JP3023755B2 - Calcium silicate hydrate compact and method for producing the same - Google Patents

Calcium silicate hydrate compact and method for producing the same

Info

Publication number
JP3023755B2
JP3023755B2 JP6329406A JP32940694A JP3023755B2 JP 3023755 B2 JP3023755 B2 JP 3023755B2 JP 6329406 A JP6329406 A JP 6329406A JP 32940694 A JP32940694 A JP 32940694A JP 3023755 B2 JP3023755 B2 JP 3023755B2
Authority
JP
Japan
Prior art keywords
calcium silicate
silicate hydrate
crystals
slurry
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6329406A
Other languages
Japanese (ja)
Other versions
JPH08157208A (en
Inventor
秀史 武内
忠泰 富田
洋治 飯ヶ谷
豊宏 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemical Industry Co Ltd
Original Assignee
Onoda Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemical Industry Co Ltd filed Critical Onoda Chemical Industry Co Ltd
Priority to JP6329406A priority Critical patent/JP3023755B2/en
Publication of JPH08157208A publication Critical patent/JPH08157208A/en
Application granted granted Critical
Publication of JP3023755B2 publication Critical patent/JP3023755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上に利用分野】本発明は、石灰質原料と珪酸質原
料との水熱反応によって得られる軽量で機械的強度に優
れた珪酸カルシウム水和物成形体とその製造方法に関す
る。本発明の珪酸カルシウム水和物成形体は耐火性およ
び形状安定性が良く、従来の製品に比べて軽量でかつ機
械的強度が格段に優れており耐火被覆材、耐火断熱材お
よび建築用材などとして有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight calcium silicate hydrate compact obtained by a hydrothermal reaction between a calcareous raw material and a siliceous raw material, and a method for producing the same. The calcium silicate hydrate molded article of the present invention has good fire resistance and shape stability, is lighter in weight than conventional products, and has remarkably excellent mechanical strength, and is used as a fire-resistant coating material, fire-resistant heat insulating material, building material, and the like. Useful.

【0002】[0002]

【従来技術とその課題】珪酸カルシウム水和物成形体
耐火被覆材などとして現在広く使用されているが、より
軽量で機械的強度の大きい製品が求められている。この
珪酸カルシウム水和物を連続的に製造する方法として、
石灰質原料と珪酸質原料より成る水性スラリーを予め原
料合計量の50%以上をゲル化させた後、堅型高圧反応
容器に連続的に送入し、高圧加熱水を導入して水熱反応
を進め、珪酸カルシウム水和物を得る製造方法が従来知
られている(特公昭54−10956号、特公昭54−
10957号)。
2. Description of the Related Art Calcium silicate hydrate compacts are now widely used as refractory coatings and the like, but there is a demand for products having lighter weight and greater mechanical strength. As a method for continuously producing this calcium silicate hydrate,
After an aqueous slurry composed of calcareous raw material and siliceous raw material is preliminarily gelled to 50% or more of the total amount of raw materials, it is continuously fed into a rigid high-pressure reactor, and high-pressure heating water is introduced to carry out hydrothermal reaction. Production methods for obtaining calcium silicate hydrate have been conventionally known (JP-B-54-10956, JP-B-54-10956).
No. 10957).

【0003】この製造方法によれば、珪酸カルシウム水
和物の結晶が均一に形成された成形体を連続的に低コス
トで製造できる利点がある。しかし製造される珪酸カル
シウム水和物は、その結晶がウニや栗のイガに類似した
形状のものが大部分であり、これを原料として成形体を
得る場合、軽量で機械的強度の大きな成形体を得るのが
難しいという問題点がある。
According to this production method, there is an advantage that a molded body in which crystals of calcium silicate hydrate are uniformly formed can be continuously produced at low cost. However, most of the calcium silicate hydrate produced has crystals similar in shape to sea urchins and chestnut burrs. Is difficult to obtain.

【0004】[0004]

【発明の解決課題】本発明は従来の珪酸カルシウム水和
成形体における上記問題を解決したものであって、軽
量で機械的強度が大きい珪酸カルシウム水和物成形体
その製造方法を提供するものであり、本発明の製法によ
れば上記成形体の物性の制御も容易である。
The present invention solves problems of the Invention be those in which the above-described problems of the conventional calcium silicate hydrate formed body provides lightweight and high mechanical strength calcium silicate hydrate formed body and a manufacturing method thereof According to the production method of the present invention, it is easy to control the physical properties of the compact .

【0005】[0005]

【課題の解決手段】従来の珪酸カルシウム水和物の連続
製法は、 (a)石灰質原料と珪酸質原料の混合原料に水を
加えて得た水性スラリーに苛性アルカリを添加し、加熱
してゲル化させる第1工程、 (b)第1工程で得たゲル化
スラリーに高圧加熱水を導入して水熱反応を促し、珪酸
カルシウム水和物を生成させる第2工程、 (c)第2工程
で得た生成物スラリーを落圧して取出す第3工程から成
るが、本発明者等は、第2工程において高圧加熱水中に
苛性アルカリを添加することにより、高圧反応容器内で
生成する珪酸カルシウム水和物の結晶形状が変化する現
象を見い出し、この結果、珪酸カルシウム水和物のスラ
リー中に、ウニや栗のイガに類似した形状の結晶粒子
(以下、イガ状結晶と言う)と麦の穂に類似した形状の
結晶(以下、麦穂状結晶と言う)の異なった2種の結晶
が生成し、しかもイガ状結晶は従来の重質化されたもの
とは異なり比較的軽量であり、この混合比によって珪酸
カルシウム水和物の機械的強度などの物性が異なる知見
を得た。
A conventional method for continuously producing calcium silicate hydrate comprises: (a) adding a caustic alkali to an aqueous slurry obtained by adding water to a mixed raw material of a calcareous raw material and a siliceous raw material; (B) a second step of introducing high-pressure heating water into the gelled slurry obtained in the first step to promote a hydrothermal reaction to generate calcium silicate hydrate; (c) a second step Comprises a third step of reducing the pressure of the product slurry obtained in the step, and extracting the slurry by adding caustic alkali to the high-pressure heated water in the second step, whereby the aqueous solution of calcium silicate formed in the high-pressure reaction vessel is reduced. We found a phenomenon in which the crystal shape of the hydrate changed, and as a result, in a slurry of calcium silicate hydrate, crystal particles similar in shape to sea urchin and chestnut iga (hereinafter referred to as iga-like crystals) and wheat ears Crystals with a shape similar to Two different types of crystals are produced, and the burrs are relatively light, unlike the conventional heavy ones, and the mixing ratio makes the mechanical strength of calcium silicate hydrate such as Findings with different physical properties were obtained.

【0006】本発明は上記知見に基づくものであり、本
発明によれば、以下の構成を有する珪酸カルシウム水和
物が提供される。 (1)石灰質原料と珪酸質原料との水熱反応によって得
られるイガ状結晶と麦穂状結晶の異なった形状の結晶粒
子が混在してなる珪酸カルシウム水和物からなり、成形
体の嵩比重が0.3以下であることを特徴とする珪酸カ
ルシウム水和物成形体。 (2)イガ状結晶と麦穂状結晶の割合(イガ状結晶:麦
穂状結晶)が7〜3:3〜7である上記(1)の珪酸カルシ
ウム水和物成形体
The present invention is based on the above findings, and according to the present invention, a calcium silicate hydrate having the following constitution is provided. (1) a calcareous material and calcium silicate hydrate crystal grains of different shapes of obtained <br/> are Louis moth-like crystals and wheat spikes crystals are mixed by hydrothermal reaction with siliceous material, Molding
A calcium silicate hydrate compact having a bulk specific gravity of 0.3 or less . (2) The calcium silicate hydrate molded article according to the above (1), wherein the ratio of burrs and barley crystals (burrs: barley crystals) is 7: 3: 3-7.

【0007】さらに本発明によれば以下の構成からなる
珪酸カルシウム水和物の製造方法が提供される。 (3) (a)石灰質原料と珪酸質原料の混合原料に水を
加えて得た水性スラリーに苛性アルカリを添加し、加熱
してゲル化させる第1工程、 (b)第1工程で得たゲル化
スラリーに高圧加熱水を導入して水熱反応を促し、珪酸
カルシウム水和物を生成させる第2工程、および (c)第
2工程で得た生成物スラリーを落圧して取出す第3工程
からなる珪酸カルシウムの製造方法において、第2工程
で苛性アルカリを含有する高圧加熱水を用いることによ
り、イガ状結晶と麦穂状結晶の異なった形状の結晶粒子
が混在してなる珪酸カルシウム水和物を製造する方法。 (4)第1工程の苛性アルカリ濃度と第2工程の苛性ア
ルカリ濃度を調整することによりイガ状結晶と麦穂状結
晶の混合割合を制御する上記(3) の製造方法。 (5) (a)第1工程において、混合原料のCaO/S
iO2 モル比が0.8〜1.3:1.0であり、水性ス
ラリーの苛性アルカリ濃度が0.1〜0.4重量%であ
り、加熱温度が50〜100℃であり、原料の40〜6
0%をゲル化し、(b)第2工程において、高圧加熱水の
苛性アルカリ濃度が0.15〜0.4重量%であり、上
記ゲル化スラリーと苛性アルカリ含有高圧加熱水を竪型
反応容器の底部から連続的に導入し、攪拌しつつ5分以
内に160℃以上に加熱して容器の上部方向に層状的に
上昇させながら180〜210℃の温度下で1〜4時間
滞留させて水熱反応を進め、 (c)第3工程において、生
成物スラリーを落圧して容器上部から連続的に取出す上
記(3) の製造方法。
Further, according to the present invention, there is provided a method for producing calcium silicate hydrate having the following constitution. (3) (a) a first step of adding a caustic alkali to an aqueous slurry obtained by adding water to a mixed raw material of a calcareous raw material and a siliceous raw material and heating and gelling, and (b) obtained in the first step A second step of introducing high-pressure heating water into the gelled slurry to promote a hydrothermal reaction to form calcium silicate hydrate; and (c) a third step of reducing the pressure of the product slurry obtained in the second step and removing the slurry. Calcium silicate hydrate in which crystal grains of different shapes of burrs and barleys are mixed by using high-pressure heated water containing caustic in the second step in the method for producing calcium silicate comprising How to manufacture. (4) The method according to (3) above, wherein the mixing ratio of burrs and barley crystals is controlled by adjusting the caustic concentration in the first step and the caustic concentration in the second step. (5) (a) In the first step, the mixed raw material CaO / S
iO 2 molar ratio is 0.8-1.3: 1.0, caustic concentration of aqueous slurry is 0.1-0.4% by weight, heating temperature is 50-100 ° C., 40-6
0% is gelled. (B) In the second step, the caustic alkali concentration of the high pressure heating water is 0.15 to 0.4% by weight, and the gelled slurry and the high pressure heating water containing caustic are mixed in a vertical reaction vessel. Is continuously introduced from the bottom of the container, heated to 160 ° C. or higher within 5 minutes with stirring, and raised at a temperature of 180 to 210 ° C. for 1 to 4 hours at a temperature of 180 to 210 ° C. (C) The method according to (3) above, wherein the thermal reaction is advanced, and in the third step, the product slurry is continuously depressurized and taken out from the upper part of the vessel.

【0008】[0008]

【具体的な説明】珪酸カルシウム水和物 本発明の珪酸カルシウム水和物を図面に基づいて具体的
に説明する。図1は本発明の珪酸カルシウム水和物の結
晶状態を示す電子顕微鏡写真であり、図2は従来の製造
方法によって得た珪酸カルシウム水和物の結晶状態を示
電子顕微鏡写真である。図中、10および20は珪酸
カルシウム水和物の結晶粒子であり、10はイガ状結
晶、20は麦穂状結晶である。図1に示すように、本発
明に係る珪酸カルシウム水和物はイガ状結晶10と麦穂
状結晶20とが混在して形成されており、イガ状結晶1
0の間を麦穂状結晶20が充填し、両者が一体に結合さ
れた状態をなし、しかもイガ状結晶は従来のものと異な
り比較的軽量である。一方、従来の珪酸カルシウム水和
物は、図2に示すように、麦穂状結晶が殆ど存在せず、
大部分がイガ状結晶10によって形成されており、しか
も該イガ状結晶は、本発明の珪酸カルシウム水和物中に
混在するイガ状結晶に比べて表面の針状突起が極めて短
く、従って嵩比重が大きく重質化されている。
[Specific description] Calcium silicate hydrate The calcium silicate hydrate of the present invention will be specifically described with reference to the drawings. FIG. 1 is an electron micrograph showing the crystal state of calcium silicate hydrate of the present invention, and FIG. 2 is an electron micrograph showing the crystal state of calcium silicate hydrate obtained by a conventional production method. In the figure, 10 and 20 are crystal particles of calcium silicate hydrate, 10 is a burr-shaped crystal, and 20 is a spikelet-shaped crystal. As shown in FIG. 1, the calcium silicate hydrate according to the present invention is composed of a mixture of a scallop crystal 10 and a wheat spike crystal 20.
The area between 0 is filled with the wheat spike-shaped crystal 20 and the two are integrally joined, and the bur-shaped crystal is relatively light in weight unlike the conventional one. On the other hand, the conventional calcium silicate hydrate has almost no spikelet crystals as shown in FIG.
Most of the burs are formed by the burrs 10, and the burrs have extremely short acicular protrusions on the surface as compared with the burrs mixed in the calcium silicate hydrate of the present invention. Is heavier and heavier.

【0009】ここで、イガ状結晶と麦穂状結晶がほぼ等
量混在する本発明の珪酸カルシウム水和物成形体の数例
と、全てイガ状結晶によって形成されている従来の珪酸
カルシウム水和物成形体について、その嵩比重、乾燥収
縮率、曲げ強度および比強度を比較すると次表のとおり
であり、本発明の珪酸カルシウム水和物成形体は乾燥収
縮率がやや大きいものの、嵩比重は何れも0.3以下と
小さく、しかも曲げ強度は格段に大きい。また比較例に
示すように、イガ結晶と麦穂状結晶が混在するもので
も、イガ状結晶が重質化したものは嵩比重が大きいもの
の曲げ強度はそれほど向上しない。以上のように本発明
の珪酸カルシウム水和物成形体はイガ状結晶と麦穂状結
晶が混在し、かつイガ状結晶が重質化していないため、
従来の成形体よりも軽量で機械的強度に優れている。
[0009] Here, several examples of the calcium silicate hydrate compact of the present invention, in which imo-like crystals and wheat spike-like crystals are mixed in substantially equal amounts, and a conventional calcium silicate hydrate formed entirely of iga-like crystals for molded bodies, the bulk density, drying shrinkage, are as the following table a comparison of flexural strength and specific strength, although calcium silicate hydrate formed body of the present invention is drying shrinkage is slightly large, a bulk specific gravity of any Also less than 0.3
It is small and has a remarkably high bending strength. Further, as shown in the comparative example, even in the case where the swelling crystals are mixed with the squirting crystals, even if the squirting crystals are heavier, the bending strength is not so improved although the bulk specific gravity is large. As described above, the calcium silicate hydrate molded article of the present invention is a mixture of burrs and barley crystals, and the burrs are not heavier,
Lighter and more excellent in mechanical strength than conventional molded products.

【0010】[0010]

【表1】 [Table 1]

【0011】製造方法 本発明に係るイガ状結晶と麦穂状結晶が混在した珪酸カ
ルシウム水和物の製造方法について、図面を参照して以
下に説明する。なお%は特に断らない限り重量%であ
る。図3は本発明の製造方法の工程図であり、図示する
ように、本発明の製法は、(a)石灰質原料と珪酸質原料
の混合原料に水を加えて得た水性スラリーに苛性アルカ
リを添加し、加熱してゲル化させる第1工程31、 (b)
第1工程で得たゲル化スラリーに苛性アルカリを含有し
た高圧加熱水を導入して水熱反応を促し、珪酸カルシウ
ム水和物を生成させる第2工程32、および (c)第2工
程で得た生成物スラリーを落圧して取出す第3工程33
からなる。
Production Method A method for producing a calcium silicate hydrate having a mixture of burrs and barley crystals according to the present invention will be described below with reference to the drawings. The percentages are by weight unless otherwise specified. FIG. 3 is a process chart of the production method of the present invention. As shown in the drawing, the production method of the present invention comprises: (a) adding an aqueous slurry obtained by adding water to a mixed raw material of a calcareous raw material and a siliceous raw material; Adding, heating and gelling a first step 31, (b)
A high pressure heating water containing caustic alkali is introduced into the gelled slurry obtained in the first step to promote a hydrothermal reaction to form calcium silicate hydrate 32, and (c) obtained in the second step Third step 33 of removing the product slurry by pressure reduction
Consists of

【0012】本発明に使用する石灰質原料は消石灰、生
石灰およびカーバイト滓などのうちから選ばれた少なく
とも一種類であり、また珪酸質原料は白土、珪藻土、軟
珪石等の天然産非晶質珪酸粉末(200 メッシュ以下)、ホワ
イトカーボン、フェシリコンダスト、および珪弗化ソー
ダより氷晶石を製造する際に生成する珪酸などの非晶質
珪酸よりなる群のうちから選ばれた少なくとも一種類の
珪酸、またはこの珪酸と結晶質珪酸粉末(200 メッシュ以
下)の混合物である。
The calcareous raw material used in the present invention is at least one kind selected from slaked lime, quick lime, and carbide slag, and the siliceous raw material is a naturally occurring amorphous silicate such as clay, diatomaceous earth, and soft silica. At least one member selected from the group consisting of powder (less than 200 mesh), white carbon, fecesilicon dust, and amorphous silica such as silica generated when cryolite is produced from sodium silicofluoride. Silicic acid or a mixture of this silicic acid and crystalline silicic acid powder (200 mesh or less).

【0013】まず第1工程において、石灰質原料と珪酸
質原料の混合原料に水を加えて水性スラリーを製造す
る。石灰質原料と珪酸質原料の割合は、製造すべき珪酸
カルシウム水和物の種類により相違するが、概ね、Ca
O/SiO2 モル比が0.8〜1.3:1.00となる
ように調合するのが好ましい。この混合原料に加える水
の量は混合原料の2.5〜10倍が適当である。この水
性スラリーに苛性アルカリを添加し、50〜100℃に
加熱、撹拌し、原料の40〜60%をゲル化反応させ
る。苛性アルカリの添加量は添加直後の水性スラリー中
での濃度が0.1〜0.4%が適当である。この濃度が
0.10%より少ないと、原料のゲル化反応の進行が遅
くまた第2工程における初期反応が速くなる。また、こ
の苛牲アルカリ濃度が0.4%を上回ると第1工程の反
応が進み過ぎて中間生成物が多くなり、第2工程での結
晶化反応が長時間を要するので、過剰な苛牲アルカリの
添加は好ましくない。すなわち、第1工程での苛牲アル
カリ濃度は0.10〜0.4%の範囲とし、第2工程の
高圧水熱反応における結晶形状制御を容易ならしめるた
めに、原料のゲル化反応率を40〜60%の範囲とする
のが良い。
First, in a first step, water is added to a mixed raw material of a calcareous raw material and a siliceous raw material to produce an aqueous slurry. The ratio of the calcareous material and the siliceous material differs depending on the type of calcium silicate hydrate to be produced.
It is preferred that the O / SiO 2 molar ratio be adjusted to 0.8 to 1.3: 1.00. The amount of water to be added to the mixed raw material is suitably 2.5 to 10 times the mixed raw material. Caustic alkali is added to the aqueous slurry, and the mixture is heated to 50 to 100 ° C. and stirred to cause a gelling reaction of 40 to 60% of the raw material. The amount of the caustic added is suitably from 0.1 to 0.4% in the aqueous slurry immediately after the addition. If the concentration is less than 0.10%, the progress of the gelling reaction of the raw material is slow, and the initial reaction in the second step is fast. On the other hand, if the caustic alkali concentration exceeds 0.4%, the reaction in the first step proceeds too much and the amount of intermediate products increases, and the crystallization reaction in the second step requires a long time. The addition of alkali is not preferred. That is, the caustic alkali concentration in the first step is in the range of 0.10 to 0.4%, and the gelling reaction rate of the raw material is set to facilitate the control of the crystal shape in the high pressure hydrothermal reaction in the second step. It is better to be in the range of 40 to 60%.

【0014】次に第2工程では、第1工程でゲル化した
スラリーに高圧加熱水を導入して水性スラリーの水熱反
応を進行させる。高圧加熱水の量はスラリー中の固形分
(混合原料)の5〜25倍が適当である。高圧加熱水に
は苛性アルカリを含有したものが用いられ、具体的な例
としては、実施例1に示すようにNaOH水と高圧水蒸
気を混合して供給する。また高圧加熱水と共に高圧水蒸
気を導入しても良い。反応容器としては堅型の高圧反応
容器を用いるのが好ましく、容器の底部から第1工程で
得た水性スラリーと高圧加熱水を連続的に別々に導入す
るのが良い。容器内の下部に送入されたゲル化スラリー
を撹拌しつつ容器内の温度を5分以内に160℃に加熱
し、容器内でスラリーを層状に上昇させながら、容器の
上半分は攪拌せずに180〜210℃の温度下で生成ス
ラリーを1〜4時間滞留させて水熱反応を進める。
Next, in a second step, high-pressure heating water is introduced into the slurry gelled in the first step to cause a hydrothermal reaction of the aqueous slurry to proceed. The amount of the high-pressure heating water is suitably 5 to 25 times the solid content (mixed raw material) in the slurry. As the high-pressure heating water, one containing caustic alkali is used. As a specific example, as shown in Embodiment 1, NaOH water and high-pressure steam are mixed and supplied. High-pressure steam may be introduced together with high-pressure heating water. As the reaction vessel, a rigid high-pressure reaction vessel is preferably used, and the aqueous slurry obtained in the first step and the high-pressure heated water are preferably continuously and separately introduced from the bottom of the vessel. The temperature inside the container is heated to 160 ° C. within 5 minutes while stirring the gelled slurry sent to the lower portion of the container, and the upper half of the container is not stirred while raising the slurry in a layer in the container. The slurry is kept at a temperature of 180 to 210 ° C. for 1 to 4 hours to advance the hydrothermal reaction.

【0015】この第2工程で用いる高圧加熱水中の苛牲
アルカリは高圧水熱反応の初期反応および生成する珪酸
カルシウム水和物の2次結晶であるイガ状結晶と麦穂状
結晶の生成割合を左右する重要な役割を果たすものであ
り、その濃度は、高圧加熱水中で0.15〜0.4%が
適当である。この高圧加熱水中の苛牲アルカリ濃度が
0.05%未満では生成する珪酸カルシウム水和物の結
晶化が速く、生成する2次結晶は重量化してイガ状結晶
が70%以上と多く生成する。イガ状結晶の多いものか
ら得た成形体は比重が大きく、強度が弱いものとなる。
苛牲アルカリ濃度が0.15〜0.25%では、珪酸カ
ルシウム水和物の結晶形状はイガ状結晶の割合が50〜
70%生成する。また、苛牲アルカリ濃度が0.25〜
0.40%の範囲になると、生成する珪酸カルシウム水
和物の結晶はイガ状が30%〜50%であり、イガ状結
晶よりも麦穂状結晶の割合が多くなり、成形体の比重が
小さく機械強度の大きなものが得られる。一方、苛牲ア
ルカリ濃度が0.4%を上回ると、堅型高圧反応容器で
の結晶化反応が著しく遅くなり、生成する珪酸カルシウ
ム水和物は未反応結晶と麦穂状結晶が若干生成し、生成
物の乾燥収縮が大きく、歪みを生じて工業的に有効な珪
酸カルシウム成形体を得ることができない。以上のこと
から、高強度の成形体を得るためには、第2工程での高
圧加熱水中の苛牲アルカリ濃度は0.15〜0.40%
が好ましい。
The caustic alkali in the high-pressure heated water used in the second step determines the initial reaction of the high-pressure hydrothermal reaction and the rate of formation of the secondary crystals of calcium silicate hydrate, iga-like crystals and spike-like crystals. The concentration is suitably 0.15 to 0.4% in high-pressure heated water. If the caustic alkali concentration in the high-pressure heating water is less than 0.05%, the generated calcium silicate hydrate is rapidly crystallized, and the generated secondary crystals are increased in weight to generate a large amount of swelling crystals of 70% or more. A molded product obtained from a material having a large number of burrs has a large specific gravity and a low strength.
When the caustic alkali concentration is 0.15 to 0.25%, the crystal shape of the calcium silicate hydrate is such that the ratio of burrs is 50 to 50%.
It produces 70%. Moreover, the caustic alkali concentration is 0.25 to
When it is in the range of 0.40%, the crystals of calcium silicate hydrate to be formed have a swelling of 30% to 50%, and the proportion of spikelet-like crystals is greater than that of the swelling crystals, and the specific gravity of the compact is small. High mechanical strength can be obtained. On the other hand, when the caustic alkali concentration exceeds 0.4%, the crystallization reaction in the rigid high-pressure reaction vessel becomes extremely slow, and the unreacted crystals and spike-like crystals are slightly formed in the generated calcium silicate hydrate, The product has a large drying shrinkage and is distorted, so that an industrially effective calcium silicate molded product cannot be obtained. From the above, in order to obtain a high-strength compact, the caustic alkali concentration in the high-pressure heated water in the second step should be 0.15 to 0.40%
Is preferred.

【0016】第2工程において、水性スラリーは苛性ア
ルカリを含有する高圧加熱水によって容器内を上昇し、
180〜210℃の温度下で1〜4時間滞留する間に水
熱合成反応が進行し、ゾノトライトを主体とした珪酸カ
ルシウム水和物が生成する。第3工程において、この珪
酸カルシウム水和物スラリーを落圧して容器上部から連
続的に排出する。
In the second step, the aqueous slurry is raised in the vessel by high-pressure heated water containing caustic,
While staying at a temperature of 180 to 210 ° C. for 1 to 4 hours, a hydrothermal synthesis reaction proceeds, and a calcium silicate hydrate mainly composed of zonotolite is generated. In the third step, the calcium silicate hydrate slurry is reduced in pressure and continuously discharged from the upper part of the vessel.

【0017】上記第3工程で得られた珪酸カルシウム水
和物スラリーは、常法に従い、これに補強繊維を加えて
加圧・脱水成形後、乾燥して成形体となる。
The calcium silicate hydrate slurry obtained in the third step is subjected to a conventional method, to which reinforcing fibers are added, pressurized and dewatered, and then dried to form a molded body.

【0018】次に本発明の実施例および比較例を示す。 実施例1 消石灰粉末(CaO:73.5%)100部と非晶質珪
酸粉末(SiO:55.9%)140.7部を混合し
た原料粉末(CaO:SiOのモル比1.0)に、総
水量が固形分に対して4倍水となるように水を加え、更
に、水中の苛性アルカリ濃度が0.10%となる量のN
aOHを加えて水性スラリーを調製した。この水性スラ
リーを80℃で攪拌しながら3時間反応させ、ゲル化さ
せた。この生成したゲル化スラリーと0.15%NaO
H濃度に調整した200℃の高圧加熱水を、内部温度2
00℃に保持した堅型の高圧反応容器に底部から、水性
スラリーと高圧加熱水を1:3.5の重量比にて別々に
連続送入した。引き続き反応容器の下部を撹拌し、反応
容器の高さ1/2以上にあるスラリーは攪乱せずに2時
間滞留させた後、生成したスラリーを反応容器の上部よ
り落圧して取り出した。次にこの珪酸カルシウム水和物
スラリーの固形分100部に対してガラス繊維7部を添
加し、加圧脱水成形後、乾燥して成形体(300×30
0×25mm)を得た。この珪酸カルシウム水和物の結
晶状態およびこれから得た成形体の物性を表2に示し
た。
Next, examples and comparative examples of the present invention will be described. Example 1 A raw material powder (CaO: SiO 2 molar ratio of 1.0 mixed with 100 parts of slaked lime powder (CaO: 73.5%) and 140.7 parts of amorphous silicic acid powder (SiO 2 : 55.9%) ), Water is added so that the total amount of water becomes 4 times water with respect to the solid content, and further, N is added in such an amount that the caustic alkali concentration in the water becomes 0.10%.
An aqueous slurry was prepared by adding aOH. This aqueous slurry was reacted at 80 ° C. with stirring for 3 hours to gel. The resulting gelled slurry and 0.15% NaO
High-pressure heated water at 200 ° C adjusted to H
The aqueous slurry and the high-pressure heated water were separately and continuously fed from the bottom into a rigid high-pressure reaction vessel maintained at 00 ° C at a weight ratio of 1: 3.5. Subsequently, the lower portion of the reaction vessel was stirred, and the slurry at a height of 1/2 or more of the reaction vessel was allowed to stay for 2 hours without disturbing. Then, the generated slurry was taken out from the upper portion of the reaction vessel under reduced pressure. Next, 7 parts of glass fiber was added to 100 parts of the solid content of this calcium silicate hydrate slurry, followed by pressure dehydration molding, followed by drying to obtain a molded product (300 × 30).
0 × 25 mm). Table 2 shows the crystal state of the calcium silicate hydrate and the physical properties of the molded product obtained therefrom.

【0019】実施例2〜8および比較例 第1工程の苛性アルカリ濃度および第2工程の苛性アル
カリ濃度を表2のように変えた以外は実施例1と同様に
して珪酸カルシウム水和物を得た。この珪酸カルシウム
水和物の結晶状態および、これから得た成形体の物性を
表2に纏めて示した。
Examples 2 to 8 and Comparative Example A calcium silicate hydrate was obtained in the same manner as in Example 1 except that the concentration of the caustic alkali in the first step and the concentration of the caustic alkali in the second step were changed as shown in Table 2. Was. Table 2 summarizes the crystal state of the calcium silicate hydrate and the physical properties of the molded product obtained therefrom.

【0020】表2に示すように、第2工程の高圧加熱水
中に苛性アルカリを添加せずに製造した珪酸カルシウム
水和物は、第1工程で全く苛性アルカリを添加しないか
(試料No.1)、または添加しても0.1%以下の場
合には(試料No.6)、生成する珪酸カルシウム水和
物結晶の殆ど全てが重質化したイガ状結晶であり、従っ
て比強度が著しく低い。さらに第1工程で0.25〜
0.4%の苛性アルカリが添加されていても(試料N
o.11,16)、麦穂状結晶の生成割合は1〜2割で
あり、大部分が重質化したイガ状結晶であるために、比
強度は高々130,190程度である。また、第1工程
で苛性アルカリを0.4%以上過剰に添加したものは
(試料No.20〜22)いずれも嵩比重が大きく、従
って比強度が低下する。一方、第2工程の高圧加熱水中
に苛性アルカリを添加して製造した本発明の珪酸カルシ
ウム水和物は、第1工程の苛性アルカリ濃度0.1〜
0.4%、第2工程の苛性アルカリ濃度0.25〜0.
4%、1次ゲルのゲル化率40〜60%の範囲で、嵩比
重が0.3以下であるが曲げ強度は29〜36kgf/
cmであり、従って比強度がいずれも300以上であ
り、一部は500を上回り、軽量でありながら機械的強
度が格段に優れる。
As shown in Table 2, the calcium silicate hydrate produced without adding caustic to the high-pressure heated water in the second step does not contain any caustic in the first step (Sample No. 1). ) Or in the case of adding 0.1% or less (Sample No. 6), almost all of the calcium silicate hydrate crystals formed are heavier iga-like crystals, and therefore the specific strength is remarkably large. Low. In the first step,
Even when 0.4% caustic alkali is added (sample N
o. 11, 16), the generation rate of the spike-shaped crystals is 10 to 20%, and since most of them are heavier-shaped burrs, the specific strength is at most about 130, 190 . In addition, those in which the caustic alkali was added in excess of 0.4% or more in the first step (samples Nos. 20 to 22) all had a large bulk specific gravity, and thus the specific strength was lowered. On the other hand, the calcium silicate hydrate of the present invention produced by adding caustic to the high-pressure heated water in the second step has a caustic concentration of 0.1 to 0.1 in the first step.
0.4%, caustic alkali concentration of 0.25-0.
4%, the gelation ratio of the primary gel is in the range of 40 to 60%, the bulk specific gravity is 0.3 or less, but the bending strength is 29 to 36 kgf /
cm 2 , and therefore all have a specific strength of 300 or more , and some of them exceed 500 , and have excellent mechanical strength while being lightweight.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明の珪酸カルシウム水和物はイガ状
結晶と麦穂状結晶が混在した構造を有するものであり、
従来の製品に比べて軽量でありながら機械的強度が格段
に大きい。また本発明の製造方法によれば、このような
珪酸カルシウム水和物を容易に製造することができ、し
かもイガ状結晶と麦穂状結晶の割合を任意に制御できる
ので、使用目的に応じた性状の珪酸カルシウム水和物を
製造することができる。
The calcium silicate hydrate of the present invention has a structure in which burrs and barley crystals are mixed.
Compared to conventional products, they are lighter but have significantly higher mechanical strength. Further, according to the production method of the present invention, such a calcium silicate hydrate can be easily produced, and the ratio of burrs and barley crystals can be arbitrarily controlled. Calcium silicate hydrate can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の珪酸カルシウム水和物の結晶状態を
示す粒子構造の電子顕微鏡写真。
FIG. 1 is an electron micrograph of a particle structure showing a crystalline state of a calcium silicate hydrate of the present invention.

【図2】 従来の珪酸カルシウム水和物の結晶状態を示
す粒子構造の電子顕微鏡写真。
FIG. 2 is an electron micrograph of a particle structure showing a crystal state of a conventional calcium silicate hydrate.

【図3】 本発明に係る製造方法の工程図。FIG. 3 is a process chart of a manufacturing method according to the present invention.

【符号の説明】[Explanation of symbols]

10−イガ状結晶、 20−麦穂状結晶、 31−第1
工程、32−第2工程、 33−第3工程
10-germ-like crystal, 20-wheat-like crystal, 31-first
Step, 32-second step, 33-third step

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−122917(JP,A) 特開 昭56−45818(JP,A) 特開 昭56−164010(JP,A) 特開 昭53−109252(JP,A) 特開 昭60−204655(JP,A) 特公 昭54−10956(JP,B2) 特公 昭54−10957(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C01B 33/24 CA(STN) JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-122917 (JP, A) JP-A-56-45818 (JP, A) JP-A-56-164010 (JP, A) JP-A-53-1984 109252 (JP, A) JP-A-60-204655 (JP, A) JP-B-54-10956 (JP, B2) JP-B-54-10957 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 33/24 CA (STN) JICST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 石灰質原料と珪酸質原料との水熱反応に
よって得られるイガ状結晶と麦穂状結晶の異なった形状
の結晶粒子が混在してなる珪酸カルシウム水和物からな
り、成形体の嵩比重が0.3以下であることを特徴とす
る珪酸カルシウム水和物成形体
1. A ne from calcareous material and siliceous calcium silicate hydrate crystal particles are mixed in the resultant Louis moth-like crystals and different shapes of wheat spikes crystal by hydrothermal reaction of the starting material
Ri, calcium silicate hydrates formed body bulk density of the molded body, characterized in that less than 0.3.
【請求項2】 イガ状結晶と麦穂状結晶の割合(イガ状
結晶:麦穂状結晶)が7〜3:3〜7である請求項1の
珪酸カルシウム水和物成形体
2. The formed calcium silicate hydrate product according to claim 1, wherein the ratio of the scallop-like crystals to the spikelets (spot-like crystals: spikelets-like crystals) is 7: 3: 3-7.
【請求項3】 (a)石灰質原料と珪酸質原料の混合原料
に水を加えて得た水性スラリーに苛性アルカリを添加
し、加熱してゲル化させる第1工程、 (b)第1工程で得
たゲル化スラリーに高圧加熱水を導入して水熱反応を促
し、珪酸カルシウム水和物を生成させる第2工程、およ
び (c)第2工程で得た生成物スラリーを落圧して取出す
第3工程からなる珪酸カルシウムの製造方法において、
第2工程で苛性アルカリを含有する高圧加熱水を用いる
ことにより、イガ状結晶と麦穂状結晶の異なった形状の
結晶粒子が混在してなる珪酸カルシウム水和物を製造す
る方法。
3. A first step of adding a caustic alkali to an aqueous slurry obtained by adding water to a mixed raw material of a calcareous raw material and a siliceous raw material, and heating and gelling, and (b) the first step. A second step of introducing high-pressure heating water into the obtained gelled slurry to promote a hydrothermal reaction to form calcium silicate hydrate; and (c) reducing the pressure of the product slurry obtained in the second step and removing the slurry. In a method for producing calcium silicate comprising three steps,
A method for producing calcium silicate hydrate in which crystal grains of different shapes of burrs and barleys are mixed by using high-pressure heated water containing caustic in the second step.
【請求項4】 第1工程の苛性アルカリ濃度と第2工程
の苛性アルカリ濃度を調整することによりイガ状結晶と
麦穂状結晶の混合割合を制御する請求項3の製造方法。
4. The method according to claim 3, wherein the mixing ratio of the burrs and barley crystals is controlled by adjusting the concentration of the caustic alkali in the first step and the concentration of the caustic alkali in the second step.
【請求項5】 (a)第1工程において、混合原料のCa
O/SiO2 モル比が0.8〜1.3:1.0であり、
水性スラリーの苛性アルカリ濃度が0.1〜0.4重量
%であり、加熱温度が50〜100℃であり、原料の4
0〜60%をゲル化し、 (b)第2工程において、高圧加
熱水の苛性アルカリ濃度が0.15〜0.4重量%であ
り、上記ゲル化スラリーと苛性アルカリ含有高圧加熱水
を竪型反応容器の底部から連続的に導入し、攪拌しつつ
5分以内に160℃以上に加熱して容器の上部方向に層
状的に上昇させながら180〜210℃の温度下で1〜
4時間滞留させて水熱反応を進め、 (c)第3工程におい
て、生成物スラリーを落圧して容器上部から連続的に取
出す請求項3の製造方法。
5. (a) In the first step, the mixed raw material Ca
An O / SiO 2 molar ratio of 0.8 to 1.3: 1.0,
The aqueous slurry has a caustic concentration of 0.1 to 0.4% by weight, a heating temperature of 50 to 100 ° C.,
(B) In the second step, the high pressure heating water has a caustic alkali concentration of 0.15 to 0.4% by weight, and the gelled slurry and the caustic alkali-containing high pressure heating water are vertically It is continuously introduced from the bottom of the reaction vessel, heated to 160 ° C. or higher within 5 minutes with stirring, and raised in a layered manner toward the top of the vessel at a temperature of 180 to 210 ° C. for 1 to 1 hour.
The method according to claim 3, wherein the hydrothermal reaction is allowed to proceed for 4 hours, and (c) in the third step, the product slurry is depressurized and continuously taken out from the upper part of the vessel.
JP6329406A 1994-12-02 1994-12-02 Calcium silicate hydrate compact and method for producing the same Expired - Lifetime JP3023755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6329406A JP3023755B2 (en) 1994-12-02 1994-12-02 Calcium silicate hydrate compact and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6329406A JP3023755B2 (en) 1994-12-02 1994-12-02 Calcium silicate hydrate compact and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08157208A JPH08157208A (en) 1996-06-18
JP3023755B2 true JP3023755B2 (en) 2000-03-21

Family

ID=18221070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6329406A Expired - Lifetime JP3023755B2 (en) 1994-12-02 1994-12-02 Calcium silicate hydrate compact and method for producing the same

Country Status (1)

Country Link
JP (1) JP3023755B2 (en)

Also Published As

Publication number Publication date
JPH08157208A (en) 1996-06-18

Similar Documents

Publication Publication Date Title
US3861935A (en) Synthetic crystalline beta-wallastonite product
US3501324A (en) Manufacturing aqueous slurry of hydrous calcium silicate and products thereof
JP6022555B2 (en) Synthetic formulations and methods of making and using them
AU756269B2 (en) Method of producing synthetic silicates and use thereof in glass production
JP2001518867A (en) Building products
EP0562112B1 (en) High-strength molding of calcium silicate and production thereof
EP0166789B1 (en) Formed article of calcium silicate and method of the preparation thereof
US20060107872A1 (en) Method and apparatus for producing calcium silicate hydrate
JP3246722B2 (en) Process for producing synthetic silicate and its use in glass production
JP3023755B2 (en) Calcium silicate hydrate compact and method for producing the same
CA1299848C (en) Process for forming hydrated calcium silicate products
JPH06305854A (en) Lightweight molded article of calcium silicate
JPH0640715A (en) Production of spherical secondary particles of calcium silicate
EP0998434A1 (en) Cementitious polymeric matrix comprising silica aluminous materials
JPH0116786B2 (en)
JPH0212894B2 (en)
JPS61186256A (en) Manufacture of calcium silicate molded body
JPH09235115A (en) Promoter for production of tobermorite crystal, production of calcium silicate hydrate slurry using the same and calcium silicate hydrate slurry produced by the same method
JPH10265258A (en) Production of calcium silicate hydrate hardened body
JPH05213657A (en) Production of calcium silicate formed body
JPS60204656A (en) Xonotlite forming material
JPS6341850B2 (en)
JPH0422851B2 (en)
JPH0421516A (en) Production of hydrated fibrous calcium silicate and formed calcium silicate
CN117209242A (en) Short-curing high-durability autoclaved aerated concrete and preparation method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term