that the thickness of the second dielectric film is 120% to 220% of the film thickness that minimizes the reflectance of light incident from the transparent substrate side. 3. In the magneto-optical recording medium according to claims 1 and 2, the refractive index of the transparent substrate, the first dielectric film, the magnetic thin film, the second dielectric film, and the metal film are set to n in order.
A magneto-optical recording medium characterized in that, where s, n^I, nr, n^II, and n_m, ns<n^I <n^II<nr and n_m<n^II. 4. In the magneto-optical recording medium according to claims 1 and 3, the optical thickness of the first dielectric film is 3/8 or more and 5/8 or less of the wavelength of the irradiated light, and Said second
A magneto-optical recording medium characterized in that the sum of the optical thicknesses of the dielectric film and the magnetic thin film is 1/8 or more and 3/8 or less of the wavelength of the irradiated light.
JP1141038A 1989-06-05 1989-06-05 Magneto-optical recording medium Expired - Fee Related JP2728503B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1141038A JP2728503B2 (en) 1989-06-05 1989-06-05 Magneto-optical recording medium
US08/831,262 US5914198A (en) 1989-06-05 1997-04-07 Magneto-optical recording medium having dielectric layers with different indices of refraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1141038A JP2728503B2 (en) 1989-06-05 1989-06-05 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH038148A true JPH038148A (en) 1991-01-16
JP2728503B2 JP2728503B2 (en) 1998-03-18

Family

ID=15282792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1141038A Expired - Fee Related JP2728503B2 (en) 1989-06-05 1989-06-05 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2728503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026194A (en) * 2001-07-09 2003-01-29 Kau Pack Kk Packaging bag with string and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613637B (en) * 2017-09-30 2021-10-26 张家港康得新光电材料有限公司 Decorative film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209947A (en) * 1984-04-02 1985-10-22 Nec Corp Optomagnetic recording medium
JPS62289945A (en) * 1986-06-09 1987-12-16 Hitachi Ltd Optical recording element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209947A (en) * 1984-04-02 1985-10-22 Nec Corp Optomagnetic recording medium
JPS62289945A (en) * 1986-06-09 1987-12-16 Hitachi Ltd Optical recording element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026194A (en) * 2001-07-09 2003-01-29 Kau Pack Kk Packaging bag with string and manufacturing method therefor

Also Published As

Publication number Publication date
JP2728503B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
JP3178025B2 (en) Magneto-optical recording medium and method of manufacturing the same
US5914198A (en) Magneto-optical recording medium having dielectric layers with different indices of refraction
JP2547768B2 (en) Optical magnetic recording medium
JPH038148A (en) Magneto-optical recording medium
JPS5952443A (en) Photomagnetic recording medium
JPH02265052A (en) Production of optical recording medium
JPH0442452A (en) Magneto-optical disk and production thereof
JPH02265051A (en) Optical recording medium
JPH04335231A (en) Single plate optical disk for magneto-optical recording
JP2740814B2 (en) Magneto-optical recording medium
JPH06349137A (en) Amorphous or quasi-amorphous film structure for optical or magneto-optical data storage medium, optical data storage device and its manufacture
KR100205403B1 (en) Structure of magneto-optical recording medium
JP2904989B2 (en) Magneto-optical recording medium
JPH02128346A (en) Magneto-optical disk
JPH04337543A (en) Magneto-optical recording medium
JP2702996B2 (en) Magneto-optical recording medium and magneto-optical recording method
JP2551620B2 (en) Magneto-optical disk
JPH04356742A (en) Optical recording disk
JPS63149844A (en) Optical recording medium
JPH0664762B2 (en) Magneto-optical recording medium
JPH03154241A (en) Magnet-optical recording medium
JPS61208650A (en) Photomagnetic recording medium
JPH03142736A (en) Magneto-optical disk
JPH0536132A (en) Magneto-optical recording medium
JPH03235237A (en) Structure of magneto-optical recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees