JPS60204656A - Xonotlite forming material - Google Patents

Xonotlite forming material

Info

Publication number
JPS60204656A
JPS60204656A JP6121884A JP6121884A JPS60204656A JP S60204656 A JPS60204656 A JP S60204656A JP 6121884 A JP6121884 A JP 6121884A JP 6121884 A JP6121884 A JP 6121884A JP S60204656 A JPS60204656 A JP S60204656A
Authority
JP
Japan
Prior art keywords
crystals
xonotrite
molded
crystal
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6121884A
Other languages
Japanese (ja)
Other versions
JPH0116787B2 (en
Inventor
和雄 久保田
高橋 正英
片平 善晴
金森 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP6121884A priority Critical patent/JPS60204656A/en
Publication of JPS60204656A publication Critical patent/JPS60204656A/en
Publication of JPH0116787B2 publication Critical patent/JPH0116787B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
    • C04B28/188Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step the Ca-silicates being present in the starting mixture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、ソノ1ライ1系の成形ヰ、41+、特に、W
;度が()。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to molding of Sono 1 Lie 1 system, 41+, especially W
; degree is ().

1()εバ二11・111j後の超軽蔽ゾノトライト系
ケイ酸カルシウ1.成形体の製造に有用な成形材]、・
1に関するものである。
1 () Ultra-light xonotrite-based calcium silicate after ε bani 11 and 111j 1. Molding material useful for manufacturing molded objects],・
1.

両度が杓()・5s/c+n’tJ、下の軽量シフトラ
イ)−成形体は、断熱性のよい耐火4=A料として建材
、炉ヰ(等に広く1史用されている。軽量ゾノトライト
成形体の製造法としてはこれまで種々の方法が提案され
、また実施もされているが、その代表的なものは、基本
的には、ケイ酸原料と石灰原オ、1とを多量の水ととも
にオートクレーブ中で高温度に加熱することにより自己
硬化性ゾノトライト結晶のスラリーを生成させ、これを
成形したのち、乾燥して硬化させるものである。この方
法において成形材料となる1−記スラリー中のゾノトラ
イト結晶は、単結晶のまま存在することはまれで、その
ほとんどは、集合し且つ結合して二次粒子を形成してい
る。そして従来知られている球状二次粒子は、特公昭5
6−16]02号公報に記載されているもののように単
結晶が不規則に集合しただけのものもあるが、それ1)
(独で成形材料になり得るものは、多くの場合、明確な
球を形成している。この球状粒子の直径は通常1()〜
1(月)/J程度であり、20〜60ツノ(;l近に粒
径分布のピークがある。粒子表面にはゾ/)ライ)tl
状結晶が栗のいか状に突出してt;す、内部は空洞か、
それに近い状態のものである。
The molded body is widely used in building materials, furnaces, etc. as a fireproof 4=A material with good heat insulation properties.Lightweight Xonotlite Various methods have been proposed and implemented as methods for producing molded bodies, but the most representative method is basically to mix silicic acid raw material and limestone powder 1 with a large amount of water. In this method, a slurry of self-hardening xonotlite crystals is generated by heating to high temperature in an autoclave, which is molded and then dried and hardened. Zonotlite crystals rarely exist as single crystals, and most of them aggregate and combine to form secondary particles.The conventionally known spherical secondary particles were
6-16] There are also cases where single crystals are just irregularly aggregated, such as the one described in Publication No. 02, but those 1)
(Those that can be used as molding materials on their own often form well-defined spheres. The diameter of these spherical particles is usually 1()~
1 (month)/J, and there is a peak in the particle size distribution near 20 to 60 horns (;l).
The crystals protrude like chestnut squid, and are hollow inside.
It is in a state close to that.

これに対して本発明者らは、シフトライト系成形材料の
製造に関する一連の研究の過程で、−I一連のような従
来確認されているシフトライト結晶の二次粒子とは結晶
集合状態の異なる二次粒子が特定の製造粂1!l〕1こ
おいて生成することを知1)、更に、この二次粒子の右
利な性質を確認した結果、本発明を完成するに至った。
On the other hand, in the course of a series of research on the production of shiftrite-based molding materials, the present inventors discovered that the secondary particles of shiftrite crystals, such as the -I series, have a different crystal aggregation state from the conventionally confirmed shiftrite crystal secondary particles. Secondary particles are manufactured in a specific manner 1! As a result of confirming the beneficial properties of these secondary particles, we have completed the present invention.

本発明は、シフトライト釦状結晶の集合体である球状粒
子の水性スラリーからなる成形4・1料において、−1
ユ記球状ネη子が1()〜l 5(、’l /Jのiα
径を有し、I−1,−)ジノ1ライ)61状結晶が密に
集合して形成された薄い殻と該殻の内部を!+:Niた
しているジノトライ1釧状結晶低密度集合本とからなる
嵩高なものて゛あることにより:’!0(1ml以」―
の沈降体積を示すことを特徴とするゾノトライト系成形
材料を提供するものである。
The present invention provides a -1
The spherical net η is 1() to l5(,'l/J i
A thin shell with a diameter of I-1, -) Gino 1 Rai) 61-like crystals densely aggregated and the inside of the shell! +: Due to the presence of a bulky item consisting of Ni-containing Ginotri 1 chime-shaped crystal low density aggregate book:'! 0 (1ml or more)
The object of the present invention is to provide a xonotrite-based molding material characterized by exhibiting a sedimentation volume of .

第1図〜第3図は、いずれも本発明による成形相1−1
の代表的な例におけるゾノトライト結晶二次本11子の
断面の走査型電子顕微鏡写真であり、従来のシフトライ
ト結晶−二次粒子(後記比較例による)を示す第・1図
と比べると、本発明によるものの内部が土、述のように
特異なものであることがよくわかる。
FIGS. 1 to 3 show molding phase 1-1 according to the present invention.
This is a scanning electron micrograph of a cross section of 11 secondary zonotrite crystals in a typical example of zonotrite crystals. It is clear that the interior of the invention is made of clay, which is unique as described above.

すなわち、ゾ/ドライド釧状結晶は、あながち降りft
tちったままの冑の結晶のように、結晶量空隙の多い状
態で、砂の内側を満たしている。結晶量空隙は、空洞と
して認められるはと大きくなることはほとんとなく、ま
れにあっても、その径(!it結晶結晶lj離の最大値
)が殻の内径の10%をこえることはない。また殻の部
分は、内部が空洞の二次粒子の殻(厚さ+) 、8= 
5 /J )と比へるとやや薄く、その厚さは杓()、
5〜4JJであるが、シフトライト結晶の密度は高く、
通常の成形J工により破壊される、−とはない。これら
構造上の特徴に基づ外、この二次粒子は4()倍の光学
顕微鏡で透過法により観察したとと穀の内部が空洞であ
るかのように見え、且つ大きな沈降体積を示す。なお沈
降体積とは、濃度を2重量%に調整したジノ1ライトス
ラリー500+nlを内径501nl++の5 (、+
 0111 lメスシリンダーに入れ、2 U ’Cで
2時間静置したとき沈降したゾノトライト層の体積をい
う。高物性の軽量成形体の製造を可能にするものは沈降
体積が300ml以」二、好ましくは350盲o1以」
二のもので゛ある。
In other words, the zo/dryid crystals are
The inside of the sand is filled with a large amount of crystal voids, like the crystals in a still-cold helmet. Crystal volume voids are rarely large enough to be recognized as cavities, and even if they rarely occur, their diameter (maximum value of !it crystal lj separation) never exceeds 10% of the inner diameter of the shell. . The shell part is a hollow secondary particle shell (thickness +), 8=
5/J), it is slightly thinner than the ladle (),
5 to 4JJ, but the density of shiftrite crystals is high;
There is no possibility that it will be destroyed by normal molding. In addition to these structural features, when observed using a transmission method using an optical microscope with a magnification of 4 (), the secondary particles appear as if the inside of the grain is hollow and exhibit a large sedimentation volume. Incidentally, the sedimentation volume refers to 500+nl of Zino 1 light slurry whose concentration is adjusted to 2% by weight with an inner diameter of 501nl++ (, +
0111 This refers to the volume of the xonotlite layer that settles when placed in a graduated cylinder and allowed to stand at 2 U'C for 2 hours. Those that enable the production of lightweight molded bodies with high physical properties have a sedimentation volume of 300 ml or more, preferably 350 blind o1 or more.
There are two things.

本発明による成形材料におけるシフトライト結晶二次粒
子は、その表面が従来のシフトライト結晶二次粒子のそ
れと同様に栗のいが状である場合と、ジノトライF多1
状結晶が球の表面に沿う方向に伸びている、二とにより
糸を巻いて作った毬の表面のように平滑な場合とかある
。後者は前者に比べて成形性がよく、高化(・−の成形
が可能である。
The shifted light crystal secondary particles in the molding material according to the present invention have a chestnut-shaped surface similar to that of the conventional shifted light crystal secondary particles;
In some cases, the crystals extend in the direction along the surface of a sphere, and the surface is smooth, like the surface of a ball made by winding a thread. The latter has better moldability than the former, and can be molded to a higher height (.-).

本発明によるシフトライト系成形ヰ4料は、これを成形
して得られる成形体の熱伝導率か低く、断熱に4製造用
の成形材料として特にすぐれたものである。
The shiftrite-based molding material according to the present invention has a low thermal conductivity of a molded article obtained by molding it, and is particularly excellent as a molding material for manufacturing molding material in terms of heat insulation.

次に、本発明の成形材料の代表的な製造法について説明
する。
Next, a typical manufacturing method of the molding material of the present invention will be explained.

本発明の成形材料の製造法は、大筋において従来のゾノ
トライト系成〕t94・A ltの製造法と異なるもの
ではない。すなわち、生石灰、消石灰、カーバイド滓等
の石灰質原料とケイ石等のケイ酸質原料を水とともにオ
ートクレーブに仕込み、・/7トライ1か生成可能な温
度条件下に、撹拌しながら水熱合成を行う。但し、本発
明の成形材料を製造する場合は、イ1灰質原オ;1とし
てCaO結晶の人外さがQ 、3 /J以Fである生石
灰を使用し、更に、これを消化する条件に注蕉して粘度
の低い石灰乳としてケイ酸原料と反応さぜる。なお“”
 Ca O結晶の大きさが(1、,3/J I:J(ζ
である生石灰゛とは、新鮮な破断面を走査型電子顕微鏡
で観察したときに認められる粒状ないし私°f子融着物
状の微結晶私″!の平均径(粒子が融着を起こしている
と認められる場合はその形状から一次粒子の大きさを推
定する)がfl 、3 /I II)、1:の微細なも
のである生石灰をいう。このような(1′、イf灰は、
生石灰としては公知のものと思われるか、本発明者らか
知る限1)にI)いて、従来シフトライ1−製造用の石
灰加重、1としてこれが用いられた例はない。この生イ
f灰は市販の生石灰の中にも見いだ−す、二とができる
が、生石灰を製造する際Ca (、)結晶の大きさを意
識した品質管理は’Hわれでぃないものと思われ、同一
銘柄でもCaO結晶の大きさは一定しないことが多い。
The method for producing the molding material of the present invention is not fundamentally different from the method for producing the conventional xonotlite-based material T94/Alt. That is, calcareous raw materials such as quicklime, slaked lime, and carbide slag, and silicic acid raw materials such as silica stone are placed in an autoclave with water, and hydrothermal synthesis is performed with stirring under temperature conditions that can produce 1/7 tri. . However, when manufacturing the molding material of the present invention, use quicklime whose CaO crystals have a mass of Q,3/J or more as 1), and pay special attention to the conditions for digesting this. It is boiled and reacted with silicic acid raw material to form lime milk with low viscosity. In addition""
The size of CaO crystal is (1,,3/J I:J(ζ
Quicklime is the average diameter of granular or fused microcrystals that are observed when a freshly fractured surface is observed with a scanning electron microscope. If it is recognized as such, the size of the primary particles is estimated from its shape.
It is thought that quicklime is known, and as far as the present inventors are aware, there is no example of it being used as a lime load 1 for producing shift dry 1. This quick ash can also be found in commercially available quick lime, but when producing quick lime, quality control that takes into account the size of Ca(,) crystals is not necessary. The size of CaO crystals is often not constant even in the same brand.

CaO結晶の大きさが1’、l 、 3/J以下である
生石灰は、最も普通には、石灰石を比較的低温で焼成す
ることにより製造することがでべろ。特に適当な焼成条
1′1は次式を満足する条件である。
Quicklime with a CaO crystal size of 1', l, 3/J or less can most commonly be produced by calcining limestone at relatively low temperatures. A particularly suitable firing strip 1'1 satisfies the following formula.

7r <−5(N、 +1250 9o O≦′I゛ ≦ 11 S (+し≧0.5 (惧し′I”は焼成温度1°C1,シは焼成時間[)l
r] )」−記生石灰の消化は、常法により、!′Jl
o〜40倍量の水または熱水を用いて行えばよいか、強
力な、または長時間の撹拌を避け、それにより、水λ′
t]固形分比を24倍に調整し20 ℃においてB型粘
度R1で測定したときの粘度がlf、lcl+以下であ
るようにすることが必要である。
7r <-5 (N, +1250 9o O≦'I゛≦11 S (+ ≧0.5 (I) is the firing temperature of 1°C1, and shi is the firing time [)l
r ] )” - Digestion of quicklime is done by the usual method! 'Jl
o ~ 40 times the amount of water or hot water, or avoid strong or long stirring, thereby reducing the amount of water λ'
t] It is necessary to adjust the solid content ratio to 24 times so that the viscosity when measured with type B viscosity R1 at 20° C. is lf, lcl+ or less.

ケイ酸原料としては結晶質のもの、たとえはケイ石の、
平均粒径5〜15ノ1程度の微粉末を用いる二とが望ま
しい。
Silicic acid raw materials include crystalline materials, such as silica,
It is desirable to use fine powder with an average particle size of about 5 to 15 times.

これらの原料を、好ましくはCa(−)/SiO,モル
比力弓!戸)。
These raw materials are preferably Ca(-)/SiO, molar specific force bow! door).

90〜Lit)になるような比率で混合し、約2 +1
−.1 fJ倍量の水でスラリー化し オートクレー7
中で、ン品度187〜2+1’Ci千力12 = 20
 Kg7cm2で2〜5時間反応させる。
90 ~ Lit), mix in a ratio of about 2 + 1
−. Make a slurry with 1 fJ times the amount of water and autoclay 7
Among them, N quality 187 ~ 2 + 1'Ci thousand power 12 = 20
React at Kg7cm2 for 2 to 5 hours.

そして反応中、または少なくとも反応の一時期には、強
力な1毀伴をイTい、それにより、最終的に1!1られ
るゾノトライト二次粒子の沈降体積が3 t3 t、l
 m1以上、好ましくは:35 (1+nl以−Lにな
るようにする。沈降体積が300+o1未満のものから
は、嵩密度t1.1 p、7cm3前後の軽鞭成形体を
得ることが難しい。
Then, during the reaction, or at least for a period of the reaction, a strong 1 perturbation is generated, which ultimately increases the sedimentation volume of the 1!1 secondary particles of xonotlite to 3 t3 t,l.
m1 or more, preferably: 35 (1 + nl or more - L). If the sedimentation volume is less than 300 + o1, it is difficult to obtain a light whip molded product with a bulk density of t1.1 p and around 7 cm3.

以」二のようにして製造される本発明1こよる成形桐材
は、従来のゾノトライト系成形材料とまったく同様に、
単独で、または@種補強用繊M[やポルトランドセメン
トと混合して、プレス脱水成形法、抄造法、押出法等に
より成形したのち乾燥[るだけで硬化し、1iii述の
ように熱伝導率の低い、1°IJ物性軽量成形木を与え
る。
The molded paulownia material according to the present invention 1, which is produced in the following manner, has exactly the same properties as the conventional xonotrite-based molding materials.
Either alone or mixed with @Seed Reinforcing Fiber M or Portland Cement, it is molded by press dehydration molding, papermaking, extrusion, etc., and then dried to harden, and the thermal conductivity increases as described in 1iii. Provides lightweight molded wood with low IJ physical properties of 1°.

IJ、ド、実施例および比較例を示して本発明を説明す
る、実施例 l CaO結晶の火きさかt、l 、28 /Jの生石灰を
24倍mの熱水(温度!ltl’(’:)に投入し ]
 G (,1rlonて回転するlit 4’l!翼を
有するm袢(幾で撹拌しながら30分間消化した。得ら
れたイ1灰乳(01j記測定法による粘度6cp)に平
均粒径] 1−+ /Jのケイ石粉末を、CaO/Si
O2モル比が1.()になるように添加し、同1時に、
生イ「灰とケイ石粉末の合、!i量の:’(fi) 4
f’;量の水を加えて均一なスラリーとし、オー1クレ
−フ中、! 2 +l rlunで゛撹拌しながら、温
度+ 97 ’C1圧力15 Kg7c+112で、3
時間反応させた。得られたスラリー状成形材料中の固形
物は実質的にゾノトライトからなり、該ゾノトライトは
、金1状結晶が多数集合して直径30’130zノ、沈
降体積4201111の、球状の二次粒子を形成してい
た。この二次粒子は、第1図に示したように、厚さ約2
/」の殻の内部にゾノトライト結晶の低密度集合体が充
填されており、空洞部のないものであった。
IJ, de, Examples and Comparative Examples to explain the present invention, Example 1 CaO crystal ignition t, l, 28/J of quicklime was mixed with 24 times m of hot water (temperature! ltl'(' :) 】
G (digested for 30 minutes while stirring with a 4'l! winged 4'l! average particle size of the obtained 1 ash milk (viscosity 6 cp according to measurement method in 01j)] 1 −+ /J silica powder, CaO/Si
O2 molar ratio is 1. (), and at the same time,
``The combination of ash and silica powder, !i amount:'(fi) 4
Add f'; amount of water to make a homogeneous slurry, and put it in a crepe. 2+l rrun while stirring, temperature+97'C1 pressure 15 Kg7c+112, 3
Allowed time to react. The solid matter in the obtained slurry-like molding material consists essentially of xonotrite, and the xonotrite is composed of a large number of gold monocrystals aggregated to form spherical secondary particles with a diameter of 30'130' and a sedimentation volume of 4201111. Was. As shown in FIG. 1, this secondary particle has a thickness of about 2
The inside of the shell was filled with a low-density aggregate of xonotrite crystals, and there were no cavities.

この成形桐材に耐アルカリ性ガラス繊維を対固形分4重
量%混合したものを脱水プレス成形したのち15 f3
 ’Cで2()時間乾燥した。得られた成形体の物性を
、後記比較例による成形体の物性とともに第1表に示す
This molded paulownia material was mixed with 4% by weight of alkali-resistant glass fiber based on the solid content, and then dehydrated and press-molded into 15 f3.
'C for 2 hours. The physical properties of the obtained molded body are shown in Table 1 together with the physical properties of the molded body according to a comparative example described below.

比較例 1 消化時の撹拌数回転数を44. Orpm、撹拌時間を
1時間に変更し、得られた粘度、’、+ I) cpの
石灰乳を用いたほがは実施例1と同様にして、ジノ)ラ
イト系成形桐材を製造した。
Comparative Example 1 The stirring speed during digestion was set to 44. Orpm and stirring time were changed to 1 hour, and the resulting viscosity was ', + I) Gino) type molded paulownia wood was produced in the same manner as in Example 1 using lime milk of cp.

得られた成形材料中のゾノトライト結晶二次粒子は、直
径が30〜l 3 Q /J、沈降体積が42.t)m
lの嵩高なものではあったが、第4図に示したように中
空のものであった。
The xonotrite crystal secondary particles in the obtained molding material have a diameter of 30 to l 3 Q /J and a sedimentation volume of 42. t)m
Although it was bulky, it was hollow as shown in Figure 4.

比較例 2 CaO結晶の大きさが0.41λの生石灰を用いたほが
は実施例1と同様にして、ゾノトライト系成形材料を製
造した。なお」1記生石灰の消化により得られjこ石灰
乳の粘度は、Sepであった。
Comparative Example 2 A xonotrite-based molding material was produced in the same manner as in Example 1 using quicklime with a CaO crystal size of 0.41λ. Note that the viscosity of lime milk obtained by digestion of quicklime was Sep.

得られた成形材料中のゾノトライト結晶二次粒子は、i
!径が3 f、l −1、’3 +’、1 /J、沈降
体積が23 +、’l +n lの、中空のものであっ
た。
The xonotrite crystal secondary particles in the obtained molding material are i
! It was hollow, with a diameter of 3 f, l −1, '3 +', 1 /J, and a sedimentation volume of 23 +, 'l + n l.

第 1 表 釆施例」 即対U−ル辺肚 嵩密度(B7cm3) 0.11)1 0.101.1
0. ] (13曲げ強さくにH7c+112) 3.
8 3.G OJ熱伝#1(Kcall+nl+’C)
 0.(、+31 0,038 0.f’、+39焼成
による収縮率(%)ン 1.5t) 1.52 1.9
3×焼成条1!l−: I o 00 c、 24時間
Table 1 Examples Immediate U-ru side bulk density (B7cm3) 0.11)1 0.101.1
0. ] (13 bending strength H7c+112) 3.
8 3. G OJ Netsuden #1 (Kcall+nl+'C)
0. (, +31 0,038 0.f', +39 Shrinkage rate (%) by firing 1.5t) 1.52 1.9
3 x firing strip 1! l-: I o 00 c, 24 hours

【図面の簡単な説明】[Brief explanation of the drawing]

第】し1〜第3図二本発明の実施例におけるゾノトライ
ト結結晶集合木の断面を示す電子顕微鏡写真(倍率は第
1図およU第2し1がS +、+ (+倍、第3図か4
0 +l [,1倍)第・1図:従来のゾノトライト系
成形桐材におけるゾノトライト結晶集合体の断面を示す
電子顕微鏡写真°L(倍率50 +、+倍)
1 to 3 2 Electron micrographs showing cross sections of xonotrite crystal aggregate trees in examples of the present invention (magnifications are as shown in FIG. 1 and U2). Figure 3 or 4
0 +l [, 1x) Figure 1: Electron micrograph showing the cross section of a xonotrite crystal aggregate in a conventional xonotrite-based molded paulownia material °L (magnification 50 +, +x)

Claims (1)

【特許請求の範囲】[Claims] ゾノIライトt1状結晶の集合体である球状粒子の水性
スラリーからなる成形ヰ4料において、上記球状杓子か
10・−15t、l /Jのlα径を有し、11っシフ
トライ)fit状結晶が密に集合して形成された薄い殻
と該殻の内部を満たしているシフ1ライltl状結晶1
氏密度集合木とからなるl″X’i+高なものであるこ
とにより3 fl fl ml以」二の沈降体積を示に
とを特徴とするゾノトライト系成形jAJA。
In a molding material consisting of an aqueous slurry of spherical particles that are an aggregate of Zono Ilite T1-like crystals, the above-mentioned spherical ladle has a lα diameter of 10.-15t, l/J, and 11 shift-like crystals. A thin shell formed by a dense collection of Schiff 1 Rei ltl-like crystals 1 filling the inside of the shell.
A xonotrite-based molding jAJA characterized by having a sedimentation volume of 3 fl fl ml or more due to its high density consisting of aggregate trees.
JP6121884A 1984-03-30 1984-03-30 Xonotlite forming material Granted JPS60204656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6121884A JPS60204656A (en) 1984-03-30 1984-03-30 Xonotlite forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6121884A JPS60204656A (en) 1984-03-30 1984-03-30 Xonotlite forming material

Publications (2)

Publication Number Publication Date
JPS60204656A true JPS60204656A (en) 1985-10-16
JPH0116787B2 JPH0116787B2 (en) 1989-03-27

Family

ID=13164840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6121884A Granted JPS60204656A (en) 1984-03-30 1984-03-30 Xonotlite forming material

Country Status (1)

Country Link
JP (1) JPS60204656A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732021A (en) * 1980-08-01 1982-02-20 Diesel Kiki Co Ltd Fuel injector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732021A (en) * 1980-08-01 1982-02-20 Diesel Kiki Co Ltd Fuel injector

Also Published As

Publication number Publication date
JPH0116787B2 (en) 1989-03-27

Similar Documents

Publication Publication Date Title
US2665996A (en) Hydrous calcium silicates and method of preparation
US3861935A (en) Synthetic crystalline beta-wallastonite product
US3679446A (en) Molding materials of calcium silicate hydrate and shaped products thereof
Milestone et al. Hydrothermal processing of xonotlite based compositions
JPS5844627B2 (en) Manufacturing method of fireproof insulation material
JPS60204656A (en) Xonotlite forming material
JPH0327487B2 (en)
JPS61232256A (en) Structural material for low melting point metal casting appliance and manufacture
JPS60204655A (en) Xonotlite forming material
JPS62143854A (en) Manufacture of calcium silicate base formed body
JPS61186256A (en) Manufacture of calcium silicate molded body
JPS6247808B2 (en)
JPS61141656A (en) Manufacture of calcium silicate formed body
JPS641427B2 (en)
JPS62235274A (en) Manufacture of calcium silicate formed body
JPH0422851B2 (en)
JPS60155561A (en) Aqueous slurry
JP3023755B2 (en) Calcium silicate hydrate compact and method for producing the same
JPS59102856A (en) Calcium silicate formation material
KR100196026B1 (en) Manufacturing method of calcium silicate
KR800001114B1 (en) Shaped bodies of calcium silicate and process for producing the same
JPS5941942B2 (en) Calcium silicate molded body
JP2023173642A (en) Method for producing inorganic lightweight material
JPH0421516A (en) Production of hydrated fibrous calcium silicate and formed calcium silicate
JPS6022643B2 (en) Calcium silicate hydrate aggregate