JPS6247808B2 - - Google Patents

Info

Publication number
JPS6247808B2
JPS6247808B2 JP54118854A JP11885479A JPS6247808B2 JP S6247808 B2 JPS6247808 B2 JP S6247808B2 JP 54118854 A JP54118854 A JP 54118854A JP 11885479 A JP11885479 A JP 11885479A JP S6247808 B2 JPS6247808 B2 JP S6247808B2
Authority
JP
Japan
Prior art keywords
calcium silicate
silicate hydrate
xonotrite
weight
tobermorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54118854A
Other languages
Japanese (ja)
Other versions
JPS5645818A (en
Inventor
Hiroshi Okazaki
Yukihisa Shimizu
Masanobu Takarazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11885479A priority Critical patent/JPS5645818A/en
Publication of JPS5645818A publication Critical patent/JPS5645818A/en
Publication of JPS6247808B2 publication Critical patent/JPS6247808B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】 本発明は結晶長が50μm以上であるゾノトライ
ト系繊維状鉱物材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a xonotrite-based fibrous mineral material having a crystal length of 50 μm or more.

従来、無機繊維の代表的なものとしては石綿が
あり、これは繊維長が長く工業的有意性の高いも
のであるが、天然に産するものであるため将来枯
渇することが予測され、また近年発癌性物質とし
て疑われ、環境保全上好ましくない材料と考えら
れるに至つている。石綿以外の無機繊維として一
般的に知られているガラス繊維やロツクウールは
断熱材として使用されているものの、耐アルカリ
性に劣ることから、フイラー、補強材としては必
ずしも万能ではない。またセラミツクフアイバー
は種々優れた特性を有する反面あまりにも高価で
ありすぎるため補強材、フイラー等の汎用の工業
材料として実用に供されない。
Conventionally, asbestos has been a typical inorganic fiber, and it has long fiber length and is of high industrial significance, but as it is naturally occurring, it is predicted that it will be depleted in the future, and in recent years It is suspected of being a carcinogen, and has come to be considered an undesirable material from the standpoint of environmental conservation. Glass fiber and rock wool, which are commonly known inorganic fibers other than asbestos, are used as heat insulating materials, but because they have poor alkali resistance, they are not necessarily versatile as fillers and reinforcing materials. Furthermore, although ceramic fibers have various excellent properties, they are too expensive and cannot be put to practical use as general-purpose industrial materials such as reinforcing materials and fillers.

一方、ゾノトライトはケイ酸質原料と石灰質原
料を使用し、比較的容易に合成できる物質であ
り、しかもその原料であるケイ石、ケイ砂及び石
灰石等は我国に豊富に存在し、安価に入手可能で
あり、その特性はケイ酸カルシウムを主体とする
鉱物であるため断熱性に優れ水との親和性も優れ
ていてその合成物の繊維化については従来いくつ
かの試みがなされてきた。例えばCaO―SiO2
H2Oの三成分系にアルカリその他の各種添加物を
加え温度、圧力、時間、組成等について検討する
もゾノトライトで長い繊維状材料を作ることはで
きなかつた。通常工業的に得られるゾノトライト
の繊維は数μm程度の微細なものでしかも凝集魂
であるため過抵抗性が大きくなるといつた欠点
を有していた。
On the other hand, xonotlite is a substance that can be synthesized relatively easily using silicic acid raw materials and calcareous raw materials, and its raw materials such as silica stone, silica sand, and limestone are abundant in Japan and can be obtained at low cost. Since it is a mineral mainly composed of calcium silicate, it has excellent heat insulation properties and has an excellent affinity with water, and several attempts have been made to make fibers from its composite. For example, CaO―SiO 2
Although we added alkali and various other additives to the ternary H 2 O system and investigated temperature, pressure, time, composition, etc., we were unable to make a long fibrous material from xonotlite. Normally, industrially obtained xonotlite fibers are fine, on the order of several micrometers, and are cohesive, so they have the disadvantage of increased overresistance.

本発明者らは鋭意研究の結果結晶性ゾノトライ
トであつて結晶長50μm以上、結晶径5μm以下
であるゾノトライト系繊維状鉱物材料の製造方法
を発明した。
As a result of intensive research, the present inventors have invented a method for producing a xonotrite-based fibrous mineral material, which is a crystalline xonotrite and has a crystal length of 50 μm or more and a crystal diameter of 5 μm or less.

本発明は、石灰質物質および珪酸質物質を原料
として生成したCaO/SiO2モル比0.8〜1.0のケイ
酸カルシウム水和物含有物にアルカリ金属の水酸
化物の0.05〜1規定水溶液を該ケイ酸カルシウム
水和物1重量部に対し少なくとも5重量部とトバ
モライト系ケイ酸カルシウム水和物含有物の多孔
物質を添加し、150℃以上の飽和水蒸気圧下で水
熱反応させて結晶長50μm以上、結晶径5μm以
下の結晶性ゾノトライトを生成せしめるゾノトラ
イト系繊維状鉱物材料の製造方法である。
In the present invention, a 0.05 to 1 N aqueous solution of an alkali metal hydroxide is added to a calcium silicate hydrate-containing product with a CaO/SiO 2 molar ratio of 0.8 to 1.0, which is produced using calcareous substances and silicic substances as raw materials. At least 5 parts by weight of a tobermorite-based calcium silicate hydrate-containing porous material is added to 1 part by weight of calcium hydrate, and the mixture is subjected to a hydrothermal reaction under saturated steam pressure at 150°C or higher to form crystals with a crystal length of 50 μm or more. This is a method for producing a xonotlite-based fibrous mineral material that produces crystalline xonotrite with a diameter of 5 μm or less.

本発明で得られるゾノトライト系繊維状鉱物材
料は嵩密度が0.1〜0.2であり過性が良好である
等優れた特性を有することから耐熱材としてだけ
ではなく合成樹脂成形品のフイラー、補強材とし
ても使用できる材料である。
The xonotrite-based fibrous mineral material obtained by the present invention has excellent properties such as a bulk density of 0.1 to 0.2 and good transient properties, so it can be used not only as a heat-resistant material but also as a filler and reinforcing material for synthetic resin molded products. is also a material that can be used.

本発明の出発物質として用いる石灰質物質及び
珪酸質物質を原料として生成したケイ酸カルシウ
ム水和物含有物とは、ケイ酸質物質と石灰質物質
を常温〜高温高圧の飽和水蒸気圧養生によつて得
られる水和物を含有しているコンクリート、モル
タル、スラリー、オートクレーブ養生した気泡コ
ンクリートCaO―SiO2―H2O系の物質を言い、出
発原料としてのケイ酸カルシウム水和物含有物の
CaO/SiO2(モル比)は0.8〜1.0のものである。
Calcium silicate hydrate-containing materials produced from calcareous materials and silicic materials used as starting materials in the present invention are obtained by curing silicic materials and calcareous materials under saturated steam pressure at room temperature to high temperature and high pressure. Concrete, mortar, slurry, autoclave-cured aerated concrete CaO-SiO 2 -H 2 O-based substances containing calcium silicate hydrate as a starting material.
CaO/ SiO2 (molar ratio) is 0.8-1.0.

アルカリ金属の水酸化物とは水酸化リチウム、
水酸化ナトリウム、水酸化カリウム等のアルカリ
物質を言い、アルカリ濃度として0.05〜1規定の
水溶液である。水熱反応系に存在させるアルカリ
水溶液の量は出発原料としてのケイ酸カルシウム
水和物の含有物とアルカリ水溶液とを混合して流
動性を示す程度以上用いることが好ましい。ケイ
酸カルシウム水和物の含有物1重量部に対しアル
カリ水溶液約5重量部好ましくは10重量部以上用
いる。
Alkali metal hydroxides are lithium hydroxide,
It refers to alkaline substances such as sodium hydroxide and potassium hydroxide, and is an aqueous solution with an alkaline concentration of 0.05 to 1N. The amount of the alkaline aqueous solution to be present in the hydrothermal reaction system is preferably at least an amount that exhibits fluidity when mixed with the alkali aqueous solution and the content of calcium silicate hydrate as a starting material. About 5 parts by weight, preferably 10 parts by weight or more, of the alkaline aqueous solution is used per 1 part by weight of the content of calcium silicate hydrate.

この発明で繊維状ゾノトライト結晶の形成に用
いる水熱反応は150℃以上の飽和水蒸気圧下(飽
和水蒸気臨界温度は水の物性上374℃)で反応さ
せることであり、好ましくは240℃前後である。
The hydrothermal reaction used to form the fibrous xonotrite crystals in this invention is carried out at a temperature of 150°C or higher under saturated steam pressure (the critical temperature of saturated steam is 374°C due to the physical properties of water), preferably around 240°C.

トバモライト系ケイ酸カルシウム水和物含有物
の多孔物質とはアルカリ溶液を含浸させ水熱反応
せしめても溶解せず繊維状ゾノトライトの結晶成
長に充分な空隙を有し結晶の阻害しないような物
質例えばオートクレーブ養生した軽量気泡コンク
リートのような多孔物質のことを言う。
A porous material containing tobermorite-based calcium silicate hydrate is a material that does not dissolve even when impregnated with an alkaline solution and subjected to a hydrothermal reaction, has sufficient voids for crystal growth of fibrous xonotlite, and does not inhibit crystal growth. Refers to porous materials such as autoclaved lightweight cellular concrete.

水熱反応終了後固形分である繊維状ゾノトライ
ト結晶は水中に懸濁したスラリー状としてオート
クレーブから取出され、別等により分離され、
その乾燥物はかさ比重0.1〜0.2で白色の粉状乃至
フレーク状で水を容易に透過する繊維質鉱物材料
である。この繊維質鉱物材料は後述する実施例に
おいてX線回折図に示すように結晶性の優れた純
度の高いゾノトライトであり、耐熱性、耐アルカ
リ性の優れたものである。50μm以上という比較
的長い繊維状物であるため補強効果のあるフイラ
ーとして触媒の担体、過材、吸着剤等にも使用
することができる。
After the completion of the hydrothermal reaction, the solid content of fibrous xonotrite crystals is taken out of the autoclave as a slurry suspended in water and separated separately.
The dried material is a white powder or flake-like fibrous mineral material with a bulk specific gravity of 0.1 to 0.2 that easily permeates water. This fibrous mineral material is a highly pure xonotlite with excellent crystallinity, as shown in the X-ray diffraction diagram in the examples described later, and has excellent heat resistance and alkali resistance. Since it is a relatively long fibrous material of 50 μm or more, it can be used as a filler with a reinforcing effect in catalyst carriers, filter materials, adsorbents, etc.

実施例 1 (A) 出発物質であるケイ酸カルシウム水和物はけ
い藻土(SiO2=90%)、消石灰(CaO=73%、
ブレーン値8000cm2/g)をCaO/SiO2(モル
比)1.0、水/全固形物(重量比)=10となるよ
うに調合しオートクレーブに注入後120℃の飽
和水蒸気圧中で1時間撹拌(100rpm)2時間
静置してスラリーとして得た。
Example 1 (A) The starting material, calcium silicate hydrate, was diatomaceous earth (SiO 2 = 90%), slaked lime (CaO = 73%,
(Brain value 8000cm 2 /g) was prepared so that CaO/SiO 2 (mole ratio) was 1.0 and water/total solids (weight ratio) = 10, poured into an autoclave, and stirred for 1 hour at 120°C under saturated steam pressure. (100 rpm) for 2 hours to obtain a slurry.

この物質のX線回折図を第1図に、示差熱熱
分析図を第2図に、走査電子顕微鏡写真を第3
図に示す。
The X-ray diffraction diagram of this substance is shown in Figure 1, the differential thermal analysis diagram is shown in Figure 2, and the scanning electron micrograph is shown in Figure 3.
As shown in the figure.

第1図〜第3図で明らかなようにこの物質は
非晶質のケイ酸カルシウム水和物即ち通常C―
S―Hゲルと称されているものであつた。
As is clear from Figures 1 to 3, this substance is an amorphous calcium silicate hydrate, usually C-
It was called S--H gel.

(B) トバモライト系ケイ酸カルシウム水和物含有
物の多孔物質はケイ石(SiO2=95%、ブレー
ン値3000cm2/g)、セメント(普通ポルトラン
ドセメントSiO2=22%、CaO65%、ブレーン
値3000cm2/g)、生石灰(CaO=95%、ブレー
ン値6000cm2/g)をCaO/SiO2(モル比)=
0.7、セメント/生石灰(重量比)=3、金属ア
ルミニウム(粒子径30μm以下)/全固形物
(重量比)=0.001となるように調合し混練後型
枠に注入して成形したものをオートクレーブを
用いて180℃の飽和水蒸気圧中で10時間養生し
て作成した。この成形体のX線回折図を第7図
に示す。第7図で明らかなようにこの物質は
幅、長さが1〜5μmの板状結晶性トバモライ
トを主体としたものでその他未反応物の石英が
若干残存していた。またこの物質はかさ密度
0.5、水銀圧入法による細孔容積は0.8cm2/gで
あつた。
(B) The porous materials of tobermorite-based calcium silicate hydrate containing materials are silica (SiO 2 = 95%, Blaine value 3000cm 2 /g), cement (ordinary Portland cement SiO 2 = 22%, CaO 65%, Blaine value 3000cm 2 /g), quicklime (CaO = 95%, Blaine value 6000cm 2 /g) and CaO/SiO 2 (molar ratio) =
0.7, cement/quicklime (weight ratio) = 3, metal aluminum (particle size 30 μm or less)/total solids (weight ratio) = 0.001, and after kneading, inject into a mold and mold it, then autoclave. It was prepared by curing for 10 hours at 180°C under saturated water vapor pressure. The X-ray diffraction diagram of this molded body is shown in FIG. As is clear from FIG. 7, this material was mainly composed of plate-shaped crystalline tobermorite with a width and length of 1 to 5 μm, and some unreacted quartz remained. Also, this substance has a bulk density
0.5, and the pore volume by mercury intrusion method was 0.8 cm 2 /g.

(C) 上記(A)で作成したケイ酸カルシウム水和物ス
ラリーの固形分5部、上記(B)で作成したトバモ
ライト系ケイ酸カルシウム水和物含有物の多孔
物質を粗砕し分級した2〜5mmのもの5部及び
0.5規定の水酸化カリウム水溶液90部を銀ライ
ニングしたオートクレーブ中に仕込み真空度50
mmHg以下で30分間脱気してアルカリ水溶液を
含浸させた後、温度210℃〜230℃の飽和水蒸気
圧下で2日間静置し水熱反応せしめ、しかる後
1mmの篩で多孔物質の魂を分離して得た。水熱
合成によつて結晶長50μm以上、結晶径5μm
以下に生成した結晶性ゾノトライト5重量部、
カサ高の繊維状鉱物材料を収得した。この物質
のX線回折図を第4図に、示差熱熱分析図を第
5図に、走査電子顕微鏡写真を第6図に示す。
第4図〜第6図で明らかなように本発明品はほ
とんど結晶長50μm以上、結晶径5μm以下の
結晶性ゾノトライトを主体とする繊維状鉱物で
あつた。
(C) Solid content of 5 parts of the calcium silicate hydrate slurry prepared in (A) above, and 2 parts of the porous material of the tobermorite-based calcium silicate hydrate-containing slurry prepared in (B) above, which was roughly crushed and classified. ~5 parts of 5 mm and
90 parts of a 0.5N potassium hydroxide aqueous solution was placed in a silver-lined autoclave and the vacuum level was 50.
After degassing for 30 minutes at less than mmHg and impregnating with an alkaline aqueous solution, it was left to stand for 2 days under saturated steam pressure at a temperature of 210°C to 230°C to allow a hydrothermal reaction, and then the soul of the porous material was separated using a 1 mm sieve. I got it. Crystal length is 50μm or more and crystal diameter is 5μm by hydrothermal synthesis.
5 parts by weight of crystalline xonotlite produced below,
A fibrous mineral material with a high bulk was obtained. An X-ray diffraction diagram of this substance is shown in FIG. 4, a differential thermal analysis diagram is shown in FIG. 5, and a scanning electron micrograph is shown in FIG.
As is clear from FIGS. 4 to 6, the products of the present invention were mostly fibrous minerals mainly composed of crystalline xonotrite with a crystal length of 50 μm or more and a crystal diameter of 5 μm or less.

この繊維状鉱物は嵩密度0.13〜0.18で過抵
抗性も小さいことからフイラーとして使用でき
るものであつた。
This fibrous mineral had a bulk density of 0.13 to 0.18 and low hyperresistance, so it could be used as a filler.

なお、実施例1の(A),(B)及び(C)のX線回折の測
定条件は対陰極Cu(Ni)、管電圧30KV、管電流
15mA、フルスケール計数1000cps、時定数2
秒、走査速度2度/分、記録速度2cm/分、発散
スリツト1mm、レシービングスリツト0.3mm、同
じく示差熱熱分析の測定条件は試料重量10mg、
DTA範囲±100μV、昇温速度10℃/分;同走査
電子顕微鏡の測定条件は金蒸着、倍率1万倍であ
る。
Note that the measurement conditions for X-ray diffraction in (A), (B), and (C) of Example 1 are anticathode Cu (Ni), tube voltage 30 KV, and tube current.
15mA, full scale counting 1000cps, time constant 2
scanning speed 2 degrees/min, recording speed 2 cm/min, divergent slit 1 mm, receiving slit 0.3 mm, and the same measurement conditions for differential thermal analysis are sample weight 10 mg,
DTA range: ±100μV, heating rate: 10°C/min; measurement conditions for the scanning electron microscope are gold deposition and 10,000x magnification.

実施例 2 0.5規定の水酸化カリウム水溶液を0.05規定の
水酸化ナトリウム水溶液に置き換えて実施例1の
方法を繰返した結果、ほとんどが結晶長50μm以
上、結晶径5μm以下の結晶性ゾノトライト5重
量部を得た。本発明品の物質特性は実施例1で得
た発明品と同様であつた。
Example 2 As a result of repeating the method of Example 1 by replacing the 0.5N aqueous potassium hydroxide solution with a 0.05N aqueous sodium hydroxide solution, 5 parts by weight of crystalline xonotlite, most of which had a crystal length of 50 μm or more and a crystal diameter of 5 μm or less, was obtained. Obtained. The material properties of the product of the present invention were similar to those of the product obtained in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はケイ酸カルシウム水和物含有物のX線
回折図、第2図は同含有物の示差熱熱分析図、第
3図は同含有物の走査電子顕微鏡写真、第4図は
本発明結晶性ゾノトライトのX線回折図、第5図
は同ゾノトライトの示差熱熱分析図、第6図は同
ゾノトライトの走査電子顕微鏡写真、第7図はト
バモライト系ケイ酸カルシウム水和物含有物のX
線回折図である。
Figure 1 is an X-ray diffraction diagram of a product containing calcium silicate hydrate, Figure 2 is a differential thermal analysis diagram of the same content, Figure 3 is a scanning electron micrograph of the same content, and Figure 4 is a book. An X-ray diffraction diagram of the invention crystalline xonotlite, Figure 5 is a differential thermal analysis diagram of the same xonotlite, Figure 6 is a scanning electron micrograph of the same xonotlite, and Figure 7 is a tobermorite-based calcium silicate hydrate-containing product. X
It is a line diffraction diagram.

Claims (1)

【特許請求の範囲】 1 石灰質物質および珪酸質物質を原料として生
成したCaO/SiO2モル比0.8〜1.0のケイ酸カルシ
ウム水和物含有物にアルカリ金属の水酸化物の
0.05〜1規定水溶液を該ケイ酸カルシウム水和物
1重量部に対し少なくとも5重量部とトバモライ
ト系ケイ酸カルシウム水和物含有物の多孔物質を
添加し、150℃以上の飽和水蒸気圧で水熱反応さ
せて結晶長50μm以上、結晶径5μm以下の結晶
性ゾノトライトを生成せしめることを特徴とする
ゾノトライト系繊維状鉱物材料の製造方法。 2 トバモライト系ケイ酸カルシウム水和物含有
物の多孔物質が、オートクレーブ養生された軽量
気泡コンクリートである特許請求の範囲第1項記
載の製造方法。
[Claims] 1. Calcium silicate hydrate-containing product with a CaO/SiO 2 molar ratio of 0.8 to 1.0 produced from calcareous substances and silicic substances as raw materials, and an alkali metal hydroxide.
At least 5 parts by weight of a 0.05 to 1N aqueous solution is added to 1 part by weight of the calcium silicate hydrate, and a porous material containing tobermorite-based calcium silicate hydrate is added, and the mixture is heated hydrothermally at a saturated water vapor pressure of 150°C or higher. A method for producing a xonotrite-based fibrous mineral material, which comprises reacting to produce crystalline xonotrite having a crystal length of 50 μm or more and a crystal diameter of 5 μm or less. 2. The manufacturing method according to claim 1, wherein the porous material of the tobermorite-based calcium silicate hydrate-containing material is autoclave-cured lightweight cellular concrete.
JP11885479A 1979-09-18 1979-09-18 Xonotlite fibrous mineral material and its manufacture Granted JPS5645818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11885479A JPS5645818A (en) 1979-09-18 1979-09-18 Xonotlite fibrous mineral material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11885479A JPS5645818A (en) 1979-09-18 1979-09-18 Xonotlite fibrous mineral material and its manufacture

Publications (2)

Publication Number Publication Date
JPS5645818A JPS5645818A (en) 1981-04-25
JPS6247808B2 true JPS6247808B2 (en) 1987-10-09

Family

ID=14746776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11885479A Granted JPS5645818A (en) 1979-09-18 1979-09-18 Xonotlite fibrous mineral material and its manufacture

Country Status (1)

Country Link
JP (1) JPS5645818A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3688190T2 (en) * 1985-11-29 1993-09-09 Redco Nv CRYSTALLINE CONGLOMERATES FROM SYNTHETIC XONOTLITH AND METHOD FOR THE PRODUCTION THEREOF.
JP2577207B2 (en) * 1986-02-14 1997-01-29 三菱電線工業株式会社 Flame-retardant flexible fluorine rubber composition
AU3622595A (en) * 1994-10-14 1996-05-06 Industrial Research Limited Fibrous silicate hydrates and processes for their production
DE10235866B4 (en) * 2002-08-05 2005-02-24 Technische Universität München Process for the thermal treatment of kieselguhr, thermally treated kieselguhr and use of such kieselguhr
CN106495172A (en) * 2016-10-27 2017-03-15 辽宁工程技术大学 The method that xonotlite fiber is produced using sour solution-off aluminium powder coal ash and carbide slag
WO2023046958A1 (en) * 2021-09-27 2023-03-30 Universite de Bordeaux Process for preparing crystalline calcium silicates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918799A (en) * 1972-06-10 1974-02-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918799A (en) * 1972-06-10 1974-02-19

Also Published As

Publication number Publication date
JPS5645818A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
JPS6247808B2 (en)
JPH10114518A (en) Synthetic ettringite, calcium silicate compact containing the ettringite and calcium silicate compact
JPH0216255B2 (en)
JP2011213510A (en) Fiber-reinforced calcium silicate board
JPH0627022B2 (en) Method for producing calcium silicate-based compact
JPS6247807B2 (en)
JPS6131054B2 (en)
JPH0216256B2 (en)
Vaičiukynienė et al. Influence of zeolitized perlite on blended cement properties
JPH08301639A (en) Solidification and materialization of fly ash powder with geopolymer
Harada et al. Experimental study on the reactivity of aggregate in concrete.
KR960006224B1 (en) Process for producing mould of calcium silicate
JPH0543655B2 (en)
JP2004051379A (en) Method of manufacturing calcium silicate formed body and calcium silicate formed body
Harada et al. Etude experimentale de la reactivite des granulats a beton
JPS5921563A (en) Lightweight foamed concrete and manufacture
JPS6213297B2 (en)
JPS6213299B2 (en)
JPH0234900B2 (en)
JPS641427B2 (en)
JPS6342918A (en) Filamentous heat-resistant cement fiber and production thereof
Michiaki et al. Experimental study on the reactivity of aggregate in concrete.
JPH0512296B2 (en)
JPS631243B2 (en)
JPH0532340B2 (en)