JPH0640715A - Production of spherical secondary particles of calcium silicate - Google Patents

Production of spherical secondary particles of calcium silicate

Info

Publication number
JPH0640715A
JPH0640715A JP4108129A JP10812992A JPH0640715A JP H0640715 A JPH0640715 A JP H0640715A JP 4108129 A JP4108129 A JP 4108129A JP 10812992 A JP10812992 A JP 10812992A JP H0640715 A JPH0640715 A JP H0640715A
Authority
JP
Japan
Prior art keywords
secondary particles
crystals
slurry
tobermorite
calcium silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4108129A
Other languages
Japanese (ja)
Other versions
JP2571993B2 (en
Inventor
Teru Takahashi
輝 高橋
Kazuo Shibahara
数雄 柴原
Toyohiko Sakota
豊彦 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON INSULATION KK
Original Assignee
NIPPON INSULATION KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP57069140A priority Critical patent/JPS58185432A/en
Application filed by NIPPON INSULATION KK filed Critical NIPPON INSULATION KK
Priority to JP4108129A priority patent/JP2571993B2/en
Publication of JPH0640715A publication Critical patent/JPH0640715A/en
Application granted granted Critical
Publication of JP2571993B2 publication Critical patent/JP2571993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement

Abstract

PURPOSE:To produce novel spherical secondary particles of useful calcium silicate crystals based on tobermorite crystals. CONSTITUTION:Milk of lime having >=5ml sedimentation volume is mixed with crystalline starting material for silicon dioxide so that the weight of water is regulated to >=15 times that of the solid materials and the resulting starting material slurry is brought into a hydro-thermal synthesis reaction while carrying out heating and stirring in reduced pressure to form the objective secondary particles of calcium silicate crystals based on tobermorite crystals.

Description

【発明の詳細な説明】Detailed Description of the Invention

本発明は珪酸カルシウム球状二次粒子及びその製法に関
し、更に詳しくはトベルモライト結晶を主成分とする珪
酸カルシウム球状二次粒子及びその製法に関し、その目
的とする所は外力に対して最も安定で強固な形状を有し
即ち球状であって、その自然沈降成形体密度を低くする
ために球の内部を粗乃至中空状としたトベルモライト結
晶の二次粒子及びその製法を提供せんとするにある。
The present invention relates to calcium silicate spherical secondary particles and a method for producing the same, more specifically to calcium silicate spherical secondary particles having a tobermorite crystal as a main component and a method for producing the same, and the object thereof is the most stable against external force. To provide a secondary particle of a tobermorite crystal having a strong shape, that is, a spherical shape, in which the inside of the sphere is rough or hollow so as to reduce the density of the spontaneously settled compact, and a method for producing the same. is there.

【0001】本明細書に於いて球状なる語は真円球状ば
かりでなくだ円球状を包含しその表面の少なくとも一部
が凸凹状になっているものも包含する。
In the present specification, the term "spherical" includes not only a perfect spherical shape but also an elliptic shape, and at least a part of the surface thereof is uneven.

【0002】珪酸カルシウム成形体は工業的には耐火断
熱材、吸着材、建材等の多方面に応用されており、これ
等は珪酸カルシウム成形体の特徴とする比強度が高いこ
と、耐火性の高いこと、断熱性のあること、軽量である
こと、高誘電体であること等から各方面への発展が期待
される無機材料である。その特徴的な性質の基因する所
の主な点は珪酸カルシウムの結晶の形態とその集合状態
によると考えられている。
Calcium silicate compacts are industrially applied to various fields such as refractory heat insulating materials, adsorbents, building materials, etc. These have a high specific strength, which is characteristic of calcium silicate compacts, and fire resistance. It is an inorganic material that is expected to develop in various fields due to its high price, heat insulating property, light weight, high dielectric property and the like. It is believed that the main reason for its characteristic properties is the crystal morphology of calcium silicate and its aggregated state.

【0003】而して本発明者等は該珪酸カルシウムの結
晶の特殊な集合状態である所の二次粒子の製造とその構
造に関して研究を重ねて来た結果、珪酸カルシウム結晶
のうち、トベルモライト結晶を主成分とする新しい球状
二次粒子の開発に成功しこれに基づく発明を完成し、す
でに特許第986812号(特公昭54−4968号)
として特許された。この特許発明は、特定の構造を有す
るトベルモライトの球状二次粒子が水に均一に懸濁した
水性スラリーに係るものでありその球状二次粒子は、1
0〜150μm程度の外径を有しトベルモライト結晶が
不規則に三次元的に絡合して形成されている。
The inventors of the present invention have conducted extensive research on the production and structure of secondary particles in a state where the calcium silicate crystals are in a special aggregated state, and as a result, among the calcium silicate crystals, Tobermo Succeeded in developing a new spherical secondary particle composed mainly of Wright crystals and completed an invention based on it. Already Patent No. 986812 (Japanese Patent Publication No. 54-4968).
Was patented as. This patented invention relates to an aqueous slurry in which spherical secondary particles of tobermorite having a specific structure are uniformly suspended in water.
Tobermorite crystals having an outer diameter of about 0 to 150 μm are irregularly three-dimensionally entangled and formed.

【0004】このトベルモライト結晶の球状二次粒子は
これを水に分散せしめて成形し乾燥するだけで、この特
許出願時には存在しなかった軽量にして優れた強度を有
するトベルモライト結晶の成形体を製造出来るものであ
る。この理由は該成形体が上記球状二次粒子が相互に連
結して圧縮変形された状態で構成されているためと考え
られている。即ち成形体の構成要素が外力に対して最も
安定で強固な形状である球状を呈する二次粒子から成っ
ていることに基づくものと考えられている。
The spherical secondary particles of the tobermorite crystal are simply dispersed in water, molded and dried to form a tobermorite crystal having a light weight and excellent strength which did not exist at the time of the patent application. It can manufacture the body. It is considered that this is because the molded body is formed in a state where the spherical secondary particles are connected to each other and are compressed and deformed. That is, it is considered to be based on the fact that the constituent elements of the molded body are composed of secondary particles having a spherical shape which is the most stable and strong shape against external force.

【0005】また本発明者等は上記とは別に、珪酸カル
シウム結晶のうちトベルモライト結晶とは異なるワラス
トナイト族珪酸カルシウム結晶についての新しい球状二
次粒子を開発し、すでに出願している(特開昭53−1
46997号)。このワラストナイト族珪酸カルシウム
結晶から成る球状二次粒子は10〜70μmの外径を有
し、その結晶の集合した二次粒子の構造は珪酸カルシウ
ムの針状結晶が球の外周部で不規則に三次元的に密に絡
合して薄肉の球殻をなし、その内部が空洞となった二次
粒子でその見掛密度が0.09〜0.13g/cm
一個の粒子の破壊荷重が10〜100mgという特徴あ
る構造を有し自然沈降成形体密度が非常に小さいもので
ある。この球状二次粒子を水に分散せしめたスラリーか
ら製造される成形体は特に軽量にして極めて強度の大き
いものである。この場合は球状二次粒子が中空であると
共にその強度も大きいことに起因するものと考えられて
いる。尚該球状二次粒子はその外殻部は、ワラストナイ
ト族珪酸カルシウム針状結晶が密に絡合して形成されて
いるために強固で強度も大きいのである。
In addition to the above, the present inventors have developed and already applied for a new spherical secondary particle of a wollastonite group calcium silicate crystal different from the tobermorite crystal among the calcium silicate crystals ( JP-A-53-1
46997). The spherical secondary particles composed of the wollastonite group calcium silicate crystals have an outer diameter of 10 to 70 μm, and the structure of the secondary particles in which the crystals are aggregated is such that needle-like crystals of calcium silicate are irregular on the outer periphery of the sphere. Is a secondary particle having three-dimensionally closely entangled with each other to form a thin spherical shell, the inside of which is a hollow particle and the apparent density of which is 0.09 to 0.13 g / cm 3 ,
It has a characteristic structure in which the breaking load of one particle is 10 to 100 mg, and the density of the spontaneous sedimentation compact is very small. A molded body produced from a slurry in which the spherical secondary particles are dispersed in water is particularly lightweight and has extremely high strength. In this case, it is considered that the spherical secondary particles are hollow and have high strength. The outer shell of the spherical secondary particles is strong and has high strength because the acicular crystals of wollastonite calcium silicate are closely entangled with each other.

【0006】本発明者等は珪酸カルシウムについて更に
巾広く研究を続けてきたが、この引続く研究に於いて、
トベルモライト結晶から成る全く新しい構造を有する球
状二次粒子の開発に成功した。即ち本発明は、「トベル
モライト結晶を主成分とする珪酸カルシウム結晶から成
る内部が粗乃至中空のほぼ球状の二次粒子であって、そ
の外径が10〜120μm、その破壊荷重が100mg
以下、その中空率が30%以下及びその自然沈降成形体
密度が0.12g/cm以下であることを特徴とする
珪酸カルシウム球状二次粒子」及び「沈降容積5ml以
上の石灰乳と結晶質珪酸原料とを固形分に対する水の量
が15重量倍以上となるように混合調製して得られる原
料スラリーを、加圧下加熱攪拌しながら水熱合成反応を
行なわしめ、トベルモライト結晶を主成分とする珪酸カ
ルシウム結晶の二次粒子を生成せしめることを特徴とす
る珪酸カルシウム球状二次粒子の製法」に係るものであ
る。
The inventors of the present invention have been conducting extensive research on calcium silicate, and in the subsequent research,
We have succeeded in the development of spherical secondary particles with a completely new structure consisting of tobermorite crystals. That is, the present invention provides "a secondary particle having a rough or hollow substantially spherical inner shape, which is composed of a calcium silicate crystal containing a tobermorite crystal as a main component, and has an outer diameter of 10 to 120 µm and a breaking load of 100 mg.
Hereinafter, the calcium silicate spherical secondary particles characterized by having a hollow ratio of 30% or less and a natural sedimentation molded body density of 0.12 g / cm 3 or less "and" lime milk having a sedimentation volume of 5 ml or more and crystalline A raw material slurry obtained by mixing and preparing a silicic acid raw material so that the amount of water is 15 times by weight or more relative to the solid content is subjected to hydrothermal synthesis reaction while heating and stirring under pressure, and tobermorite crystals are the main components. And a method of producing spherical secondary particles of calcium silicate characterized by producing secondary particles of calcium silicate crystals.

【0007】従来の珪酸カルシウム結晶から成る球状二
次粒子の最も基本的な製法はたとえば上記特許第986
812号にも示されている通り、珪酸原料、石灰原料及
び水から調製された原料スラリーを攪拌加圧加熱して合
成反応を行って製造するものであり、この方法で得られ
る球状二次粒子はその珪酸カルシウム結晶の種類には無
関係に内部には空洞はほとんど存在しないか又は存在し
ても自然沈降成形体密度の大きいものである。しかし乍
らこの製法に於いて珪酸カルシウム結晶の種類としてワ
ラストナイト族珪酸カルシウムの球状二次粒子を製造す
る場合に、特に石灰原料としてこの当時使用されたこと
の無い極めて分散安定性の優れた石灰乳を使用し且つ珪
酸原料として、結晶質珪酸原料を選択使用するときに
は、極めて軽量にしてしかも中空状の二次粒子が収得さ
れることが本発明者等により見出され、すでに上記特開
昭53−146997号として出願されているのであ
る。
The most basic conventional method for producing spherical secondary particles composed of calcium silicate crystals is, for example, the above-mentioned Japanese Patent No. 986.
As shown in No. 812, a raw material slurry prepared from a silicic acid raw material, a lime raw material, and water is heated by stirring and pressurizing to produce a synthetic reaction, and spherical secondary particles obtained by this method. Irrespective of the type of the calcium silicate crystals, there are almost no cavities inside, or even if they exist, the density of spontaneous sedimentation compacts is high. However, when producing spherical secondary particles of wollastonite calcium silicate as a type of calcium silicate crystal in this production method, it has an extremely excellent dispersion stability, which has never been used as a lime raw material at this time. It has been found by the present inventors that when lime milk is used and a crystalline silicic acid raw material is selectively used as the silicic acid raw material, hollow particles can be obtained with extremely light weight, and it has already been described above. It is filed as Sho 53-146997.

【0008】而して本発明者等の引き続く研究に依り次
のことが明らかとなった。上記特開昭53−14699
7号と同様の原料を用いてトベルモライト結晶から成る
球状二次粒子を製造しようと着想して、同様に操作した
所、ワラストナイト族珪酸カルシウム結晶の場合と同じ
様な内部が中空の球状二次粒子は収得されず、若干内部
の方がトベルモライトの存在量が粗な球状二次粒子が得
られることが判明した。本発明はこの新しい知見に基づ
いて完成されている。
Then, the following studies have been made clear by the subsequent studies by the present inventors. JP-A-53-14699
The same operation as in the case of wollastonite group calcium silicate crystals was performed after the same operation was performed, conceived to produce spherical secondary particles composed of tobermorite crystals using the same raw material as No. 7. It was found that spherical secondary particles were not obtained, but spherical secondary particles having a coarser amount of tobermorite were obtained inside. The present invention has been completed based on this new finding.

【0009】本発明のトベルモライト結晶から成る球状
二次粒子は次の様な点により特徴づけられる。 (1) 先ずトベルモライト結晶を主成分とし、これ単
独の場合とこれに他の珪酸カルシウム結晶例えばゾーノ
トライト結晶が混在している場合が含まれる。以下混在
している場合も含めて単にトベルモライトという。 (2) 本発明二次粒子は電子顕微鏡又は光学顕微鏡下
ではトベルモライト結晶が三次元的に絡合しているのが
観察され、その二次粒子は10〜120μmの外径をも
つほぼ球状を呈している。尚外径は次の方法で測定した
ものである。 <二次粒子の外径の測定方法>反射光で撮影した100
倍のトベルモライト結晶を主体とする球状二次粒子の光
学顕微鏡写真より、定方向径を測定し、粒子径の範囲及
び平均粒子径(メジアン径)を求めた。後記実施例1の
本発明二次粒子の100倍光学顕微鏡写真を示す第1図
から本発明の二次粒子が球状体であってその外径が約1
0〜120μmでありその平均粒子は38μmであるこ
とが判る。 (3) 本発明の二次粒子はその粒子一個の破壊荷重が
100mg以下であるという特徴を有す。この破壊荷重
は二次粒子の構造就中トベルモライト結晶の充填密度、
二次粒子の外径及びその見掛密度に関係するものと考え
られる。たとえば球状二次粒子の外殻に於ける珪酸カル
シウム結晶の充填密度が小さく粗であるときは比較的大
荷重でも二次粒子が破壊することなくただ圧縮による偏
平化の傾向を示すのみであり、所謂変形抵抗が小さいも
のである。一方本発明の二次粒子の如く内部が粗乃至若
干中空となっているものは変形抵抗が大きいので荷重に
対しては殆んど変形しないが、その一個当りの破壊荷重
は100mg以下という一定範囲内にあり、この範囲内
の一定荷重を超えると急激にひび割れを発生し破壊する
性質を持ち、上記偏平化を示さない。
The spherical secondary particles composed of the tobermorite crystal of the present invention are characterized by the following points. (1) First, a case where a tobermorite crystal is contained as a main component and this is used alone and a case where another calcium silicate crystal, for example, a zonotorite crystal is mixed with this is included. The term "tobermorite" is used below, including the case where they are mixed. (2) In the secondary particles of the present invention, it is observed that the tobermorite crystals are three-dimensionally entangled under an electron microscope or an optical microscope, and the secondary particles have a substantially spherical shape with an outer diameter of 10 to 120 μm. Is presenting. The outer diameter is measured by the following method. <Method of measuring outer diameter of secondary particles> 100 photographed by reflected light
The direction diameter was measured from an optical micrograph of spherical secondary particles mainly composed of doubled tobermorite crystals, and the range of particle diameter and the average particle diameter (median diameter) were obtained. FIG. 1 showing a 100 × optical micrograph of the secondary particles of the present invention in Example 1 to be described later shows that the secondary particles of the present invention are spherical and have an outer diameter of about 1
It can be seen that the average particle size is 0 to 120 μm and the average particle size is 38 μm. (3) The secondary particles of the present invention are characterized in that the breaking load of each particle is 100 mg or less. This breaking load is the packing density of the secondary particle structure, especially the tobermorite crystal,
It is considered to be related to the outer diameter of the secondary particles and their apparent density. For example, when the packing density of calcium silicate crystals in the outer shell of spherical secondary particles is small and coarse, the secondary particles do not break even under a relatively large load, and only tend to flatten due to compression. The so-called deformation resistance is small. On the other hand, the secondary particles of the present invention, such as those having a coarse or slightly hollow interior, have a large deformation resistance and therefore are hardly deformed under a load, but the breaking load per one is within a certain range of 100 mg or less. When the load exceeds a certain value within this range, it has the property of rapidly cracking and breaking, and does not exhibit the above flattening.

【0010】上記破壊荷重とは、珪酸カルシウム結晶の
球状二次粒子に荷重を加えていったとき該二次粒子の球
殻の少なくとも一部にひび割れが生ずるときの荷重を云
い、たとえば破壊荷重が10〜100mgであるという
ことは、該二次粒子に荷重を加えていったとき、該二次
粒子が10〜100mgの間の一定の荷重が加えられた
ときに該二次粒子の球殻の少なくとも一部にひび割れが
生ずるということを表わし、また破壊荷重が1000m
gというときは1000mgの荷重が加えられたときに
該二次粒子の球殻の少くとも一部にひび割れが生ずると
いうことを表わす。 <破壊荷重の測定方法>該二次粒子三個を正三角形状に
スライドグラス上にのせ、その上にカバーグラスを載置
しカバーグラス上に荷重を加えながら600倍の光学顕
微鏡にて観察し、該二次粒子の球殻の一部にひび割れが
生じるか否かを観察して測定し、ひび割れが生じたとき
の荷重で表わす。 (4) 本発明の球状二次粒子の内部は粗乃至中空であ
って、中空率は30%以下である。ここで中空率とは次
の方法で測定されたものである。
The above-mentioned breaking load means a load at which a crack is generated in at least a part of the spherical shell of the secondary particles when the load is applied to the spherical secondary particles of calcium silicate crystals. For example, the breaking load is 10 to 100 mg means that when a load is applied to the secondary particles, the secondary particles have a spherical shell of the secondary particles when a constant load of 10 to 100 mg is applied. It means that at least a part will be cracked, and the breaking load is 1000m.
The term "g" means that at least a part of the spherical shell of the secondary particles is cracked when a load of 1000 mg is applied. <Measurement Method of Breaking Load> The three secondary particles are placed on a slide glass in an equilateral triangle shape, a cover glass is placed on the slide glass, and the load is applied on the cover glass to observe with a 600 × optical microscope. It is measured by observing whether or not a crack occurs in a part of the spherical shell of the secondary particle, and is expressed by a load when the crack occurs. (4) The inside of the spherical secondary particles of the present invention is coarse or hollow, and the hollow ratio is 30% or less. Here, the hollow ratio is measured by the following method.

【0011】自然沈降成形体の一部を切り出し、これを
カナダバルサム(米山薬品工業製)で固定し、次いでこ
れを研磨した後キシレンで上記カナダバルサムを除去し
て研磨試料を得た。この試料を走査型電子顕微鏡にて写
真撮影し、球状二次粒子の断面より半径(γ)及び中空
部の半径(γ′)を測定し次式より中空率を求めた。
A part of the spontaneous sedimentation molded product was cut out, fixed with Canadian balsam (manufactured by Yoneyama Chemical Industry Co., Ltd.), and then polished, and then the Canadian balsam was removed with xylene to obtain a polished sample. This sample was photographed with a scanning electron microscope, the radius (γ) and the radius (γ ') of the hollow portion were measured from the cross section of the spherical secondary particles, and the hollow ratio was obtained from the following formula.

【0012】[0012]

【化1】 中空率が30%以下ということは、球状二次粒子の内部
が中空であってもその中空部は特に大きくはないことを
示している。しかも小さな中空部が随所に存在して所謂
内部が粗になっている場合も包含される。
[Chemical 1] The hollow ratio of 30% or less indicates that the hollow part is not particularly large even if the inside of the spherical secondary particles is hollow. Moreover, the case where small hollow portions are present everywhere and the so-called inside is rough is also included.

【0013】第3図に示された球状二次粒子の内部は粗
であり、中空率は0%であり、第4図に示された球状二
次粒子の中空率は0〜25%である。
The inside of the spherical secondary particles shown in FIG. 3 is coarse and the hollow ratio is 0%, and the hollow ratio of the spherical secondary particles shown in FIG. 4 is 0 to 25%. .

【0014】たとえば特開昭53−146997号の実
施例に記載のワラストナイト族珪酸カルシウム結晶から
成る球状二次粒子の中空率は60%以上であり、本発明
の球状二次粒子と根本的に異なる構造を有している。 (5) 本発明の二次粒子の自然沈降成形体密度が0.
12g/cm以下好ましくは0.10g/cm以下
である特徴を有する。この自然沈降成形体密度は次の方
法に依り測定した。
For example, the hollow secondary particles composed of wollastonite group calcium silicate crystals described in Examples of JP-A-53-146997 have a hollowness of 60% or more, which is basically the same as the spherical secondary particles of the present invention. Have different structures. (5) The density of the spontaneously-precipitated compact of the secondary particles of the present invention is 0.
12 g / cm 3 or less, preferably 0.10 g / cm 3 or less. The density of the spontaneous sedimentation molded body was measured by the following method.

【0015】300ccトールビーカーにスラリー20
0ccと非イオン、アニオン界面活性剤(グランアップ
NF−50、三洋化成製、濃度20%)0.4ccを投
入混合後、48時間放置自然沈降させ次いでこれを10
0℃で48時間乾燥させて自然沈降成形体を得た。これ
の体積及び重さを測定し密度を求めた。
Slurry 20 in a 300 cc tall beaker
0 cc and 0.4 cc of nonionic and anionic surfactants (Granup NF-50, Sanyo Kasei Co., concentration 20%) were added and mixed, and the mixture was allowed to stand for 48 hours to spontaneously settle and then 10
It was dried at 0 ° C. for 48 hours to obtain a spontaneous sedimentation molded body. The volume and weight of this were measured to determine the density.

【0016】この自然沈降成形体の密度が小さいという
ことは、球状二次粒子自身がかなり軽量であり、該二次
粒子からは、密度0.1g/cm程度で実用的強度を
有する成形体を製造できることを示している。たとえば
特許第986812号に記載のトベルモライト結晶の球
状二次粒子は自然沈降成形体密度が大きく、このため上
記公知のトベルモライト結晶の二次粒子からは密度0.
1g/cm程度の成形体を製造することはできない。 (6) 本発明の二次粒子の平均見掛密度は約0.14
〜0.21g/cm、就中主として0.16〜0.2
0g/cmの範囲にあり、かなり軽量なものである。
但し上記平均見掛密度は次の様な方法で測定したもので
ある。 <平均見掛密度の測定方法>トベルモライト結晶のスラ
リーをアセトンによりスラリー中の水と置換させ、90
℃で24時間乾燥させ、球状二次粒子を破損することな
く粉体となす。この粉体Wgを測定し、ビーカー中に入
れる。次にビュレットを使用し水を該球状二次粒子に含
浸させ、ちょうど水が球状二次粒子に含浸した時(球状
二次粒子の粘性が急に増加するとき)の水の量を読みと
りVmlとする。この測定から球状二次粒子の平均見掛
密度(ρ)を次式により算出したものである。
The fact that the density of this natural sedimentation molded product is low means that the spherical secondary particles themselves are considerably lightweight, and the secondary particles have a density of about 0.1 g / cm 3 and a practical strength. It can be manufactured. For example, the spherical secondary particles of the tobermorite crystals described in Japanese Patent No. 986812 have a high spontaneous sedimentation compact density, and therefore the density of the secondary particles of the known tobermorite crystals is 0.
It is not possible to manufacture a molded body of about 1 g / cm 3 . (6) The average apparent density of the secondary particles of the present invention is about 0.14.
~ 0.21 g / cm 3 , mainly 0.16 to 0.2
It is in the range of 0 g / cm 3 and is fairly lightweight.
However, the above average apparent density is measured by the following method. <Measurement Method of Average Apparent Density> The slurry of the tobermorite crystal was replaced with water in the slurry by acetone to obtain 90
Dry at 24 ° C. for 24 hours to make spherical secondary particles into powder without damage. This powder Wg is measured and placed in a beaker. Next, use a buret to impregnate the spherical secondary particles with water, and read the amount of water just when the spherical secondary particles were impregnated with water (when the viscosity of the spherical secondary particles suddenly increased) as Vml. To do. From this measurement, the average apparent density (ρ) of the spherical secondary particles was calculated by the following formula.

【0017】[0017]

【化2】 但しρtはトベルモライトの真比重であって2.576
である。
[Chemical 2] However, ρt is the true specific gravity of Tobermorite, which is 2.576.
Is.

【0018】本発明の球状二次粒子はたとえば次の様な
方法で製造される。
The spherical secondary particles of the present invention are manufactured, for example, by the following method.

【0019】沈降容積5ml以上好ましくは7ml以上
の石灰乳と結晶質を主として含む珪酸とを固形分に対す
る水の量が15倍(重量)以上となる様に混合して原料
スラリーとなし、これを加圧下加熱攪拌しながら水熱合
成反応せしめるとトベルモライトまたはこれを主成分と
するゾーノトライトとの混合結晶から成る本発明の球状
二次粒子のスラリーとすることが出来る。この際の沈降
容積5ml以上とは水対石灰の固形分の比を120倍に
調製した石灰乳50mlをその直径1.3cmで容積が
50ml以上の円柱状容器に入れ、20分間静置した後
に石灰が沈降した容量をmlで示すものである。沈降容
積が5ml以上という極めて良く分散した懸濁性の優れ
た石灰乳を得るには生石灰を常温より高い温度の温水中
で良く攪拌しながら消和することによって達成される。
特に高い沈降容積を得るためには消和温度を高くした
り、ホモミクサー等で急速に攪拌したり、長時間攪拌し
たりすることによっても達成出来る。
Lime milk having a sedimentation volume of 5 ml or more, preferably 7 ml or more, and silicic acid mainly containing crystalline are mixed so that the amount of water with respect to the solid content is 15 times (weight) or more to form a raw material slurry. By performing a hydrothermal synthesis reaction while heating and stirring under pressure, a slurry of the spherical secondary particles of the present invention composed of mixed crystals of tobermorite or zonotolite containing this as a main component can be obtained. At this time, the sedimentation volume of 5 ml or more means that 50 ml of lime milk prepared by adjusting the solid content ratio of water to lime 120 times is put in a cylindrical container having a diameter of 1.3 cm and a volume of 50 ml or more, and allowed to stand for 20 minutes. The volume of lime settled is shown in ml. In order to obtain extremely well-dispersed lime milk having a sedimentation volume of 5 ml or more and having an excellent suspending property, quick lime is dissolved in warm water having a temperature higher than normal temperature with thorough stirring.
In order to obtain a particularly high sedimentation volume, it can be achieved by raising the slaking temperature, rapidly stirring with a homomixer, or stirring for a long time.

【0020】またもう一方の原料として使用する珪酸原
料は平均粒径が1〜20μm好ましくは10μm以下の
微粒子の結晶質珪酸を主体とするものが使用出来る。該
結晶質珪酸としてはAlの含有量が少々高いもの
でも使用出来、たとえばAlが5%程度含有され
たものでも使用出来る。純度としてはSiOが90%
以上のものが通常使用される。
The silicic acid raw material used as the other raw material may be mainly composed of fine particles of crystalline silicic acid having an average particle size of 1 to 20 μm, preferably 10 μm or less. As the crystalline silicic acid, one having a slightly high content of Al 2 O 3 can be used, for example, one containing about 2 % of Al 2 O 3 can also be used. 90% of the purity is SiO 2
The above are commonly used.

【0021】石灰と珪酸との配合モル比はトベルモライ
ト生成に望ましいモル比通常0.70〜0.95(Ca
O/SiOモル比)好ましくは0.75〜0.90程
度である。
The molar ratio of lime and silicic acid is preferably 0.70 to 0.95 (Ca).
O / SiO 2 molar ratio) It is preferably about 0.75 to 0.90.

【0022】これ等石灰乳と珪酸原料を混合し、水対固
形分比を15倍以上好ましくは18〜30倍とする。か
くして得られた原料スラリーを次いで加圧下加熱攪拌し
ながら水熱合成反応を行なわしめる。この際の圧力、温
度及び攪拌速度等の反応条件は該反応に用いる反応容
器、攪拌機等により適宜に決定される。水熱反応条件は
飽和水蒸気圧が5kg/cm以上で通常行なわれ、た
とえば12kg/cmの場合は191℃、10kg/
cmでは183℃程度である。反応時間は温度、圧力
を高めることにより短縮出来るが、経済的には反応時間
は短かい方が良いが操作時の安全性を加味すると10時
間以内が望ましく、たとえば12kg/cmで3時
間、8kg/cmで6時間程度である。
These lime milk and the silicic acid raw material are mixed to make the ratio of water to solid content 15 times or more, preferably 18 to 30 times. The raw material slurry thus obtained is then subjected to a hydrothermal synthesis reaction while heating and stirring under pressure. Reaction conditions such as pressure, temperature and stirring speed at this time are appropriately determined depending on a reaction container, a stirrer and the like used for the reaction. The hydrothermal reaction condition is usually performed when the saturated steam pressure is 5 kg / cm 2 or more. For example, in the case of 12 kg / cm 2 , 191 ° C., 10 kg / cm 2
It is about 183 ° C. in cm 2 . The reaction time can be shortened by increasing the temperature and pressure, but economically the reaction time is preferably short, but considering the safety during operation, it is preferably within 10 hours, for example, 3 hours at 12 kg / cm 2 . It takes about 6 hours at 8 kg / cm 2 .

【0023】該水熱合成反応時に於ける攪拌は、使用原
料、反応容器、反応条件等に従って適宜に決定する。た
とえば直径150mm容量31の反応容器で擢形攪拌翼
を使用して12kg/cm、191℃の条件で合成す
る場合は、攪拌速度は100r.p.m程度で良い。攪
拌操作としては反応容器自身を回転したり、振動した
り、気体や液体を圧入したりする各種の攪拌操作を例示
出来る。本発明の水熱反応はバッチ式反応でも連続反応
でも良く、連続反応を行う場合には連続的に原料スラリ
ーを反応容器に圧入し反応が終了した合成スラリー(珪
酸カルシウム結晶スラリー)を常圧下に排出すれば良
い。この排出の際に二次粒子が損なわれないようにする
必要がある。また原料スラリーの水比をさげて反応容器
中で反応せしめ、反応後所定量の水を圧入して排出する
方法を行なっても良い。
The agitation during the hydrothermal synthesis reaction is appropriately determined according to the raw materials used, the reaction vessel, the reaction conditions and the like. For example, when synthesizing under a condition of 12 kg / cm 2 and 191 ° C. in a reactor having a diameter of 150 mm and a capacity of 31 using a stirring blade, the stirring speed is 100 r. p. About m is enough. Examples of the stirring operation include various stirring operations of rotating the reactor itself, vibrating it, and injecting a gas or a liquid. The hydrothermal reaction of the present invention may be a batch type reaction or a continuous reaction, and when the continuous reaction is performed, the synthetic slurry (calcium silicate crystal slurry) in which the raw material slurry is continuously pressed into the reaction vessel and the reaction is completed is performed under normal pressure. It should be discharged. Secondary particles need to be kept intact during this discharge. Alternatively, the water ratio of the raw material slurry may be reduced to cause the reaction in the reaction vessel, and after the reaction, a predetermined amount of water may be pressed and discharged.

【0024】この珪酸カルシウムの合成に際しては、反
応促進剤や触媒等を適宜添加することは可能であり、ま
た沈澱防止剤も添加出来る。これ等としては苛性ソーダ
や苛性カリ等のアルカリやアルカリ金属の各種塩類を例
示出来、更には石綿、セラミックファイバー等の無機繊
維も例示出来る。
Upon synthesizing the calcium silicate, a reaction accelerator, a catalyst and the like can be added appropriately, and a precipitation inhibitor can also be added. Examples of these include various salts of alkalis and alkali metals such as caustic soda and caustic potash, and also inorganic fibers such as asbestos and ceramic fibers.

【0025】上記の水熱合成反応によって、トベルモラ
イトの結晶より成る本発明の球状二次粒子が多数水に分
散したスラリーが得られる。このスラリーを二次粒子の
形状を損なわないように乾燥することにより本発明のト
ベルモライト球状二次粒子の粉体を得ることが出来る。
また該スラリー又は該粉体を二次粒子の形状を損なわな
いように800℃以上で焼成することによりワラストナ
イト球状二次粒子の粉体を得ることが出来る。
By the above hydrothermal synthesis reaction, a slurry in which a large number of spherical secondary particles of the present invention composed of tobermorite crystals are dispersed in water is obtained. The powder of the tobermorite spherical secondary particles of the present invention can be obtained by drying this slurry without damaging the shape of the secondary particles.
A powder of wollastonite spherical secondary particles can be obtained by firing the slurry or the powder at 800 ° C. or higher so as not to impair the shape of the secondary particles.

【0026】本発明の球状二次粒子が水に分散したスラ
リーはこれを所望の形状に成形し、ただ単に乾燥するの
みで、成形体とすることが出来る。この際の水の量は広
い範囲で適宜に決定すれば良いが、通常固形分に対して
3〜50倍好ましくは5〜30倍程度である。
The slurry in which the spherical secondary particles of the present invention are dispersed in water can be molded into a desired shape by molding the slurry into a desired shape and simply drying. The amount of water at this time may be appropriately determined within a wide range, but is usually about 3 to 50 times, preferably about 5 to 30 times the solid content.

【0027】本発明の球状二次粒子を水に分散乃至懸濁
せしめたスラリーから軽量で強度の大きいトベルモライ
ト成形体を製造することが出来る。
A lightweight and high-strength tobermorite compact can be produced from a slurry in which the spherical secondary particles of the present invention are dispersed or suspended in water.

【0028】本発明に於いては上記スラリーに必要に応
じ各種の補強添加剤を添加することが出来る。この際の
補強添加剤としては広く各種のものが使用出来、その代
表的なものを例示すると例えばパルプ、麻、各種の有機
又は無機の合成及び天然繊維、セメント、粘土、石膏、
珪砂、珪藻土、パーライト、水ガラス、コロイダルシリ
カ、アルミナゾル、リチウムシリケート、澱粉、樹脂等
を例示出来る。有機質繊維としてはパルプ、麻等の天然
繊維やナイロン、テトロンの如き各種の合成繊維が使用
出来、また無機質繊維としては石綿、シリカファイバ
ー、グラスファイバー、ロックウール、黒鉛繊維、各種
ウイスカー等が使用出来る。また鉄筋、金網等も使用可
能である。これ等各種の補強添加剤を使用することによ
り、その補強添加剤の種類に応じて目的物成形体の強
度、耐熱性、硬度等を更に向上せしめることが出来る。
In the present invention, various reinforcing additives can be added to the above-mentioned slurry, if necessary. A wide variety of reinforcing additives can be used in this case, and representative examples thereof include pulp, hemp, various organic or inorganic synthetic and natural fibers, cement, clay, gypsum,
Examples include silica sand, diatomaceous earth, perlite, water glass, colloidal silica, alumina sol, lithium silicate, starch, and resin. As the organic fibers, natural fibers such as pulp and hemp, and various synthetic fibers such as nylon and tetron can be used, and as the inorganic fibers, asbestos, silica fiber, glass fiber, rock wool, graphite fiber, various whiskers and the like can be used. . In addition, reinforcing bars, wire mesh, etc. can also be used. By using these various reinforcing additives, it is possible to further improve the strength, heat resistance, hardness, etc. of the molded article of the object, depending on the type of the reinforcing additive.

【0029】本発明のトベルモライト球状二次粒子から
得られるトベルモライト成形体は、従来のトベルモライ
ト球状二次粒子から製造されるトベルモライト成形体に
比し次の様な優れた特徴を有す。 A 0.1g/cm程度の密度の成形体でありながら
3kg/cm以上の実用的曲げ強度を有す。尚従来の
トベルモライト球状二次粒子からは0.1g/cm
度の軽量な成形体は製造出来ず、0.1g/cm程度
のトベルモライト成形体は、本発明の球状二次粒子の開
発によりはじめて可能となる。 B トベルモライトから成っているにもかかわらず耐熱
度が高く、850℃に加熱しても線収縮率は2%以下で
ある。 C 優先配向しており、特に嵩密度が0.3g/cm
以上で配向度が大きい。優先配向度は次の方法で測定さ
れたものである。
The tobermorite molded product obtained from the tobermorite spherical secondary particles of the present invention has the following excellent properties as compared with the conventional tobermorite molded product produced from the conventional tobermorite spherical secondary particles. It has features. A A molded body having a density of about 0.1 g / cm 3 has a practical bending strength of 3 kg / cm 2 or more. It should be noted that conventional tobermorite spherical secondary particles cannot be used to produce a lightweight molded body of about 0.1 g / cm 3 , and a tobermorite molded body of about 0.1 g / cm 3 is a spherical secondary particle of the present invention. It will only be possible with the development of particles. Despite being made of B tobermorite, it has high heat resistance, and the linear shrinkage rate is 2% or less even when heated to 850 ° C. C preferred orientation, especially bulk density of 0.3 g / cm 3
As a result, the degree of orientation is large. The degree of preferential orientation is measured by the following method.

【0030】成形体の一部を採取して微粉砕し無配向粉
末試料を作り、一方上記成形体からプレス方向に直角な
面をもつ別の試料を作る(配向試料)。
A part of the molded body is sampled and finely pulverized to prepare a non-oriented powder sample, while another sample having a plane perpendicular to the pressing direction is prepared from the molded body (oriented sample).

【0031】次いで2つの試料のトベルモライト結晶の
(002)及び(220)面のX線回折強度をそれぞれ
測定する。
Next, the X-ray diffraction intensities of the (002) and (220) planes of the two samples of the tobermorite crystals are measured.

【0032】優先配向度(P)はThe preferred orientation degree (P) is

【0033】[0033]

【化3】 なる式によって与えられる。[Chemical 3] Is given by

【0034】ここでI(002)とI(220)は無配
向粉末試料の回折強度でI′(002)とI′(22
0)は配向試料の回折強度である。
Here, I (002) and I (220) are diffraction intensities of the non-oriented powder sample, and I '(002) and I' (22).
0) is the diffraction intensity of the oriented sample.

【0035】本発明球状二次粒子は見掛密度が極端に低
く耐熱性が高く、且つこれを水或いは溶液中に懸濁さす
ことにより、容易に成形体とすることが出来、その成形
体は耐火建材、断熱材に極めて好適なものであり、また
該二次粒子から成る粉体は、充填剤、各種吸着剤、脱臭
剤、農薬、塗料、歯ミガキ粉、顔料、触媒担体、各種薬
品の担体等の用途がある。
The spherical secondary particles of the present invention have an extremely low apparent density and a high heat resistance, and by suspending them in water or a solution, a molded body can be easily formed. It is extremely suitable for fire-resistant building materials and heat insulating materials, and powders comprising the secondary particles include fillers, various adsorbents, deodorants, agricultural chemicals, paints, toothpaste powders, pigments, catalyst carriers, and various chemicals. There are applications such as carriers.

【0036】[0036]

【実施例】以下に実施例を示して本発明の特徴とする所
を説明する。但し下記例に於いて部又は%とあるは特に
説明しないかぎり重量部又は重量%を示す。
EXAMPLES The features of the present invention will be described below with reference to examples. In the following examples, "parts or%" means "parts by weight" or "% by weight" unless otherwise specified.

【0037】[0037]

【実施例1】生石灰(CaO95.0%)42.25部
を80℃の温湯507部中で消和し、ホモミクサーにて
3分間水中で分散させて得た石灰乳の沈降容積は19.
9mlであった。上記石灰乳に平均粒子径約9μmの珪
石粉末(SiO97.37%、Al0.99
%)53.21部を加えて全体の水量を固形分の22重
量倍となるように混合して原料スラリーを得、これを飽
和水蒸気圧12kg/cm、温度191℃で容積30
00cc、内径15cmのオートクレーブで回転数17
4r.p.mで攪拌翼を回転しながら3時間水熱合成反
応を行なって結晶スラリーを得た。この結晶スラリーを
100℃で24時間乾燥してX線回折分析した所、トベ
ルモライト結晶であることを確認した。この結晶スラリ
ーをスライドグラス上で乾燥して光学顕微鏡で観察する
と第1図に示される通り外径が平均38μmの球状二次
粒子が認められた。また該スラリーに界面活性剤を添加
混合し、48時間静置自然沈降せしめ次いでこれを10
0℃で48時間乾燥して得られた自然沈降成形体の一部
を切り出し、これをカナダバルサムで固定し、次いでこ
れを研磨した後キシレンで上記カナダバルサムを除去し
て研磨試料を得た。この試料を走査型電子顕微鏡で観察
すると第3図に示される通りトベルモライト結晶が粗に
集合して球状二次粒子を形成していることが判明した。
Example 1 42.25 parts of quicklime (CaO 95.0%) was soaked in 507 parts of hot water at 80 ° C. and dispersed in water for 3 minutes with a homomixer to obtain a lime milk having a sedimentation volume of 19.
It was 9 ml. Silica powder (SiO 2 97.37%, Al 2 O 3 0.99) with an average particle diameter of about 9 μm was added to the lime milk.
%) 53.21 parts were added and the total amount of water was mixed to be 22 times the solid content by weight to obtain a raw material slurry, which was saturated water vapor pressure 12 kg / cm 2 , temperature 191 ° C. and volume 30.
Rotation speed of 17 in an autoclave of 00 cc and an inner diameter of 15 cm
4r. p. The hydrothermal synthesis reaction was performed for 3 hours while rotating the stirring blade at m to obtain a crystal slurry. When this crystal slurry was dried at 100 ° C. for 24 hours and subjected to X-ray diffraction analysis, it was confirmed to be tobermorite crystals. When this crystal slurry was dried on a slide glass and observed with an optical microscope, spherical secondary particles having an average outer diameter of 38 μm were observed as shown in FIG. Further, a surfactant was added to the slurry and mixed, and the mixture was allowed to stand for 48 hours for spontaneous sedimentation and then this was mixed with 10
A part of the spontaneous sedimentation molded product obtained by drying at 0 ° C. for 48 hours was cut out, fixed with Canadian balsam, and then polished, and then the above Canadian balsam was removed with xylene to obtain a polished sample. When this sample was observed with a scanning electron microscope, it was found that the tobermorite crystals roughly aggregated to form spherical secondary particles as shown in FIG.

【0038】またこの二次粒子を分散して電子顕微鏡で
観察すると第2図に示される通り長さ0.1〜10μ
m、巾0.1〜2μmの板状結晶と長さ0.1〜10μ
m、巾0.05〜0.5μmの針状結晶が認められた。
When the secondary particles are dispersed and observed with an electron microscope, the length is 0.1 to 10 μm as shown in FIG.
m, a plate crystal with a width of 0.1 to 2 μm and a length of 0.1 to 10 μ
m, and needle-like crystals with a width of 0.05 to 0.5 μm were observed.

【0039】上記二次粒子の各特性は第1表の通りであ
った。
The characteristics of the secondary particles are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【参考例1】実施例1で得た結晶スラリーをプレス成形
し、120℃で20時間乾燥して得た成形体の優先配向
度は第2表の通りであった。
Reference Example 1 The preferred orientation degree of the molded product obtained by press-molding the crystal slurry obtained in Example 1 and drying at 120 ° C. for 20 hours is as shown in Table 2.

【0042】[0042]

【表2】 次いで上記結晶スラリー85部(固形分)に添加材とし
てガラス繊維7部、パルプ5部及びポルトランドセメン
ト3部を加えて、同様にプレス成形し、120℃で20
時間乾燥して成形体を得た。得られた成形体の物性は第
3表の通りであった。
[Table 2] Then, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the above crystal slurry, and press-molded in the same manner, and at 20 ° C. for 20 minutes.
It was dried for an hour to obtain a molded body. The physical properties of the obtained molded product are shown in Table 3.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【実施例2】生石灰(CaO95.1%)41.42部
を80℃の温湯497部中で消和し、ホモミクサーにて
5分間水中で分散させて得た石灰乳の沈降容積は17.
5mlであった。上記石灰乳に平均粒子径約8.5μm
の珪石粉末(SiO94.03%、Al2.3
7%)54.04部を加えて全体の水量を固形分の22
重量倍となるように混合して原料スラリーを得、これを
飽和水蒸気圧12kg/cm、温度191℃で容積3
000cc、内径15cmのオートクレーブで回転数1
74r.p.mで攪拌翼を回転しながら3時間水熱合成
反応を行なって結晶スラリーを得た。この結晶スラリー
を100℃で24時間乾燥してX線回折分析した所、ト
ベルモライト結晶であることを確認した。この結晶スラ
リーをスライドグラス上で乾燥して光学顕微鏡で観察す
ると外径が平均52μmの球状二次粒子が認められた。
また該スラリーに界面活性剤を添加混合し、48時間静
置自然沈降せしめ次いでこれを100℃で48時間乾燥
して得られた自然沈降成形体の一部を切り出し、これを
カナダバルサムで固定し、次いでこれを研磨した後キシ
レンで上記カナダバルサムを除去して研磨試料を得た。
この試料を走査型電子顕微鏡で観察すると第4図に示さ
れる通りトベルモライト結晶が粗に集合したもの及び内
部が中空の球状二次粒子を形成していることが判明し
た。
Example 2 41.42 parts of quicklime (CaO 95.1%) was dissolved in 497 parts of hot water at 80 ° C. and dispersed in water with a homomixer for 5 minutes to obtain a lime milk having a sedimentation volume of 17.
It was 5 ml. The lime milk has an average particle size of about 8.5 μm.
Silica powder (SiO 2 94.03%, Al 2 O 3 2.3
7%) 54.04 parts to make the total amount of water 22% of solids.
A raw material slurry was obtained by mixing so that the weight of the raw material slurry was 12 kg / cm 2 , the temperature was 191 ° C., and the volume was 3
Rotation speed of 1 in an autoclave with 000 cc and an inner diameter of 15 cm
74r. p. The hydrothermal synthesis reaction was performed for 3 hours while rotating the stirring blade at m to obtain a crystal slurry. When this crystal slurry was dried at 100 ° C. for 24 hours and subjected to X-ray diffraction analysis, it was confirmed to be tobermorite crystals. When this crystal slurry was dried on a slide glass and observed with an optical microscope, spherical secondary particles having an average outer diameter of 52 μm were recognized.
Further, a surfactant was added to and mixed with the slurry, allowed to stand for 48 hours for spontaneous precipitation, and then dried at 100 ° C. for 48 hours to cut out a part of the spontaneous precipitation molded body, which was fixed with Canadian balsam. Then, after polishing this, the above Canadian balsam was removed with xylene to obtain a polishing sample.
When this sample was observed with a scanning electron microscope, it was found that the tobermorite crystals were roughly aggregated and spherical secondary particles having a hollow inside were formed as shown in FIG.

【0045】またこの二次粒子を分散して電子顕微鏡で
観察すると長さ0.1〜10μm、巾0.1〜2μmの
板状結晶と長さ0.1〜10μm、巾0.05〜0.5
μmの針状結晶が認められた。
When the secondary particles are dispersed and observed by an electron microscope, plate-like crystals having a length of 0.1 to 10 μm and a width of 0.1 to 2 μm and a length of 0.1 to 10 μm and a width of 0.05 to 0 are obtained. .5
Needle-like crystals of μm were observed.

【0046】上記二次粒子の各特性は第4表の通りであ
った。
The characteristics of the secondary particles are shown in Table 4.

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【参考例2】実施例2で得た結晶スラリーをプレス成形
し、120℃で20時間乾燥して得た成形体の優先配向
度は第5表の通りであった。
Reference Example 2 The crystal orientation of the crystal slurry obtained in Example 2 was press-molded and dried at 120 ° C. for 20 hours.

【0049】[0049]

【表5】 次いで上記結晶スラリー85部(固形分)に添加剤とし
てガラス繊維7部、パルプ5部及びポルトランドセメン
ト3部を加えて、同様にプレス成形し、120℃で20
時間乾燥して成形体を得た。得られた成形体の物性は第
6表の通りであった。
[Table 5] Then, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive were added to 85 parts (solid content) of the above crystal slurry, and press molding was carried out in the same manner, and at 20 ° C., 20
It was dried for an hour to obtain a molded body. The physical properties of the obtained molded product are as shown in Table 6.

【0050】[0050]

【表6】 [Table 6]

【0051】[0051]

【実施例3】生石灰(CaO95.6%)45.56部
を80℃の温湯547部中で消和し、ホモミクサーにて
6分間水中で分散させて得た石灰乳の沈降容積は28.
0mlであった。上記石灰乳に平均粒子径約8.5μm
の珪石粉末(SiO94.03%、Al2.3
7%)59.44部を加えて全体の水量を固形分の20
重量倍となるように混合して原料スラリーを得、これを
飽和水蒸気圧8kg/cm、温度175℃で容積30
00cc、内径15cmのオートクレーブで回転数17
4r.p.mで攪拌翼を回転しながら6時間水熱合成反
応を行なって結晶スラリーを得た。この結晶スラリーを
100℃で24時間乾燥してX線回折分析した所、トベ
ルモライト結晶であることを確認した。この結晶スラリ
ーをスライドグラス上で乾燥して光学顕微鏡で観察する
と外径が平均45μmの球状二次粒子が認められた。ま
た該スラリーに界面活性剤を添加混合し、48時間静置
自然沈降せしめ次いでこれを100℃で48時間乾燥し
て得られた自然沈降成形体の一部を切り出し、これをカ
ナダバルサムで固定し、次いでこれを研磨した後キシレ
ンで上記カナダバルサムを除去して研磨試料を得た。こ
の試料を走査型電子顕微鏡で観察するとトベルモライト
結晶が粗に集合して球状二次粒子を形成していることが
判明した。
Example 3 45.56 parts of quick lime (CaO 95.6%) was dissolved in 547 parts of hot water at 80 ° C. and dispersed in water with a homomixer for 6 minutes to obtain a lime milk having a sedimentation volume of 28.
It was 0 ml. The lime milk has an average particle size of about 8.5 μm.
Silica powder (SiO 2 94.03%, Al 2 O 3 2.3
7%) 59.44 parts to add the total amount of water to 20% of solids.
A raw material slurry is obtained by mixing so that the weight of the raw material slurry is 8 times the saturated vapor pressure of 8 kg / cm 2 and the temperature of 175 ° C.
Rotation speed of 17 in an autoclave of 00 cc and an inner diameter of 15 cm
4r. p. The hydrothermal synthesis reaction was performed for 6 hours while rotating the stirring blade at m to obtain a crystal slurry. When this crystal slurry was dried at 100 ° C. for 24 hours and subjected to X-ray diffraction analysis, it was confirmed to be tobermorite crystals. When this crystal slurry was dried on a slide glass and observed with an optical microscope, spherical secondary particles having an average outer diameter of 45 μm were recognized. Further, a surfactant was added to and mixed with the slurry, allowed to stand for 48 hours for spontaneous precipitation, and then dried at 100 ° C. for 48 hours to cut out a part of the spontaneous precipitation molded body, which was fixed with Canadian balsam. Then, after polishing this, the above Canadian balsam was removed with xylene to obtain a polishing sample. Observation of this sample with a scanning electron microscope revealed that the tobermorite crystals aggregated coarsely to form spherical secondary particles.

【0052】またこの二次粒子を分散して電子顕微鏡で
観察すると長さ0.1〜10μm、巾0.1〜2μmの
板状結晶と長さ0.1〜10μm、巾0.05〜0.5
μmの針状結晶が認められた。
When the secondary particles are dispersed and observed by an electron microscope, plate crystals having a length of 0.1 to 10 μm and a width of 0.1 to 2 μm and a length of 0.1 to 10 μm and a width of 0.05 to 0 are obtained. .5
Needle-like crystals of μm were observed.

【0053】上記二次粒子の各特性は第7表の通りであ
った。
The characteristics of the secondary particles are shown in Table 7.

【0054】[0054]

【表7】 [Table 7]

【0055】[0055]

【参考例3】実施例3で得た結晶スラリーをプレス成形
し、120℃で20時間乾燥して得た成形体の優先配向
度は第8表の通りであった。
Reference Example 3 The crystalline slurry obtained in Example 3 was press-molded and dried at 120 ° C. for 20 hours.

【0056】[0056]

【表8】 次いで上記結晶スラリー85部(固形分)に添加材とし
てガラス繊維7部、パルプ5部及びポルトランドセメン
ト3部を加えて、同様にプレス成形し、120℃で20
時間乾燥して成形体を得た。得られた成形体の物性は第
9表の通りであった。
[Table 8] Then, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the above crystal slurry, and press-molded in the same manner, and at 20 ° C. for 20 minutes.
It was dried for an hour to obtain a molded body. The physical properties of the obtained molded product are as shown in Table 9.

【0057】[0057]

【表9】 [Table 9]

【0058】[0058]

【実施例4】生石灰(CaO95.0%)45.83部
を80℃の温湯550部中で消和し、ホモミクサーにて
7分間水中で分散させて得た石灰乳の沈降容積は31.
6mlであった。上記石灰乳に平均粒子径約1.6μm
の珪石粉末(SiO95.1%、Al3.27
%)59.17部を加えて全体の水量を固形分の20重
量倍となるように混合して原料スラリーを得、これを飽
和水蒸気圧12kg/cm、温度191℃で容積30
00cc、内径15cmのオートクレーブで回転数11
2r.p.mで攪拌翼を回転しながら3時間水熱合成反
応を行なって結晶スラリーを得た。この結晶スラリーを
100℃で24時間乾燥してX線回折分析した所、トベ
ルモライト結晶であることを確認した。この結晶スラリ
ーをスライドグラス上で乾燥して光学顕微鏡で観察する
と外径が平均24μmの球状二次粒子が認められた。ま
た該スラリーに界面活性剤を添加混合し、48時間静置
自然沈降せしめ次いでこれを100℃で48時間乾燥し
て得られた自然沈降成形体の一部を切り出し、これをカ
ナダバルサムで固定し、次いでこれを研磨した後キシレ
ンで上記カナダバルサムを除去して研磨試料を得た。こ
の試料を走査型電子顕微鏡で観察するとトベルモライト
結晶が粗に集合したもの及び内部が中空の球状二次粒子
を形成していることが判明した。
Example 4 45.83 parts of quick lime (CaO 95.0%) was dissolved in 550 parts of hot water at 80 ° C. and dispersed in water for 7 minutes with a homomixer to obtain a sediment volume of 31.
It was 6 ml. The lime milk has an average particle size of about 1.6 μm.
Silica stone powder (SiO 2 95.1%, Al 2 O 3 3.27)
%) 59.17 parts were added and the total amount of water was mixed so as to be 20 times the solid content by weight to obtain a raw material slurry, which was saturated water vapor pressure 12 kg / cm 2 , temperature 191 ° C. and volume 30.
Rotation speed of 11 in an autoclave with 00 cc and an inner diameter of 15 cm
2r. p. The hydrothermal synthesis reaction was performed for 3 hours while rotating the stirring blade at m to obtain a crystal slurry. When this crystal slurry was dried at 100 ° C. for 24 hours and subjected to X-ray diffraction analysis, it was confirmed to be tobermorite crystals. When this crystal slurry was dried on a slide glass and observed with an optical microscope, spherical secondary particles having an average outer diameter of 24 μm were recognized. Further, a surfactant was added to and mixed with the slurry, allowed to stand for 48 hours for spontaneous precipitation, and then dried at 100 ° C. for 48 hours to cut out a part of the spontaneous precipitation molded body, which was fixed with Canadian balsam. Then, after polishing this, the above Canadian balsam was removed with xylene to obtain a polishing sample. When this sample was observed with a scanning electron microscope, it was found that the tobermorite crystals were coarsely aggregated and spherical secondary particles having a hollow inside were formed.

【0059】またこの二次粒子を分散して電子顕微鏡で
観察すると長さ0.1〜10μm、巾0.1〜2μmの
板状結晶と長さ0.1〜10μm、巾0.05〜0.5
μmの針状結晶が認められた。
When the secondary particles are dispersed and observed by an electron microscope, plate-like crystals having a length of 0.1 to 10 μm and a width of 0.1 to 2 μm and a length of 0.1 to 10 μm and a width of 0.05 to 0 are obtained. .5
Needle-like crystals of μm were observed.

【0060】上記二次粒子の各特性は第10表の通りで
あった。
The characteristics of the above secondary particles are as shown in Table 10.

【0061】[0061]

【表10】 [Table 10]

【0062】[0062]

【参考例4】実施例4で得た結晶スラリーをプレス成形
し、120℃で20時間乾燥して得た成形体の優先配向
度は第11表の通りであった。
Reference Example 4 The crystal orientation obtained in Example 4 was press-molded and dried at 120 ° C. for 20 hours.

【0063】[0063]

【表11】 次いで上記結晶スラリー85部(固形分)に添加材とし
てガラス繊維7部、パルプ5部及びポルトランドセメン
ト3部を加えて、同様にプレス成形し、120℃で20
時間乾燥して成形体を得た。得られた成形体の物性は第
12表の通りであった。
[Table 11] Then, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the above crystal slurry, and press-molded in the same manner, and at 20 ° C. for 20 minutes.
It was dried for an hour to obtain a molded body. The physical properties of the obtained molded product are as shown in Table 12.

【0064】[0064]

【表12】 [Table 12]

【0065】[0065]

【実施例5】生石灰(CaO95.0%)42.23部
を80℃の温湯507部中で消和し、ホモミクサーにて
6分間水中で分散させて得た石灰乳の沈降容積は26.
0mlであった。上記石灰乳に平均粒子径約1.6μm
の珪石粉末(SiO95.01%、Al3.2
7%)53.23部を加えて全体の水量を固形分の22
重量倍となるように混合して原料スラリーを得、これを
飽和水蒸気圧12kg/cm、温度191℃で容積3
000cc、内径15cmのオートクレープで回転数1
12r.p.mで攪拌翼を回転しながら5時間水熱合成
反応を行なって結晶スラリーを得た。この結晶スラリー
を100℃で24時間乾燥してX線回折分析した所、ト
ベルモライト結晶に少量のゾーノトライト結晶が混合し
たものであることを確認した。この結晶スラリーをスラ
イドグラス上で乾燥して光学顕微鏡で観察すると外径が
平均31μmの球状二次粒子が認められた。また該スラ
リーに界面活性剤を添加混合し、48時間静置自然沈降
せしめ次いでこれを100℃で48時間乾燥して得られ
た自然沈降成形体の一部を切り出し、これをカナダバル
サムで固定し、次いでこれを研磨した後キシレンで上記
カナダバルサムを除去して研磨試料を得た。この試料を
走査型電子顕微鏡で観察するとトベルモライト結晶と少
量のゾーノトライト結晶が粗に集合したもの及び内部が
中空の球状二次粒子を形成していることが判明した。
[Example 5] 42.23 parts of quicklime (CaO 95.0%) was soaked in 507 parts of hot water at 80 ° C and dispersed in water with a homomixer for 6 minutes to obtain a lime milk having a sedimentation volume of 26.
It was 0 ml. The lime milk has an average particle size of about 1.6 μm.
Silica powder (SiO 2 95.01%, Al 2 O 3 3.2)
7%) 53.23 parts were added to bring the total amount of water to 22% of solids.
A raw material slurry was obtained by mixing so that the weight of the raw material slurry was 12 kg / cm 2 , the temperature was 191 ° C., and the volume was 3
Rotation speed of 1 in an autoclave with 000 cc and an inner diameter of 15 cm
12r. p. The hydrothermal synthesis reaction was performed for 5 hours while rotating the stirring blade at m to obtain a crystal slurry. When this crystal slurry was dried at 100 ° C. for 24 hours and analyzed by X-ray diffraction, it was confirmed that the tobermorite crystals were mixed with a small amount of zonotolite crystals. When this crystal slurry was dried on a slide glass and observed with an optical microscope, spherical secondary particles having an average outer diameter of 31 μm were recognized. Further, a surfactant was added to and mixed with the slurry, allowed to stand for 48 hours for spontaneous precipitation, and then dried at 100 ° C. for 48 hours to cut out a part of the spontaneous precipitation molded body, which was fixed with Canadian balsam. Then, after polishing this, the above Canadian balsam was removed with xylene to obtain a polishing sample. When this sample was observed with a scanning electron microscope, it was found that the tobermorite crystals and a small amount of zonotolite crystals were roughly aggregated and that spherical secondary particles having a hollow inside were formed.

【0066】上記二次粒子の各特性は第13表の通りで
あった。
The characteristics of the secondary particles are shown in Table 13.

【0067】[0067]

【表13】 [Table 13]

【0068】[0068]

【参考例5】実施例5で得た結晶スラリーをプレス成形
し、120℃で20時間乾燥して得た成形体の優先配向
度は第14表の通りであった。
Reference Example 5 The crystal orientation slurry obtained in Example 5 was press-molded and dried at 120 ° C. for 20 hours.

【0069】[0069]

【表14】 次いで上記結晶スラリー85部(固形分)に添加材とし
てガラス繊維7部、パルプ5部及びポルトランドセメン
ト5部を加えて、同様にプレス成形し、120℃で20
時間乾燥して成形体を得た。得られた成形体の物性は第
15表の通りであった。
[Table 14] Then, 7 parts of glass fiber, 5 parts of pulp and 5 parts of Portland cement as an additive are added to 85 parts (solid content) of the above crystal slurry, and press molding is carried out in the same manner, followed by heating at 120 ° C. for 20 minutes.
It was dried for an hour to obtain a molded body. The physical properties of the obtained molded product are as shown in Table 15.

【0070】[0070]

【表15】 [Table 15]

【0071】[0071]

【実施例6】生石灰(CaO95.0%)42.25部
を80℃の温湯507部中で消和し、ホモミクサーにて
2分間水中で分散させて得た石灰乳の沈降容積は8.1
mlであった。上記石灰乳に平均粒子径約9μmの珪石
粉末(SiO92.37%、Al0.99%)
53.21部を加えて全体の水量を固形分の22重量倍
となるように混合して原料スラリーを得、これを飽和水
蒸気圧12kg/cm、温度191℃で容積3000
cc、内径15cmのオートクレーブで回転数174
r.p.mで攪拌翼を回転しながら3時間水熱合成反応
を行なって結晶スラリーを得た。この結晶スラリーを1
00℃で24時間乾燥してX線回折分析した所、トベル
モライト結晶であることを確認した。この結晶スラリー
をスライドグラス上で乾燥して光学顕微鏡で観察すると
外径が平均47μmの球状二次粒子が認められた。また
該スラリーに界面活性剤を添加混合し、48時間静置自
然沈降せしめ次いでこれを100℃で48時間乾燥して
得られた自然沈降成形体の一部を切り出し、これをカナ
ダバルサムで固定し、次いでこれを研磨した後キシレン
で上記カナダバルサムを除去して研磨試料を得た。この
試料を走査型電子顕微鏡で観察するとトベルモライト結
晶が粗に集合して球状二次粒子を形成していることが判
明した。
Example 6 42.25 parts of quick lime (CaO 95.0%) was hydrated in 507 parts of hot water at 80 ° C. and dispersed in water for 2 minutes with a homomixer to obtain a sediment volume of 8.1.
It was ml. Silica powder with an average particle size of about 9 μm (SiO 2 92.37%, Al 2 O 3 0.99%) is added to the lime milk.
A raw material slurry was obtained by adding 53.21 parts and mixing the total amount of water to be 22 times the weight of the solid content, and saturating a steam pressure of 12 kg / cm 2 at a temperature of 191 ° C. and a volume of 3000.
Rotation speed 174 in an autoclave with cc and inner diameter of 15 cm
r. p. The hydrothermal synthesis reaction was performed for 3 hours while rotating the stirring blade at m to obtain a crystal slurry. 1 of this crystal slurry
When it was dried at 00 ° C. for 24 hours and analyzed by X-ray diffraction, it was confirmed to be tobermorite crystals. When this crystal slurry was dried on a slide glass and observed by an optical microscope, spherical secondary particles having an average outer diameter of 47 μm were recognized. Further, a surfactant was added to the slurry, mixed, allowed to stand for 48 hours for spontaneous sedimentation, and then dried at 100 ° C. for 48 hours to cut out a part of the spontaneous sedimentation molded body, which was fixed with Canadian balsam. Then, after polishing this, the above Canadian balsam was removed with xylene to obtain a polishing sample. Observation of this sample with a scanning electron microscope revealed that the tobermorite crystals aggregated coarsely to form spherical secondary particles.

【0072】またこの二次粒子を分散して電子顕微鏡で
観察すると長さ0.1〜10μm、巾0.1〜2μmの
板状結晶と長さ0.1〜10μm、巾0.05〜0.5
μmの針状結晶が認められた。
When the secondary particles are dispersed and observed by an electron microscope, plate-like crystals having a length of 0.1 to 10 μm and a width of 0.1 to 2 μm and a length of 0.1 to 10 μm and a width of 0.05 to 0 are obtained. .5
Needle-like crystals of μm were observed.

【0073】上記二次粒子の各特性は第16表の通りで
あった。
The characteristics of the above secondary particles are as shown in Table 16.

【0074】[0074]

【表16】 [Table 16]

【0075】[0075]

【参考例6】実施例6で得た結晶スラリーをプレス成形
し、120℃で20時間乾燥して得た成形体の優先配向
度は第17表の通りであった。
Reference Example 6 The crystal orientation slurry obtained in Example 6 was press-molded and dried at 120 ° C. for 20 hours.

【0076】[0076]

【表17】 次いで上記結晶スラリー85部(固形分)に添加材とし
てガラス繊維7部、パルプ5部及びポルトランドセメン
ト3部を加えて、同様にプレス成形し、120℃で20
時間乾燥して成形体を得た。得られた成形体の物性は第
18表の通りであった。
[Table 17] Then, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the above crystal slurry, and press-molded in the same manner, and at 20 ° C. for 20 minutes.
It was dried for an hour to obtain a molded body. The physical properties of the resulting molded product are shown in Table 18.

【0077】[0077]

【表18】 [Table 18]

【0078】[0078]

【比較例】生石灰(CaO95.0%)42.25部を
80℃の温湯507部中で消和して得た石灰乳の沈降容
積は4.0mlであった。上記石灰乳に平均粒子径約9
μmの珪石粉末(SiO97.37%、Al
0.99%)53.21部を加えて全体の水量を固形
分の22重量倍となるように混合して原料スラリーを
得、これを飽和水蒸気圧12kg/cm、温度191
℃で容積3000cc、内径15cmのオートクレーブ
で回転数174r.p.mで攪拌翼を回転しながら3時
間水熱合成反応を行なって結晶スラリーを得た。この結
晶スラリーを100℃で24時間乾燥してX線回折分析
した所、トベルモライト結晶であることを確認した。こ
の結晶スラリーをスライドグラス上で乾燥して光学顕微
鏡で観察すると外径が平均48μmの球状二次粒子が認
められた。また該スラリーに界面活性剤を添加混合し、
48時間静置自然沈降せしめ次いでこれを100℃で4
8時間乾燥して得られた自然沈降成形体の一部を切り出
し、これをカナダバルサムで固定し、次いでこれを研磨
した後キシレンで上記カナダバルサムを除去して研磨試
料を得た。この試料を走査型電子顕微鏡で観察するとト
ベルモライト結晶が密に集合して球状二次粒子を形成し
ていることが判明した。
[Comparative Example] The sedimentation volume of lime milk obtained by soaking 42.25 parts of quick lime (CaO 95.0%) in 507 parts of hot water at 80 ° C was 4.0 ml. The above lime milk has an average particle size of about 9
μm silica stone powder (SiO 2 97.37%, Al 2 O
3 0.99%) 53.21 parts were added and the total amount of water was mixed to be 22 times by weight of the solid content to obtain a raw material slurry, which was saturated steam pressure 12 kg / cm 2 , temperature 191.
At an autoclave with a volume of 3000 cc and an inner diameter of 15 cm at 174 rpm. p. The hydrothermal synthesis reaction was performed for 3 hours while rotating the stirring blade at m to obtain a crystal slurry. When this crystal slurry was dried at 100 ° C. for 24 hours and subjected to X-ray diffraction analysis, it was confirmed to be tobermorite crystals. When this crystal slurry was dried on a slide glass and observed with an optical microscope, spherical secondary particles having an average outer diameter of 48 μm were recognized. Further, by adding and mixing a surfactant to the slurry,
Allow it to stand for 48 hours to let it settle at room temperature and then add it to 100 ° C
A part of the spontaneous sedimentation molded product obtained by drying for 8 hours was cut out, fixed with Canadian balsam, and then polished, and then the above Canadian balsam was removed with xylene to obtain a polished sample. Observation of this sample with a scanning electron microscope revealed that the tobermorite crystals were densely aggregated to form spherical secondary particles.

【0079】またこの二次粒子を分散して電子顕微鏡で
観察すると長さ0.1〜10μm、巾0.1〜2μmの
板状結晶と長さ0.1〜10μm、巾0.05〜0.5
μmの針状結晶が認められた。
When the secondary particles are dispersed and observed by an electron microscope, plate-like crystals having a length of 0.1 to 10 μm and a width of 0.1 to 2 μm and a length of 0.1 to 10 μm and a width of 0.05 to 0 are obtained. .5
Needle-like crystals of μm were observed.

【0080】上記二次粒子の各特性は第19表の通りで
あった。
The characteristics of the secondary particles are as shown in Table 19.

【0081】[0081]

【表19】 [Table 19]

【0082】[0082]

【参考例】比較例で得た結晶スラリーをプレス成形し、
120℃で20時間乾燥して得た成形体の優先配向度は
第20表の通りであった。
[Reference Example] The crystal slurry obtained in Comparative Example was press-molded,
The preferred orientation degree of the molded product obtained by drying at 120 ° C. for 20 hours is as shown in Table 20.

【0083】[0083]

【表20】 次いで上記結晶スラリー85部(固形分)に添加材とし
てガラス繊維7部、パルプ5部及びポルトランドセメン
ト3部を加えて、同様にプレス成形し、120℃で20
時間乾燥して成形体を得た。得られた成形体の物性は第
21表の通りであった。
[Table 20] Then, 7 parts of glass fiber, 5 parts of pulp and 3 parts of Portland cement as an additive are added to 85 parts (solid content) of the above crystal slurry, and press-molded in the same manner, and at 20 ° C. for 20 minutes.
It was dried for an hour to obtain a molded body. The physical properties of the obtained molded product are as shown in Table 21.

【0084】[0084]

【表21】 [Table 21]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の本発明のトベルモライト結晶球状二
次粒子の100倍の光学顕微鏡写真である。
FIG. 1 is a 100 × optical micrograph of spherical tobermorite crystal secondary particles of the present invention in Example 1.

【図2】実施例1の該粒子を分散した7500倍の電子
顕微鏡写真である。
FIG. 2 is an electron micrograph at 7500 times in which the particles of Example 1 are dispersed.

【図3】実施例1の自然沈降成形体の研磨面の走査型電
子顕微鏡写真(600倍)である。
FIG. 3 is a scanning electron micrograph (600 times) of a polished surface of a spontaneous sedimentation molded article of Example 1.

【図4】実施例2の自然沈降成形体の研磨面の走査型電
子顕微鏡写真(600倍)である。
FIG. 4 is a scanning electron micrograph (600 times) of a polished surface of a spontaneous sedimentation molded article of Example 2.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年4月12日[Submission date] April 12, 1993

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた本発明のトベルモライト結
晶球状二次粒子の粒子構造を示す100倍の光学顕微鏡
写真である。
FIG. 1 is a 100 × optical micrograph showing the particle structure of spherical tobermorite crystal secondary particles of the present invention obtained in Example 1.

【図2】実施例1で得られたトベルモライト結晶球状二
次粒子を分散させた一次粒子の結晶構造を示す7500
倍の電子顕微鏡写真である。
FIG. 2 shows a crystal structure of a primary particle in which spherical tobermorite crystal secondary particles obtained in Example 1 are dispersed 7500
It is a double electron microscope photograph.

【図3】実施例1で得られた自然沈降成形体の研磨面の
組織を示す走査型電子顕微鏡写真(600倍)である。
FIG. 3 is a scanning electron micrograph (600 times) showing the texture of the polished surface of the spontaneously-precipitated compact obtained in Example 1.

【図4】実施例2で得られた自然沈降成形体の研磨面の
組織を示す走査型電子顕微鏡写真(600倍)である。
FIG. 4 is a scanning electron micrograph (600 times) showing the structure of the polished surface of the spontaneously-precipitated molded article obtained in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 沈降容積5ml以上の石灰乳と結晶質珪
酸原料とを、固形分に対する水の量が15重量倍以上と
なるように混合調製して得られる原料スラリーを加圧下
加熱攪拌しながら水熱合成反応を行なわしめ、トベルモ
ライト結晶を主成分とする珪酸カルシウム結晶二次粒子
を生成せしめることを特徴とする珪酸カルシウム球状二
次粒子の製造方法。
1. A raw material slurry obtained by mixing and preparing lime milk having a sedimentation volume of 5 ml or more and a crystalline silicic acid raw material so that the amount of water with respect to the solid content is 15 times by weight or more while heating and stirring under pressure. A method for producing spherical secondary particles of calcium silicate, which comprises performing a hydrothermal synthesis reaction to generate secondary particles of calcium silicate crystals containing a tobermorite crystal as a main component.
JP4108129A 1982-04-23 1992-03-13 Method for producing spherical secondary particles of tobermorite crystals Expired - Lifetime JP2571993B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57069140A JPS58185432A (en) 1982-04-23 1982-04-23 Spherical secondary particle of calcium silicate and preparation thereof
JP4108129A JP2571993B2 (en) 1982-04-23 1992-03-13 Method for producing spherical secondary particles of tobermorite crystals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP57069140A JPS58185432A (en) 1982-04-23 1982-04-23 Spherical secondary particle of calcium silicate and preparation thereof
JP4108129A JP2571993B2 (en) 1982-04-23 1992-03-13 Method for producing spherical secondary particles of tobermorite crystals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57069140A Division JPS58185432A (en) 1982-04-23 1982-04-23 Spherical secondary particle of calcium silicate and preparation thereof

Publications (2)

Publication Number Publication Date
JPH0640715A true JPH0640715A (en) 1994-02-15
JP2571993B2 JP2571993B2 (en) 1997-01-16

Family

ID=26410322

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57069140A Granted JPS58185432A (en) 1982-04-23 1982-04-23 Spherical secondary particle of calcium silicate and preparation thereof
JP4108129A Expired - Lifetime JP2571993B2 (en) 1982-04-23 1992-03-13 Method for producing spherical secondary particles of tobermorite crystals

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP57069140A Granted JPS58185432A (en) 1982-04-23 1982-04-23 Spherical secondary particle of calcium silicate and preparation thereof

Country Status (1)

Country Link
JP (2) JPS58185432A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030012587A (en) * 2001-08-02 2003-02-12 주식회사 리텍 An structural exterior material making method using waste sludge
JP2007230794A (en) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology Hollow particle with unique shell and its production method
JP2012051802A (en) * 2011-12-14 2012-03-15 National Institute Of Advanced Industrial Science & Technology Hollow particle with specific shell and method for producing the same
WO2013073475A1 (en) * 2011-11-15 2013-05-23 国立大学法人名古屋工業大学 Hollow nanoparticles and method for producing same
KR20160140823A (en) 2014-03-29 2016-12-07 도미따 세이야꾸 가부시끼가이샤 Powdered tobermorite type calcium silicate-based material and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007596A1 (en) * 1986-06-06 1987-12-17 Promat Gesellschaft Für Moderne Werkstoffe Mbh Means for reducing the relative density and process for their production
NL8720037A (en) * 1986-02-10 1988-01-04 Onoda Alc Kk METHOD FOR TREATING WASTE WATER.
CN105439156A (en) * 2015-12-10 2016-03-30 内蒙古伊能煤炭转化与循环经济研究院 Method for preparing rubber and plastics filler by use of microsilica and carbide slag

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544968A (en) * 1977-06-15 1979-01-16 Mitsubishi Motors Corp Production of molded plastic article having thin metallic film
JPS5529952A (en) * 1978-08-24 1980-03-03 Kawasaki Heavy Ind Ltd Automatic chocolate applicator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941942B2 (en) * 1977-02-11 1984-10-11 株式会社大阪パッキング製造所 Calcium silicate molded body
JPS5523788A (en) * 1979-06-18 1980-02-20 Sony Corp Coil and coil bobbin for motor or generator and manufacture of coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544968A (en) * 1977-06-15 1979-01-16 Mitsubishi Motors Corp Production of molded plastic article having thin metallic film
JPS5529952A (en) * 1978-08-24 1980-03-03 Kawasaki Heavy Ind Ltd Automatic chocolate applicator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030012587A (en) * 2001-08-02 2003-02-12 주식회사 리텍 An structural exterior material making method using waste sludge
JP2007230794A (en) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology Hollow particle with unique shell and its production method
WO2013073475A1 (en) * 2011-11-15 2013-05-23 国立大学法人名古屋工業大学 Hollow nanoparticles and method for producing same
JPWO2013073475A1 (en) * 2011-11-15 2015-04-02 国立大学法人 名古屋工業大学 Nano hollow particles and method for producing the same
US9527750B2 (en) 2011-11-15 2016-12-27 Nagoya Institute Of Technology Method for producing hollow nanoparticles comprising hydrothermal treatment
JP2012051802A (en) * 2011-12-14 2012-03-15 National Institute Of Advanced Industrial Science & Technology Hollow particle with specific shell and method for producing the same
KR20160140823A (en) 2014-03-29 2016-12-07 도미따 세이야꾸 가부시끼가이샤 Powdered tobermorite type calcium silicate-based material and method for producing same

Also Published As

Publication number Publication date
JPH0327487B2 (en) 1991-04-16
JPS58185432A (en) 1983-10-29
JP2571993B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US4162924A (en) Shaped bodies of calcium silicate and process for producing same
US4298386A (en) Calcium silicate and process for producing same
JP4705785B2 (en) Method and apparatus for producing calcium silicate hydrate
EP0166789B1 (en) Formed article of calcium silicate and method of the preparation thereof
JPH0640715A (en) Production of spherical secondary particles of calcium silicate
US3915725A (en) Process for producing hollow spherical aggregates of xonotlite
US4295893A (en) Alumina-containing calcium silicate and process for producing same
US5370852A (en) Primary particles of amorphous silica composite material, secondary particles of amorphous silica composite material, shaped bodies thereof and processes for their preparation
JPH0422851B2 (en)
EP0445301B1 (en) Composite primary particle of noncrystalline silica, composite secondary particle of noncrystalline silica, shaped form thereof and production thereof
JPH0616464A (en) Calciumsilicate molded body
JP2782198B2 (en) Calcium silicate compact
JPS5941942B2 (en) Calcium silicate molded body
JPS60155561A (en) Aqueous slurry
JPH0122216B2 (en)
JPS5992962A (en) Water-repellent calcium silicate formed body
JP2681203B2 (en) Calcium silicate compact
JPS6213299B2 (en)
KR960006224B1 (en) Process for producing mould of calcium silicate
CA1117990A (en) Alumina-containing calcium silicate and process for producing same
KR800001114B1 (en) Shaped bodies of calcium silicate and process for producing the same
JPS6317788B2 (en)
JP2022067564A (en) Method for producing calcium silicate hydrate slurry
JPS61186256A (en) Manufacture of calcium silicate molded body
JPH0248483B2 (en) KEISANKARUSHIUMUKYUJONIJIRYUSHIOYOBISONOKATSUSEISURARII