JPS60208837A - Taper etching method of thin film - Google Patents
Taper etching method of thin filmInfo
- Publication number
- JPS60208837A JPS60208837A JP6554884A JP6554884A JPS60208837A JP S60208837 A JPS60208837 A JP S60208837A JP 6554884 A JP6554884 A JP 6554884A JP 6554884 A JP6554884 A JP 6554884A JP S60208837 A JPS60208837 A JP S60208837A
- Authority
- JP
- Japan
- Prior art keywords
- etching
- layer
- mask
- film
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005530 etching Methods 0.000 title claims abstract description 50
- 239000010409 thin film Substances 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims description 19
- 239000010408 film Substances 0.000 claims abstract description 38
- 239000004065 semiconductor Substances 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims description 17
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 16
- 229920005591 polysilicon Polymers 0.000 abstract description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 16
- 229910052710 silicon Inorganic materials 0.000 description 16
- 239000010703 silicon Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 229910052814 silicon oxide Inorganic materials 0.000 description 13
- 238000005468 ion implantation Methods 0.000 description 7
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- -1 hydrazine oxide Chemical compound 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
(鉱業上の利用分野)
本発明は薄膜のテーパーエツチング方法に関する、
(従来技術とその問題点)
一般に、薄膜M、ISトランジスタは絶縁基板上に形成
された単結晶半導体薄膜を用いて作られるものであり、
SO8(5ilicon on 5apphire又は
5ili−con on 5pinel )、SOI
(5ilicon on Iusulator )等が
代表的な薄膜Mis)ランジスタで夕るが以下SO8型
を例にして説明する。Detailed Description of the Invention (Field of Mining Application) The present invention relates to a thin film taper etching method. (Prior art and its problems) In general, thin film M and IS transistors are monocrystalline semiconductors formed on an insulating substrate. It is made using a thin film,
SO8 (5ilicon on 5apphire or 5ilicon on 5pinel), SOI
(5 silicon on Ilusulator) and the like are typical thin film transistors, but the SO8 type will be explained below as an example.
従来、SO8型に代表される薄膜MIS)ランジスタの
製造法において、その素子分離法の一つにサファイヤ等
の絶縁基板上に形成されたjlll、結晶シリコン膜等
の半導体層のうち不要な部分をすべて除去し半導体層の
アイランドを形成する方法かある。Conventionally, in the manufacturing method of thin-film MIS transistors (typified by the SO8 type), one of the element isolation methods is to remove unnecessary parts of the semiconductor layer, such as Jllll or crystalline silicon film, formed on an insulating substrate such as sapphire. There is a method of removing it entirely and forming an island of semiconductor layer.
第1図はその製造工程の模式図であ゛る。ここで1は絶
縁基板、2は半導体層、3はイオン注入用マスク層、4
は不純物の拡散層を示し、特にSO8型の場合1はサフ
ァイヤ基板、2はシリコン層、3はシリコン酸化膜に対
応する。FIG. 1 is a schematic diagram of the manufacturing process. Here, 1 is an insulating substrate, 2 is a semiconductor layer, 3 is an ion implantation mask layer, and 4
denote impurity diffusion layers; in particular, in the case of SO8 type, 1 corresponds to a sapphire substrate, 2 corresponds to a silicon layer, and 3 corresponds to a silicon oxide film.
(a)は半導体層2の上に7オトレジストエ程およびエ
ツチング速度に↓ってイオン注入用マスク層3をパター
ニングした状f1の断面図である。(a) is a cross-sectional view of a state f1 in which an ion implantation mask layer 3 is patterned on the semiconductor layer 2 by seven photoresist etching steps and an etching rate.
(blは上記イオン注入用マスク層3を介して半導体層
21tエツチングした状態の断面図である。(c)は上
記イオン注入用マスク層が残っている状態において不純
物をイオン注入し、半導体層の側面に拡散層4を形成し
た状態の断面図である。ここで側面の拡散層4は側面に
おけるリーク電流を抑えるために形成するものであり例
えばNチャンネルのMIS )ランジスタの場合はBな
どの■族元素を注入しPチャンネルのMIS )ランジ
スタの場合PなどのV族元素を注入する。(bl is a cross-sectional view of the semiconductor layer 21t etched through the ion implantation mask layer 3. (c) is a cross-sectional view of the semiconductor layer 21t etched by ion-implanting impurities with the ion implantation mask layer remaining. It is a cross-sectional view of a state in which a diffusion layer 4 is formed on the side surface.Here, the diffusion layer 4 on the side surface is formed to suppress leakage current on the side surface.For example, in the case of an N-channel MIS transistor, a In the case of a transistor, a V group element such as P is implanted.
このような半導体アイランドを形成する従来の工程の大
きな特徴は半導体層のテーパーエツチングにある。テー
パーか形成されていれば配線の断線等を防げるからであ
る。SO8型の場合にはシリコン層のテーパーエツチン
グはヒドラジン、KOHなどの強アルカリ溶液を用いて
行なわれていた。A major feature of the conventional process for forming such semiconductor islands is the taper etching of the semiconductor layer. This is because if the taper is formed, disconnection of the wiring can be prevented. In the case of the SO8 type, taper etching of the silicon layer was performed using a strong alkaline solution such as hydrazine or KOH.
例えはヒドラジンの場合シリコン表面の面方位が(10
0)面の時、断面としてエツチング速度が遅い(111
)面を出してテーパーエッチすることができる。しかし
ながらこのエツチングはその終点の正確な確認が困難で
おりまたシリコンの膜厚のウェハー面内でのほらつきも
ありオーバーエッチせざるt−得なかった。SO8やS
OIの単結晶シリコン膜は単結晶シリコン基板はどは結
晶性が良くなく、しかも膜中に応力が加わっているため
と思われるが、オーバーエツチングすると第2図にその
概略断面を示す工うな逆テーパー形状を呈する。For example, in the case of hydrazine, the plane orientation of the silicon surface is (10
0), the etching rate is slow as a cross section (111
) Can be exposed and taper etched. However, it is difficult to accurately confirm the end point of this etching, and there is also unevenness in the silicon film thickness within the wafer surface, so over-etching is inevitable. SO8 and S
The OI single crystal silicon film does not have good crystallinity as the single crystal silicon substrate, and this is probably due to stress being applied to the film. It has a tapered shape.
この図はSO8について七ドラジン約70”Cでエンチ
ングしたときの模式的断面図であり、図中、1.2は第
1図と同様であり実線5はジャストエツチングから約1
0%オーバー、破#j!6は約80%オーバー、 一点
g線7は160%オーバーでエツチングした時のシリコ
ン断面に対応する。これを見ると160%オーバーエツ
チングしたときは、イオン注入に対して側面がマスクの
影になってしまい側面へのイオン注入は全く不可能であ
り、80%オーバーでは約50%しかでさす、10%オ
ーバーのときでもまだ不完全である。一般的に側面に充
分なイオン注入を行なうためにはある最適エツチング時
間に対し±lθ%程度の誤差しがゆるされず、しかも従
来法ではエツチング状態をその精度でモニターすること
は不可能であるために再現性よく側面の電流のリークを
防止できない原因となっていた。またさらにこれは電界
の集中やアルミ配線における断線りるいはパターニング
精度の低下の性の良好でない単結晶薄wXヲテーバーエ
ノチングする場合、従来の方法では上記のような好まし
くない事態となる。This figure is a schematic cross-sectional view of SO8 etched with about 70"C of heptadazine. In the figure, 1.2 is the same as in Fig. 1, and the solid line 5 is about 1 from just etching.
Over 0%, broken #j! 6 corresponds to the silicon cross section when etched by about 80% over, and one point g line 7 corresponds to the silicon cross section when etched by 160% over. As you can see, when over-etching is 160%, the side faces are in the shadow of the mask and it is impossible to implant ions on the sides, and when over-etching is 80%, it is only about 50%, 10 Even when it is over %, it is still incomplete. In general, in order to perform sufficient ion implantation on the side surfaces, an error of about ±lθ% is not allowed for a certain optimum etching time, and furthermore, it is impossible to monitor the etching state with that precision with conventional methods. This was the cause of not being able to prevent side current leaks with good reproducibility. Moreover, when etching a single crystal thin wX taber which is not good in terms of electric field concentration, wire breakage in aluminum wiring, or deterioration of patterning accuracy, the conventional method causes unfavorable situations such as those mentioned above.
(発明の目的)
本発明の目的は上記の欠点を除去し、工程も簡単でし〃
・も結晶性の良好な薄膜、多結晶、非晶質薄膜について
も用いることのできる薄膜のテーパーエツチング方法を
提供することにある。(Objective of the invention) The object of the present invention is to eliminate the above-mentioned drawbacks and to simplify the process.
- It is an object of the present invention to provide a thin film taper etching method that can also be used for thin films with good crystallinity, polycrystalline films, and amorphous thin films.
(発明の構成)
本発明によれば基板に形成された薄膜をテーパーエツチ
ングする方法において、基板表面垂直方向のエツチング
が基板表面水平方向のエツチングヨリ速いような異方性
エツチングに対してマスクとなりしかも断面形状が垂直
であるマスクパターンを前記薄膜上に形成し、次いでそ
の上に前記異方性エツチングに対してエツチング連間が
前記半尋体膜とほぼ等しい薄膜を等方向に形成し、次い
で前記異方性エツチングを行なうことによって前記薄膜
をテーパーエッチすることを特徴とする薄膜のテーパー
エツチング方法が得られる。(Structure of the Invention) According to the present invention, in a method of taper etching a thin film formed on a substrate, etching in the direction perpendicular to the surface of the substrate can act as a mask against anisotropic etching in which etching in the direction horizontal to the surface of the substrate is faster. A mask pattern having a vertical cross-sectional shape is formed on the thin film, and then a thin film is formed isotropically on the anisotropic etching, and the etching distance is approximately equal to that of the semicircular film. A method for taper etching a thin film is obtained, characterized in that the thin film is tapered etched by performing anisotropic etching.
(実施例)
以下、本発明をSO8型トランジスタ形成方法における
素子分離工程に適用した実施例に従い詳細に説明する。(Example) Hereinafter, the present invention will be described in detail according to an example in which the present invention is applied to an element isolation step in a method for forming an SO8 type transistor.
第3図(a)〜(dlは本発明の基本的な方法を説明す
るために示した模式的断面図である。ここで、lはサフ
ァイヤ基板、2は単結晶シリコン層、3はシリコン酸化
膜、5はポリシリコン膜−に対応する。FIGS. 3(a) to (dl) are schematic cross-sectional views shown to explain the basic method of the present invention. Here, l is a sapphire substrate, 2 is a single crystal silicon layer, and 3 is a silicon oxide layer. The film 5 corresponds to a polysilicon film.
ます、単結晶シリコン層2の上にシリコン酸化膜3のパ
ターンを形成する。(第3図(a))尚、シリコン層2
とシリコン酸化膜3の膜厚はほぼ等しくシた。シリコン
層2の厚さは0.4μm1シリコン酸化膜3の厚さは0
.5μmである。このとき、シリコン酸化膜3の断面形
状は垂直である必要があるためレンストをマスクに用い
異方性ドライエツチングパターンを形成する。このエツ
チング条件は下表の通りである。First, a pattern of silicon oxide film 3 is formed on single crystal silicon layer 2. (FIG. 3(a)) Furthermore, the silicon layer 2
The film thicknesses of the silicon oxide film 3 and the silicon oxide film 3 were approximately equal. The thickness of the silicon layer 2 is 0.4 μm1 The thickness of the silicon oxide film 3 is 0.
.. It is 5 μm. At this time, since the cross-sectional shape of the silicon oxide film 3 needs to be vertical, a resist is used as a mask to form an anisotropic dry etching pattern. The etching conditions are shown in the table below.
次にその上にポリシリコン膜5を形成する(第3図(b
))ここで、ポリシリコン膜5の厚さは0.5μmであ
る。ポリシリコン膜5の形成方法としてCVD法等の等
方向な形成方法を用いることにエリ、第3図の(b)に
示したように下地のシリコン酸化膜3の段差において、
垂直方向から見てポリシリコン膜厚を厚くすることが可
能となる。尚、ここでポリシリコン膜5と下地のシリコ
ン層2の間にシリコン酸化膜等の性質の黄なる層が形成
されないようシリコン層2の表面をフッ酸によるエツチ
ング等で処理した直後、ポリシリコン膜5ヶ形成した方
がよい。Next, a polysilicon film 5 is formed thereon (FIG. 3(b)
)) Here, the thickness of the polysilicon film 5 is 0.5 μm. It is advantageous to use an isodirectional forming method such as the CVD method as the method for forming the polysilicon film 5, and as shown in FIG.
It becomes possible to increase the thickness of the polysilicon film when viewed from the vertical direction. In this case, immediately after the surface of the silicon layer 2 is etched with hydrofluoric acid to prevent the formation of a yellow layer such as a silicon oxide film between the polysilicon film 5 and the underlying silicon layer 2, the polysilicon film 5 is removed. It is better to form 5 pieces.
次に異方性ドライエツチングによりポリシリコン膜5を
全面エツチングする。このエツチング条件は下表の通り
である。Next, the entire surface of the polysilicon film 5 is etched by anisotropic dry etching. The etching conditions are shown in the table below.
すると第3図(c)に示すように下地のシリコン酸化膜
3の段差にポリシリコン膜5か残存する形状が得られる
。Then, as shown in FIG. 3(c), a shape is obtained in which the polysilicon film 5 remains at the step of the underlying silicon oxide film 3.
さらに前記異方性ドライエツチングにより同じ条件でエ
ツチングを続は下地のシリコン層1までエツチングする
う (第3図(d))本実施例にお(するエツチング条
件lこおいて単結晶シリコン、ポリシリコン、シリコン
酸化膜のエツチング速度はそれぞれ800^/ min
、 1 ’l 00^/min、 130″A/mi
nでりるから下地のシリコン層2は第3図(e)におけ
る残存したポリシリコン膜5の形状をおよそ反映し、テ
ーパーをもってエンチングされる。エツチング終了的の
断面形状は逆テーパーもなく、しかも側面へのオーバー
エツチングもほとんどない。シリコン酸化膜3も多少エ
ツチングさ才するか供の工程のイオン江人…マスクとし
て充分使用できる程度の膜厚は炊っている。Further, etching was performed under the same conditions using the anisotropic dry etching process until the underlying silicon layer 1 was etched (Fig. 3(d)). Etching speed of silicon and silicon oxide film is 800^/min each.
, 1'l 00^/min, 130''A/mi
Since the underlying silicon layer 2 is etched with a taper, the shape approximately reflects the shape of the remaining polysilicon film 5 in FIG. 3(e). The cross-sectional shape after etching has no reverse taper, and there is almost no over-etching on the sides. The silicon oxide film 3 may also be etched to some extent, but the thickness of the film is sufficient to be used as a mask.
従って本発明をjセいれはヒドラジン尋を用いた時に生
じた側面へのオーバーエッチの問題もなく、確実に側面
にイオン注入が可能な形状ケ得ることができ、後の配線
の断線と箱界果中がさけられる。Therefore, with the present invention, it is possible to obtain a shape that allows ion implantation to be reliably implanted into the side surfaces without the problem of over-etching on the side surfaces that occurs when using hydrazine oxide, and to prevent later wiring disconnection and box boundaries. Kanaka is avoided.
このように本発明は、リーク電流及び配がメの断線等の
問題を解決し、かつ高集積化を可iI@ jこした実用
的な方法でちる。As described above, the present invention solves problems such as leakage current and wiring disconnection, and uses a practical method that enables high integration.
以上SO8型の薄膜1V11s)ランジスタを例にして
説明し、たか、本発明はSOI等の他の薄膜A−1Is
)ランジスタにも、あるいは一般に基板上に形成された
結晶性のやや恋い単結晶膜のテーパーエツチングに用い
ることができるのは明らかであり、また結晶性の良好な
単結晶膜1、多結晶膜、1と品質膜についても用いるこ
とができる。The above description has been made using an SO8 type thin film 1V11s) transistor as an example;
) It is obvious that it can be used for taper etching of transistors or generally single crystal films with slightly low crystallinity formed on substrates. 1 and quality membranes can also be used.
また、実施例において用いた異方性エツチングは異方性
のドライエツチングであるが、これは基板面に対して垂
直方向のエツチングが基板關に対して水平方向のエツチ
ングエリ速いという条件を備えていれは別のエツチング
方法でもよい。The anisotropic etching used in the examples is anisotropic dry etching, which has the condition that etching in the direction perpendicular to the substrate surface is faster than etching in the direction horizontal to the substrate surface. This may be done using another etching method.
−同様にCVD法により形成したポリシリコン膜5も段
差の部分で垂直方向から見て厚(形成され、しかも前記
異方性エツチングに対して、エツチング速度が下地半導
体膜とほぼ等しい薄膜であるという条件を備えていれは
スパッタリング等の別の方法で形成してもよいし、別の
輝痢の薄膜でもよい。- Similarly, the polysilicon film 5 formed by the CVD method is thick (formed) when viewed from the vertical direction at the stepped portion, and is a thin film whose etching rate is almost equal to that of the underlying semiconductor film in the anisotropic etching. If conditions are met, it may be formed by another method such as sputtering, or a different thin film may be used.
さらに、本発明によれは、異方性エツチングの条件、被
エツチング層の拐質及び厚さ等を選択することにエリ、
半導体層のエツチング断面のテーパー角を任意に得るこ
とも可能である。Further, according to the present invention, there is an advantage in selecting the conditions for anisotropic etching, the grain quality and thickness of the layer to be etched, etc.
It is also possible to obtain an arbitrary taper angle of the etched cross section of the semiconductor layer.
第1図(a)、 (bl、(c)は従来の製造工程の模
式的断面図である。第2図はシリコン酸化膜をマスクと
してシリコン層をヒドラジンでオーバーエツチングした
時の模式的断面図である。第3図(al、 (bl、(
e)、 (d)は本発明の基本的な方法を説明するため
に示した模式的断面図である。
尚、図中の1は絶縁基板、2は半纏体層、3はイオン注
入用マスク層を示す。特にこれらはSO8形の場合それ
ぞれ、サファイヤ基板、シリコン層、シリコン酸化膜に
対応する。また、4は不純物の拡散層、5(1ポリシリ
コン膜をボず。
1.・−一
第1図
第2図
第3図Figures 1 (a), (bl, and c) are schematic cross-sectional views of conventional manufacturing processes. Figure 2 is a schematic cross-sectional view when a silicon layer is over-etched with hydrazine using a silicon oxide film as a mask. Figure 3 (al, (bl, (
e) and (d) are schematic cross-sectional views shown to explain the basic method of the present invention. In the figure, 1 is an insulating substrate, 2 is a semi-coated layer, and 3 is an ion implantation mask layer. In particular, these correspond to a sapphire substrate, a silicon layer, and a silicon oxide film, respectively, in the case of SO8 type. In addition, 4 is an impurity diffusion layer, 5 (1 polysilicon film is removed. 1.--1 Figure 1 Figure 2 Figure 3
Claims (1)
おいて、基板表面垂直方向のエツチングが基板表面水平
方向のエツチングより速いような異方性エツチングに対
してマスクとなりしかも断面形状が垂直であるマスクパ
ターンを前記薄膜上に形成し、次いでその上に前記異方
性エツチングに対してエツチング速度が前記半導体膜と
ほぼ等しい薄)換を等1的に形成し、次いで前記共方性
エンチ/グを行なうことによって前記薄膜をテーパーエ
ッチすることを特徴とする薄膜のテーパーエツチング方
法。In the method of taper etching a thin gold film formed on a substrate, a mask pattern having a vertical cross-sectional shape is used as a mask for anisotropic etching in which the etching in the direction perpendicular to the substrate surface is faster than the etching in the horizontal direction of the substrate surface. by forming on a thin film, then uniformly forming thereon a thin layer having an etching rate approximately equal to that of the semiconductor film for the anisotropic etching, and then performing the cotropic etching. A method for taper etching a thin film, characterized in that the thin film is tapered etched.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6554884A JPS60208837A (en) | 1984-04-02 | 1984-04-02 | Taper etching method of thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6554884A JPS60208837A (en) | 1984-04-02 | 1984-04-02 | Taper etching method of thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60208837A true JPS60208837A (en) | 1985-10-21 |
Family
ID=13290173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6554884A Pending JPS60208837A (en) | 1984-04-02 | 1984-04-02 | Taper etching method of thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60208837A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014078590A (en) * | 2012-10-10 | 2014-05-01 | Tokyo Electron Ltd | Semiconductor element manufacturing method and semiconductor element |
-
1984
- 1984-04-02 JP JP6554884A patent/JPS60208837A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014078590A (en) * | 2012-10-10 | 2014-05-01 | Tokyo Electron Ltd | Semiconductor element manufacturing method and semiconductor element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2760068B2 (en) | Method of manufacturing MIS type semiconductor device | |
JPS58124243A (en) | Manufacture of semiconductor device | |
JPH04206766A (en) | Manufacture of semiconductor device | |
JP3565993B2 (en) | Method for manufacturing semiconductor device | |
US4148133A (en) | Polysilicon mask for etching thick insulator | |
JPS60208837A (en) | Taper etching method of thin film | |
JPH04275436A (en) | Soimos transistor | |
JPH0338741B2 (en) | ||
JP2689710B2 (en) | Method for manufacturing semiconductor device | |
JP2937459B2 (en) | Method for forming contact hole in semiconductor device | |
JP3344051B2 (en) | Method for manufacturing thin film transistor | |
JPH0645617A (en) | Manufacture of single-crystal thin-film member | |
JPH07218929A (en) | Array structure of thin-film transistor | |
JPS5846645A (en) | Manufacture of semiconductor device | |
KR0123842B1 (en) | Manufacture of isolation region in semiconductor ic | |
JPH06163587A (en) | Thin-film transistor and its manufacture | |
JPH0462179B2 (en) | ||
JPS59184548A (en) | Manufacture of semiconductor device | |
JPS6297331A (en) | Manufacture of semiconductor device | |
KR930007753B1 (en) | Semiconductor deivce separation oxidation method | |
KR100250748B1 (en) | Method for fabricating a stacked capacitor of semiconductor device | |
JP3045415B2 (en) | Semiconductor device manufacturing method | |
JPH04302435A (en) | Manufacture of thin-film transistor | |
JPS5885529A (en) | Manufacture of semiconductor device | |
JPS61147550A (en) | Manufacture of semiconductor device |